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Abstract. The verification of uninterpreted programs is undecidable in
general. This paper proposes to employ counterexample-guided abstrac-
tion refinement (CEGAR) framework for verifying uninterpreted pro-
grams. Different from the existing interpolant-based trace abstraction,
we propose a congruence-based trace abstraction method for infeasible
counterexample paths to refine the program’s abstraction model, which
is designed specifically for uninterpreted programs. Besides, we propose
an optimization method that utilizes the decidable verification result for
coherent uninterpreted programs to improve the CEGAR framework’s
efficiency. We have implemented our verification method and evaluated
it on two kinds of benchmark programs. Compared with the state-of-
the-art, our method is more effective and efficient, and achieves 3.6x
speedups on average.
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1 Introduction

Uninterpreted programs [15] belong to a class of programs in which there are
uninterpreted functions [12]. An uninterpreted function f only has a function
signature (i.e., function name, and the types of input and output) but no other
definitions. f only satisfies the common property, i.e., given the same input,
f produces the same output. Uninterpreted programs are motivated in many
scenarios of program analysis and verification. For example, suppose we want
to verify a partial program in which some functions are not defined. We can
over-approximate the program by considering the undefined functions as un-
interpreted functions. Even for well-defined programs, we can carry out a pre-
analysis of a function by considering all the called functions in f as uninterpreted
functions. Specially, the solving of the SMT formulas in the theory of equality
and uninterpreted functions is decidable and has a PSPACE complexity [11].

* Weijiang Hong and Zhenbang Chen contributed equally to this work and are co-
first authors. Zhenbang Chen and Ji Wang are the corresponding authors.
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However, the verification problem of uninterpreted programs is generally unde-
cidable [15], because of the loop structures.

There exists a sub-class of uninterpreted programs (called coherent uninter-
preted programs) whose verification problem is decidable and PSPACE-complete
[15]. As far as we know, there exist no verification methods designed specifically
for the general uninterpreted programs. In this paper, we propose to leverage
the idea of counterexample-guided abstraction refinement (CEGAR) [6] to ver-
ify safety properties of uninterpreted programs. Although the existing CEGAR-
based verification methods, such as [8] and [1], are also applicable for uninter-
preted programs, we argue that more efficient CEGAR-based verification for
uninterpreted programs can be achieved by employing the abstraction and re-
finement methods designed specifically for uninterpreted programs.

Leveraging the decidable result of coherent program verification in [15], we
propose in this paper a trace abstraction [8] based CEGAR framework to verify
uninterpreted programs. Different from the traditional SMT-based trace feasibil-
ity checking [5] and interpolant-based trace abstraction [8], our framework pro-
vides a new congruence-based method for abstracting the infeasible counterex-
ample traces. The congruence-based method directly captures the core invariant
features (i.e., equality and congruence closure [18]) of uninterpreted programs
and improves the efficiency of trace abstraction-based refinement. Besides, based
on the observation that some parts (even the ones containing complex loops) of
an uninterpreted program are coherent [15] and can be efficiently verified, we
propose an optimization for the CEGAR framework that verifies the program’s
coherent part first and then employs the CEGAR-based procedure to verify the
remaining part, which can further improve the verification’s efficiency.

The main contributions of this paper are as follows:

– We propose a CEGAR-based verification framework for uninterpreted pro-
grams. The framework verifies the program’s coherent part first and then
employs the CEGAR-based procedure to verify the non-coherent part.

– We propose a new congruence-based trace abstraction method which utilizes
the verification method of coherent programs for checking the trace feasibility
and constructing the trace abstraction.

– We have implemented our CEGAR framework for Boogie uninterpreted
programs. The experimental results on several benchmarks indicate that:
compared with the state-of-the-art work [7], i.e., ULTIMATE, our method
achieves in average 3.6x speedup for the verified programs.

