An Extended cCSP with Stable Failures Semantics

Zhenbang Chen1 \quad Zhiming Liu2

National Laboratory for Parallel and Distributed Processing
Changsha, China

International Institute for Software Technology, United Nations University
Macau, China

September 1, 2010
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
LRT is from the transaction processing in database area
 - Some database operations last for a long time, but also need to ensure to be a transaction
 - Use compensation to handle failures

LRT models attract attention recently because of the progress in Service-Oriented Computing (SOC)
 - Coordination between wide-spread communicating peers
 - Atomic transaction is too strict for this scenario
 - LRT can tackle this problem by using compensation

Some modeling and programming languages for LRT
 - Industrial: WS-BPEL, XLANG, BPMN
 - Formal: SAGAS, StAC, cCSP
A theoretical foundation for LRT modeling

What we need
- Denotational model
- Ensure the laws of LRT
- Compositional reasoning

Problems
- Most formal languages for LRT only have an operational semantics
 - SAGAS, StAC
- cCSP is an exception
 - A trace semantics is provided
Modeling LRT with cCSP

- cCSP is a variant of CSP
 - Standard process
 - Compensable process
- Limitation
 - Only an operational semantics beside the trace semantics
 - The operators are limited
 - No parallel composition with synchronization
 - No non-deterministic choice
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
Recovery in cCSP

- Same as the backward recovery of SAGAS
Syntax of cCSP

\[
P ::= A \\
| P ; P \\
| P \parallel P \\
| SKIP \\
| THROW \\
| YIELD \\
| P \triangleright P \\
| [PP]
\]

\[
PP ::= P \div P \\
| PP ; PP \\
| PP \parallel PP \\
| PP \square PP \\
| PP \oplus PP \\
| SKIP \\
| THROW \\
| YIELD \\
| YIELDD \\
| [PP]
\]
Terminating trace semantics

- Terminal event set $\Omega = \{\checkmark, !, ?\}$
- The semantic model is a set of terminating traces

<table>
<thead>
<tr>
<th>Atomic Action</th>
<th>For all $A \in \Sigma$, $T(A) = {\langle A, \checkmark \rangle}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Process</td>
<td>$T(YIELD) = {\langle ? \rangle, \langle \checkmark \rangle}$</td>
</tr>
<tr>
<td>Parallel Composition</td>
<td>$p \hat{\langle} \omega_1 \hat{\rangle} \parallel q \hat{\langle} \omega_2 \hat{\rangle} = {r \hat{\langle} \omega_1 & \omega_2 \hat{\rangle}</td>
</tr>
<tr>
<td></td>
<td>$T(P \parallel Q) = {r</td>
</tr>
</tbody>
</table>

where

<table>
<thead>
<tr>
<th>ω_1</th>
<th>\checkmark</th>
<th>\checkmark</th>
<th>\checkmark</th>
<th>$!$</th>
<th>$!$</th>
<th>$?$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_2</td>
<td>\checkmark</td>
<td>$?$</td>
<td>$!$</td>
<td>$!$</td>
<td>$?$</td>
<td>$?$</td>
</tr>
<tr>
<td>$\omega_1 & \omega_2$</td>
<td>\checkmark</td>
<td>$?$</td>
<td>$!$</td>
<td>$!$</td>
<td>$!$</td>
<td>$?$</td>
</tr>
</tbody>
</table>
Trace Semantics of Compensable Process

Terminating trace semantics

- The semantic model is a set of terminating trace pairs

Compensation Pair

\[
p \div q = \begin{cases}
(p, q) & p = p_1 \langle \checkmark \rangle \\
(p, \checkmark) & p = p_1 \langle \omega \rangle \land \omega \neq \checkmark
\end{cases}
\]

\[
T_c(P \div Q) = \{p \div q \mid p \in T(P) \land q \in T(Q)\} \cup \{(\langle ? \rangle, \langle \checkmark \rangle)\}
\]

Sequential Composition

\[
(p, p') ; (q, q') = \begin{cases}
(p_1 \langle q, q' \rangle ; p') & p = p_1 \langle \checkmark \rangle \\
(p, p') & p = p_1 \langle \omega \rangle \land \omega \neq \checkmark
\end{cases}
\]

\[
T_c(PP ; QQ) = \{(p, p') ; (q, q') \mid (p, p') \in T_c(PP) \land (q, q') \in T_c(QQ)\}
\]