Related work. Our work is closely related to the existing work for uninterpreted
programs. In [15], the decidability result of coherent uninterpreted programs is
discovered, which inspires our work. Following the work [15], Mathur et al. ex-
tend the decidable result to the programs with memory allocations [17]. In [20],
La Torre et al. prove that the verification of coherent concurrent programs is
decidable. Krogmeier et al. in [13] investigate the synthesis problem of uninter-
preted programs and propose a decidable synthesis procedure for coherent unin-
terpreted programs. Besides, Mathur et al. in [16] study the verification problem
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of uninterpreted programs under different types of data models. Different from
these approaches, we consider the verification problem of general uninterpreted
programs. Another line is CEGAR-based program verification methods [1,3,4,8],
which differ in the target programs, abstraction models, and refinement methods.
Our work for uninterpreted programs is in the style of trace abstraction-based
refinement [8]. Unlike the interpolant-based trace abstraction method [3,4,8–10],
our abstraction is congruence-based and provides a new mechanism for the trace
abstraction of uninterpreted programs.

Structure. The remainder of this paper is organized as follows. A brief sum-
mary of the backgrounds and an illustration of our method are presented in
Section 2. The verification framework’s details will be presented in Section 3.
The evaluation of our method and its results are presented in Section 4. Finally,
Section 5 concludes the paper.

2 Background and Illustration

This section briefly introduces uninterpreted programs. Then, we use a motiva-
tion example to illustrate our trace abstraction based verification method.

2.1 Uninterpreted Programs

Syntax Let Σ be a finite symbolic set, and C ⊆ Σ the constant set. The syntax
of uninterpreted programs is defined in Figure 1, where c ∈ C, x, y, f ∈ Σ, and
z̄ denotes a tuple of symbols.

〈stmt〉 ::= skip | x := c | x := y | x := f(z̄)
| assume(〈cond〉) | assert(〈cond〉)
| 〈stmt〉 # 〈stmt〉
| if (〈cond〉) then 〈stmt〉 else 〈stmt〉
| while (〈cond〉) 〈stmt〉

〈cond〉 ::= x = y | 〈cond〉∧〈cond〉 | ¬〈cond〉

Fig. 1. The syntax of uninterpreted programs.

For the atomic statements, the statement skip does nothing and is the unit
statement. x := c is the constant assignment statement. x := y is the assignment
statement. x := f(z̄) assigns the term of the uninterpreted function f to vari-
able x. The term accepts the tuple z̄. The assume statement assume(〈cond〉)
blocks the program states that does not satisfy 〈cond〉; otherwise, it is a skip.
The assertion statement assert(〈cond〉) requires that all the states reaching the
statement should satisfy 〈cond〉. There are three compositive statements: sequen-
tial composition, if-then-else branch composition, and while loop composition.
For conditions, there is only one atomic condition, i.e., equality. It indicates that
x is equal to y. Then, for the sake of brevity, we only include the conjunction
and negation operations. Note that there only exist symbols in uninterpreted
programs. Besides, we can also represent other kinds of relations as functions.
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P = skip

〈M,S〉 →P 〈M,S〉
P = x := c

〈M,S〉 →P 〈M,S[x 7→ I(c)]〉

P = x := y

〈M,S〉 →P 〈M,S[x 7→ S(y)]〉
P = x := f(z̄) (S(z̄), v) ∈ I(f)

〈M,S〉 →P 〈M,S[x 7→ v]〉

P = assume (C) 〈M,S〉 |= C
〈M,S〉 →P 〈M,S〉

P = assume (C) 〈M,S〉 |= ¬C
〈M,S〉 →P 〈M,Blocked〉

P = assert (C) 〈M,S〉 |= C
〈M,S〉 →P 〈M,S〉

P = assert (C) 〈M,S〉 |= ¬C
〈M,S〉 →P 〈M,Failed〉

P = P1 # P2 〈M,S〉 →P1 〈M,S1〉 〈M,S1〉 →P2 〈M,S2〉
〈M,S〉 →P 〈M,S2〉

P = if (C) then P1 else P2 〈M,S〉 |= C 〈M,S〉 →P1 〈M,S1〉
〈M,S〉 →P 〈M,S1〉

P = if (C) then P1 else P2 〈M,S〉 |= ¬C 〈M,S〉 →P2 〈M,S2〉
〈M,S〉 →P 〈M,S2〉

P = while (C) P1 〈M,S〉 |= ¬C
〈M,S〉 →P 〈M,S〉

P = while (C) P1 〈M,S〉 |= C 〈M,S〉 →P1 〈M,S1〉 〈M,S1〉 →P 〈M,S2〉
〈M,S〉 →P 〈M,S2〉

Fig. 2. Semantics rules for uninterpreted programs.

Semantics The semantics of an uninterpreted program is defined w.r.t. a data
model M = (U , I) for interpretation, where U is the universal element set for
interpretation, and I interprets the symbols in Σ. Specifically, I interprets a
symbol in C to an element in U , and a function f as a relation of U . Given a
data model M, the semantics of an uninterpreted program P is defined as a
state transition graph. Each state S : Σ → U maps a symbol to an element in
the universal set of the data model. The initial state is an empty map. Figure 2
gives the transition rules for the semantics, where Blocked and Fail are the special
blocked and failed terminated states, respectively. S[x 7→ e] is S ∪ {(x, e)} if
x /∈ dom(S); otherwise, it is defined as follows.

S[x 7→ e](y) =

{
e y = x
S(y) otherwise

(1)

For the sake of brevity, we extend S to tuples and use S(z̄) to denote the
value tuple of z̄. For example, S((x, y)) is (S(x),S(y)). Besides, we define state
S satisfies a condition C, i.e., S |= C, as follows.

S |= x = y iff S(x) = S(y)
S |= C1 ∧ C2 iff S |= C1 ∧ S |= C2
S |= ¬C iff S 6|= C

(2)

We use 〈M,S1〉 P 〈M,S2〉 to represent that state S2 can be reached from
state S1 during the execution of P under the data model M.
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Verification Problem In this paper, we only consider the verification of un-
interpreted programs w.r.t. reachability properties. There are assertions in the
program. Each assertion can be specified by assert(〈cond〉), which requires that
〈cond〉 holds for the program in terms of any data models. We define P satisfies
the assertions as follows.

∀M • 〈M, ∅〉 6 P 〈M,Fail〉 (3)

It means that the Fail state is not reachable during the execution of P under
any data model. In general, the verification problem of uninterpreted programs is
undecidable [15]. Recently, a fragment of uninterpreted programs, called coherent
uninterpreted programs [15], has been discovered, and its verification problem is
decidable and has a PSPACE-complete time complexity.

Coherent Uninterpreted Programs The coherence is defined in a purely
symbol-oriented manner. Each variable of the program is supposed to have an
initial term. The statements in the program are interpreted as term rewritings.
For example, if y’s current term is ty, x := f(y) assigns term f(ty) to x. Then,
along with the program’s execution, the congruence closure relation [18] w.r.t.
equality can also be inferred. The relation can be used to reason the equality
or dis-equality of the program variables, which supports proving the program’s
assertions. Specifically, the coherent uninterpreted program requires that all of
its traces satisfy the following two properties.

– Memoizing: whenever a term t is recomputed, there must be a variable x
whose term value is equal to t w.r.t. the congruence closure relation.

– Early assumes: assume(x = y) statement appears before the assignments
of the variables whose term values are equal (also w.r.t. the congruence
closure relation) to a super-term of x’s term or y’s term.

If an uninterpreted program P satisfies these two conditions, i.e., P is coher-
ent, the congruence closure relations that can be concluded from P are complete,
which is the key to ensure the verification’s completeness. Then, P’s verification
can be reduced to an emptiness checking problem of a finite state automata
(FSA), which is the intersection of P’s execution automata AP (sound approxi-
mation) and another FSA AU for checking feasibility. AU ensures the soundness
and completeness of the feasibility checking for its coherent traces. Therefore,
this verification method for coherent uninterpreted programs is sound and com-
plete. More details can be found in [15].

2.2 Trace Abstraction based CEGAR

Trace abstraction based CEGAR first abstracts a program P by an FSAA, which
is an over-approximation of P. Then, a counter-example trace t is extracted from
A if any counter-example traces exist. If t is feasible, a real counter-example is
found; otherwise, t will be abstracted to an FSA Ac, in which all the accepted
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traces are not feasible. Then, the abstraction A is refined to A∩¬Ac. If A con-
tains no counter-example traces, P is verified to satisfy the assertions; otherwise,
the trace abstraction based refinement continues.