Transaction Block

\[
\mathcal{T}(\llbracket PP \rrbracket) = \{p \hat{p}' \mid (p \langle ! \rangle, p') \in T_c(PP)\} \cup \{p \langle \checkmark \rangle \mid (p \langle \checkmark \rangle, p') \in T_c(PP)\}
\]
The following laws do not hold:

\[PP ; SKIPP = PP \]

\[\mathcal{T}_c(A \div B ; SKIPP) = \{(\langle A, \checkmark \rangle, \langle B, \checkmark \rangle), (\langle A, ? \rangle, \langle B, \checkmark \rangle), (\langle ?, \checkmark \rangle)\} \]

\[\mathcal{T}_c(A \div B) = \{(\langle A, \checkmark \rangle, \langle B, \checkmark \rangle), (\langle ?, \checkmark \rangle)\} \]

\[[P \div P'] = P \text{ if } P \text{ is non-yielding} \]

\[\mathcal{T}([THROW \div A]) = \{\langle \checkmark \rangle\} = \mathcal{T}(SKIP) \neq \mathcal{T}(THROW) \]

\[[P \div P'; THROWW] = P ; P' \text{ if } P \text{ is non-yielding} \]

The reason is the same as that of the above one.
Problems and Discussion (2)

- Some useful operators are not provided
 - Non-deterministic choice
 - Parallel composition with synchronization
 - Hiding
 - Renaming

- These operators are important
 - Deadlock behavior
 - Modeling systems at different levels
Our Contribution

We extend and modify cCSP as follows

- Distinguish choice operators
 - Internal (□) and External (□) Choice
- Introduce new operators
 - Synchronized parallel composition, Hiding, Renaming
- A stable failures semantics for both standard and compensable processes
 - Deadlock, distinguish choices
 - No implicit interruption
- Fix the problems pointed out before
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
Syntax of the Extended cCSP

\[
P ::= \begin{align*}
| & A & | & PP \\
| & P ; P & | & PP ; PP \\
| & P \cap P & | & PP \cap PP \\
| & P \boxdot P & | & PP \boxdot PP \\
| & P \parallel X & | & PP \parallel PP \\
| & \text{SKIP} & | & \text{SKIPP} \\
| & \text{THROW} & | & \text{THROWW} \\
| & \text{YIELD} & | & \text{YIELDD} \\
| & \text{STOP} & | & PP \setminus X \\
| & P \setminus X & | & PP[R] \\
| & P[R] & | & [PP] \\
| & P \triangleright P & |
\end{align*}
\]
We use traces and the events that a process refuses to perform to give the semantics of the process.

- For the process $A; B$
 - At the beginning, the process refuses to execute any event except A
 - After performing A, the process refuses to execute any event except B
 - After executing the trace $\langle A, B \rangle$, the process needs to terminate, so it will refuse any event except $✓$
 - Finally, the process terminates, it refuses to perform any event

- If a deadlock occurs, processes will refuse to perform any event.
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
Semantic Domain of the Standard Process

- Stable failures semantics \((T, F)\)

- Semantic functions
 - Trace set function: \(T_S(P): \mathcal{P} \rightarrow \mathbb{P}(\Sigma^*\Omega)\)
 - Failure set function: \(F_S(P): \mathcal{P} \rightarrow \mathbb{P}(\Sigma^*\Omega \times \mathbb{P}(\Sigma^\Omega))\)

- Axioms of the semantic domain:
 \[
 \begin{align*}
 & T \text{ is non-empty and prefix closed} & (1) \\
 & (s, X) \in F \Rightarrow s \in T & (2) \\
 & (s, X) \in F \land Y \subseteq X \Rightarrow (s, Y) \in F & (3) \\
 & (s, X) \in F \land \forall a \in Y \cdot s^\langle a \rangle \not\in T \Rightarrow (s, X \cup Y) \in F & (4) \\
 & s^\langle \omega \rangle \in T \Rightarrow (s, \Sigma^\Omega \setminus \{\omega\}) \in F, \text{ where } \omega \in \Omega & (5) \\
 & s^\langle \omega \rangle \in T \Rightarrow (s^\langle \omega \rangle, X) \in F, \text{ where } \omega \in \Omega \land X \subseteq \Sigma^\Omega & (6)
 \end{align*}
\]
Trace synchronization, where \(s_1, t_1 \in \Sigma^* \) and \(\omega, \omega_1, \omega_2 \in \Omega \)

\[
\begin{align*}
& s_1 \parallel X t_1 \langle \omega \rangle = \{\} \\
& s_1 \langle \omega_1 \rangle \parallel X t_1 \langle \omega_2 \rangle = \{ u \langle \omega_1 \& \omega_2 \rangle \mid u \in s_1 \parallel X t_1 \}
\end{align*}
\]

Semantic definition

\[
\begin{align*}
\mathcal{T}_S(P \parallel X Q) &= \{ u \mid \exists s \in \mathcal{T}_S(P), t \in \mathcal{T}_S(Q) \cdot u \in (s \parallel X t) \} \\
\mathcal{F}_S(P \parallel X Q) &= \{ (u, E) \mid (u, E) \in (s, Y) \oplus (t, Z) \land \exists s, t \cdot (s, Y) \in \mathcal{F}_S(P) \land (t, Z) \in \mathcal{F}_S(Q) \}
\end{align*}
\]

Laws need to hold:

\[
\begin{align*}
\text{THROW} \parallel X \text{SKIP} &= \text{YIELD} & \text{THROW} \parallel X \text{YIELD} &= \text{THROW} \\
\text{YIELD} \parallel X \text{SKIP} &= \text{THROW}
\end{align*}
\]
Consider the parallel execution of P and Q

- $P \parallel_X Q$ can refuse an event in $X \cup \Omega$ if either P or Q can refuse it.
- $P \parallel_X Q$ can refuse an event outside $X \cup \Omega$ only if both P and Q can refuse it.

However, we need to take into account the synchronization between terminal events.

- $P \parallel_X Q$ cannot terminate if either P or Q cannot terminate.
- $P \parallel_X Q$ can terminate if both P and Q can terminate, and the synchronized terminal event should be removed from the refusal set of the synchronized failure.
First example, $\Sigma = \{A, B\}$ and $A \parallel (B \; THROW)$

- A has the failure $(\langle\rangle, \{B, \checkmark, !, ?\})$
- $B \; THROW$ has the failure $(\langle B\rangle, \{B, \checkmark, ?\})$
- The synchronized failure set is $\{(\langle B\rangle, \{B, \checkmark, !, ?\})\}$
First example, $\Sigma = \{A, B\}$ and $A \parallel (B; THROW) \{\}$

- A has the failure $((\), \{B, \checkmark, !, ?\})$
- $B; THROW$ has the failure $((B), \{B, \checkmark, ?\})$
- The synchronized failure set is $\{((B), \{B, \checkmark, !, ?\})\}$

Second example, $\Sigma = \{A\}$ and $A \parallel (A; THROW) \{A\}$

- A has the failure $((A), \{A, !, ?\})$
- $A; THROW$ has the failure $((A), \{A, \checkmark, ?\})$
- Both processes can terminate after executing (A), and the synchronized terminal event is $!$
- The synchronized failure set is $\{((A), \{A, \checkmark, ?\})\}$
Failure synchronization, where \((s, Y) \in \mathcal{F}_S(P)\) and \((t, Z) \in \mathcal{F}_S(Q)\)

\[(s, Y) \oplus (t, Z) = \begin{cases}
(u, Y \cup Z) & | \ Y \setminus (X \cup \Omega) = Z \setminus (X \cup \Omega) \land u \in s \parallel t \\
\text{if } (s, Y \cup \Omega) \in \mathcal{F}_S(P) \lor (t, Z \cup \Omega) \in \mathcal{F}_S(Q) \\
((u, (Y \cup Z) \setminus \Theta) & | \ Y \setminus (X \cup \Omega) = Z \setminus (X \cup \Omega) \land \\
& u \in s \parallel t \land \Theta = rf(\omega_1, \omega_2)) \\
\text{otherwise}
\end{cases}\]

\(\omega_1\) is the terminal event \(P\) can perform to terminate
\[\forall (s, Y_1) \in \mathcal{F}_S(P) \bullet Y \subseteq Y_1 \Rightarrow (\omega_1 \in \Omega \land \omega_1 \notin Y_1)\]

\(\omega_2\) is the terminal event \(Q\) can perform to terminate
\[\forall (t, Z_1) \in \mathcal{F}_S(Q) \bullet Z \subseteq Z_1 \Rightarrow (\omega_2 \in \Omega \land \omega_2 \notin Z_1)\]

\(rf\) is the function for synchronizing \(\omega_1\) and \(\omega_2\)
In some cases, \(\omega_1 \) or \(\omega_2 \) may not exist, such as \((\langle \rangle, \{?\})\) of the process \(SKIP \sqcap THROW \).