Figure 3(a) shows an example program P to demonstrate our framework. For
this program, the assertion in the last line is truly a fact. However, the program
is not a coherent uninterpreted program. The assume statement in the else
branch does not satisfy the requirement of early assumes, because f(t) may be
already computed and dropped in before while loop. Thus, we cannot use the
verification method in [15] to verify this program. Besides, if we use ULTIMATE
[7], i.e., a state-of-the-art verification tool implementing trace abstraction based
CEGAR [8], to verify the program, the refinement process does not terminate.

x := t;
y := k;
if (t != s){
assume(t = k);
while (y != z){
x := f(x);
y := f(y);
z := g(z);

}
}else{
while (y != z){
x := f(x);
y := f(y);
z := g(z);

}
assume(t = k);

}
assert(x = y);

(a) Program

P2’s FSA

Q0

Q1

Q2

Before-Loop

After-Loop

Loop-Body

tc’s abstraction
FSA

Q0

Q1

Q2

Q3

Q4

Before-Loop

Loop-Body

Loop-Body

After-Loop

Loop-Body

P2’s refined
FSA

Q0

Q1

Q2

Q3

Before-Loop

After-Loop

Loop-Body

After-Loop

\ =

(b) Refinement

Fig. 3. A motivation example, where Before-Loop, Loop-Body and After-Loop repre-
sent x := t # y := k # assume(t = s), assume(y 6= z) # x := f(x) # y := f(y) # z := g(z),
and assume(y = z) # assume(t = k) # assume(x 6= y), respectively.

Notice that P can be separated into two sub-programs P1 and P2, which
corresponds to the true and false branch cases, respectively. P1 is a coher-
ent program, but P2 is not, because P2 violates the requirement of early as-
sumes. We use P2 to demonstrate our CEGAR procedure. P2’s FSA is the first
one in Figure 3(b), where each state represents the one after the transition of
a sequence of statements (for the sake of brevity). Note that the statement
assert(x = y) will be replaced by assume(x 6= y), and the verification prob-
lem w.r.t. assert(x = y) will be converted into a reachability problem w.r.t.
assume(x 6= y). Then, suppose we get a counterexample trace t in which the
loop body is executed three iterations. t is not a coherent trace, but any finite
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Entry

q0

q1

q2

q3

x := t

y := k

assume(t = s)

1st iteration

q4

q5

q6

q7

assume(y != z)

x := f(x)

y := f(y)

z := h(z)

2nd iteration

q8

q9

q10

q11

q12

q13

assume(y != z)

g0 := x

x := f(x)

g1 := y

y := f(y)

z := h(z)

3rd iteration

q14

q15

q16

q17

q18

q19

assume(y != z)

g2 := x

x := f(x)

g3 := y

y := f(y)

z := h(z)

loop exit

q20

q21

q22

assume(y = z)

assume(t = k)

assume(x != y)

assume(y != z)

Fig. 4. The demonstration of abstracting infeasible trace.

trace is k-coherent [15]. So we translate t to a coherent trace tc by adding k
ghost variables. Figure 4 shows the trace tc, which is divided into several seg-
ments. The gray states (q9, q11, q15 and q17) and transitions are related to ghost
variables. Then, along with tc, we can compute the congruence closure relation
based state transitions. Each state consists of three parts: an equality relation
E of variables, a dis-equality relation D, and a set F of function relations. For
example, after executing the first two statements, q2’s E is as follows.

{(x, x), (x, t), (t, x), (y, y), (y, k), (k, y), (z, z), (t, t), (k, k), (s, s)}

q2’s D is ∅ and q2’s F is {Rf , Rg}, where both Rf and Rg are the relation
{([v]E ,Undef) | v ∈ {x, y, z, s}}, in which [v]E represents v’s equivalent set w.r.t.
q2’s E, and Undef means that the input’s value is undefined.

If there exist two variables that have a relation in both one state’s E and D,
the state is inconsistent. If a trace can result in an inconsistent state, the trace
is infeasible. In total, there are 23 states along the coherent trace tc. State q22

is inconsistent, because x and y are equal but also in the dis-equality relation of
q22 (implied by the last statement assume(x 6= y)). Hence, tc is infeasible.