If \(\omega_1 \) or \(\omega_2 \) does not exist, we use \(\epsilon \) to represent it.

\[
rf(\omega_1, \omega_2) = \begin{cases}
\{\omega_1 \& \omega_2\} & \text{if } \omega_1 \in \Omega \land \omega_2 \in \Omega \\
\{\omega_1\} & \text{if } \omega_1 \in \Omega \land \omega_2 = \epsilon \\
\{\omega_2\} & \text{if } \omega_1 = \epsilon \land \omega_2 \in \Omega \\
\emptyset & \text{if } \omega_1 = \epsilon \land \omega_2 = \epsilon
\end{cases}
\]

More laws for parallel composition

\[
THROW \parallel P = P ; THROW \\
THROW \parallel (YIELD ; P) = THROW \sqcap (P ; THROW)
\]
Outline

1. Background and Motivation
2. Introduction to cCSP
3. Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
4. Conclusion
The behavior of a compensable process
 - Forward behavior and compensation behavior

The compensation behavior needs to be recorded during the execution of the forward behavior
 - Maintain the relation between forward behavior and its compensation
 - Record the compensation behavior in right sequence

The semantic model of a compensable process PP is a triple (T, F, C)
 - T is the trace set of the forward behavior of PP
 - F is the failure set of the forward behavior of PP
 - C is the compensation behavior set, and each element is a (s, T^c, F^c)
The semantics of PP can be calculated by the semantics functions as $(T^c(PP), F^c(PP), C(PP))$

- The forward trace set function
 \[T^c(PP) : \mathcal{PP} \rightarrow \mathcal{P}({\Sigma^*}{\Omega}), \]
- The forward failure set function
 \[F^c(PP) : \mathcal{PP} \rightarrow \mathcal{P}({\Sigma^*}{\Omega} \times \mathcal{P}(\Sigma{\Omega})), \]
- The compensation behavior set function
 \[C(PP) : \mathcal{PP} \rightarrow \mathcal{P}({\Sigma^*}_{\Omega} \times \mathcal{P}({\Sigma^*}{\Omega}) \times \mathcal{P}({\Sigma^*}{\Omega} \times \mathcal{P}(\Sigma{\Omega}))). \]

For a compensable process PP whose semantics is (T, F, C), we use PP_f to denote (T, F).

For an element (s, T^c, F^c) in C, we use PP_c to denote (T^c, F^c).

We will use the operators of standard processes for PP_f and PP_c as if there are standard processes.
If P terminates successfully, process Q will be recorded for compensating the effects caused by P to recover from the failure that may happen in the future.

Semantic definition

\[\mathcal{T}^c(P \div Q) = \mathcal{T}_S(P) \]
\[\mathcal{F}^c(P \div Q) = \mathcal{F}_S(P) \]
\[\mathcal{C}(P \div Q) = \{(s, F^c, D^c) | \exists s \in (\mathcal{T}_S(P) \cap \Sigma^*_\Omega) \bullet (s = t^\langle \checkmark \rangle \land T^c = \mathcal{T}_S(Q) \land F^c = \mathcal{F}_S(Q)) \lor (s \in \Sigma^*_{\{!,?\}} \land T^c = \mathcal{T}_S(SKIP) \land F^c = \mathcal{F}_S(SKIP))\} \]
If an exception occurs in the forward behavior of PP, the compensation behavior will executed.

\[T_S([PP]) = (T^c(PP) \cap \Sigma^*\{\checkmark,?\}) \cup \{s_1 \mid \exists(s,T^c,F^c) \in C(PP) \bullet s = t^{\langle!\rangle} \land s_2 \in T^c \land s_1 = t^{\hat{s}_2}\} \]

\[F_S([PP]) = \{(s,X) \mid s \in \Sigma^* \land (s,X \cup \{!\}) \in F^c(PP)\} \cup \{(s_1,X_1) \mid \exists(s,T^c,F^c) \in C(PP) \bullet \]
\[(s \in \Sigma^*\{\checkmark,?\} \land s_1 = s \land X_1 \subseteq \Sigma^\Omega) \lor \]
\[(s = t^{\langle!\rangle} \land (s_2,X_2) \in F^c \land s_1 = t^{\hat{s}_2} \land X_1 = X_2)\} \]

Law

\[[P \div Q] = P \triangleright SKIP \]
The forward parts will be composed sequentially

$$\mathcal{T}_S(PP \ ; \ QQ) = \mathcal{T}_S(P_P^f \ ; \ Q_Q^f) \quad \mathcal{F}_c^c(PP \ ; \ QQ) = \mathcal{F}_S(P_P^f \ ; \ Q_Q^f)$$

The compensation parts will be composed in the reversed order

$$\mathcal{C}(PP \ ; \ QQ) = \{(s, T^c, F^c) \mid \exists (s_1, PP^c) \in \mathcal{C}(PP), (s_2, QQ^c) \in \mathcal{C}(QQ) \bullet (s_1 = t \langle \checkmark \rangle \wedge s = t \langle s_2 \rangle \wedge T^c = \mathcal{T}_S(Q_Q^c \ ; \ P_P^c) \wedge F^c = \mathcal{F}_S(Q_Q^c \ ; \ P_P^c)) \lor (s_1 \neq t \langle \checkmark \rangle \wedge s = s_1 \wedge T^c = \mathcal{T}_S(P_P^c) \wedge F^c = \mathcal{F}_S(P_P^c))\}$$
Sequential Composition:

$$PP ; SKIPP = PP$$

If $$P_i$$ and $$Q_i$$ ($$i \in \{1, 2\}$$) will not terminate with an exception

$$[P_1 \div Q_1 ; THROWW] = P_1 ; Q_1$$
$$[P_1 \div Q_1 ; P_2 \div Q_2 ; THROWW] = P_1 ; P_2 ; Q_2 ; Q_1$$

Parallel Composition:

If $$P_i$$ and $$Q_i$$ ($$i \in \{1, 2\}$$) will terminate successfully

$$[(P_1 \div Q_1 \parallel P_2 \div Q_2); THROWW] = (P_1 \parallel P_2) ; (Q_1 \parallel Q_2)$$
$$[(P_1 \div Q_1 ; P_2 \div Q_2) \parallel THROWW] = P_1 ; P_2 ; Q_2 ; Q_1$$
$$[(YIELD ; P_1 \div Q_1 ; YIELD ; P_2 \div Q_2) \parallel THROWW] = SKIP \sqcap (P_1 ; Q_1) \sqcap (P_1 ; P_2 ; Q_2 ; Q_1)$$
$$[(YIELD ; P_1 \div Q_1) \parallel (YIELD ; P_2 \div Q_2) \parallel THROWW] = SKIP \sqcap (P_1 ; Q_1) \sqcap (P_2 ; Q_2) \sqcap (P_1 \parallel P_2) ; (Q_1 \parallel Q_2)$$
Comparision with Original cCSP

- New and often used operators are introduced both in standard and compensable processes
- The semantic mode incorporates refusal information
- Unlike cCSP, we do not allow implicit interruption in compensable process
 - The designer of a LRT should specify the place where the LRT can be interrupted
- Yield interrupting behavior is kept in the semantics of the transaction block
 - Relax the assumptions of some laws
Outline

- Background and Motivation
- Introduction to cCSP
- Extended cCSP and Stable Failures Semantics
 - Standard Process
 - Compensable Process
- Conclusion
We extend the cCSP

- Distinguish the internal and external choices
- Introduce new operators: synchronized parallel composition, hiding, and renaming

A new semantics model for the extended cCSP

New laws for the extended cCSP
Future Work

- Stable failures semantics for recursive compensable process
- Failure divergence semantics for extended cCSP
- Refinement theory for LRT
- Axiomatic system and theorem proving tool for extended cCSP
Thank you very much!

Questions?