So we abstract tc to refine P2’s FSA. The abstraction for tc is as follows. We
first remove the transitions and the states related to ghost variables and remove
the ghost variables’ definitions from each state. For tc, we remove q9, q11, q15

and q17 and their incoming transitions (i.e., the gray states and transitions in
Figure 4). Then, we scan the remaining states and transitions and try to match
the equal states. Two states are equal if they have the same E and D. Figure 4
shows the pairs of equivalent states by L9999K. Because each state in the second



8 Weijiang Hong et al.

iteration has a corresponding equivalent state in the third iteration, we can add
a transition (dotted line) from q13 to q8. This abstraction ensures that each
trace in the abstraction is infeasible, because the core reason of inconsistency is
assume(t = k) and assume(x 6= y). Same as tc, any trace in the abstraction
can always be transferred to a coherent trace, whose last state is inconsistent.

The abstraction’s FSA is the second FSA in Figure 3(b), in which the loop
body is executed two or more iterations. We refine P2’s FSA (i.e., the first one
in Figure 3(b)) by removing the traces in tc’s abstraction. The result is the third
FSA in Figure 3(b), in which only two traces exist. These two traces are also
infeasible. Therefore, P2 is proved to satisfy the assertion by three rounds of
refinement.

Optimization We can use the aforementioned CEGAR-based procedure to ver-
ify the whole program in Figure 3(a), which takes 8 rounds of refinement to com-
plete the verification. Instead of doing that, by observing that P1 is a coherent
program, we verify P1 by employing the verification method in [15] and then em-
ploy the CEGAR-based procedure to verify P2, which significantly reduces the
refinement rounds. In contrast, the optimized verification only needs 3 rounds of
refinement. Such optimization effectively improves the verification’s efficiency.

3 Verification Framework

Figure 5 shows our verification framework. There are two stages in the frame-
work. In the first stage, the framework partitions P into different parts. For the
coherent parts, the framework verifies them by the verification method in [15].
Now, our framework only partitions each if-then-else branch statement into two
parts. The loop statement is atomic and will not be partitioned.

The second stage verifies the remaining parts via CEGAR-based procedure.
The framework constructs the FSA abstracting Au for each sub-program Pu.
If there exists an accepted trace t, i.e., a statement sequence driving from an
initial state to an accepted state of Au, the framework employs a congruence-
based method based on [15] to check t’s feasibility (Section 3.1). If t is feasible,
a real counterexample is found, and the framework terminates. Otherwise, the
framework constructs an FSA At that abstracts the infeasible trace t (Section
3.2). In principle, all the traces in At are infeasible and equivalent with t w.r.t.
t’s core reason for infeasibility. Then, Au is refined by removing the traces in At,
i.e., Au = Au ∩¬At. If there is no accepted trace in Au, Pu is verified to satisfy
the property. Otherwise, the iteration will continue from Au until the verification
succeeds (i.e., find a real counterexample or prove all Pus’ satisfaction to the
property) or timeout.

3.1 Congruence-based Feasibility Checking

We use congruence-based term state transitions to check a coherent trace’s fea-
sibility [15]. Each term state represents the current equality, dis-equality and
function relations. Each term state is formally defined as follows.
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An uninterpreted
program P

Coherent
sub-programs

Non-coherent
sub-programs

Method in [15] P is incorrect
¬ for each one  No

® Yes and all sub-programs
are correct

Au = Au ∩ ¬At

L(Au) = ∅? Feasibility Checker

³At

² infeasible t

P is correct P is incorrect

Trace Abstraction

¯ for each one
as Pu

At = ∅

° No, return trace t ∈ Au

´ Yes and all L(Au)
are empty

± feasible

Fig. 5. Verification framework.

Definition 1. Given an uninterpreted program P and its variable set V , a term
state S is defined as a triple (E,D,F ), where

– E ⊆ V × V is the equality relation, and we use [V ]E ⊆ 2V to represent the
set of V ’s equivalent classes w.r.t. E.

– D ⊆ [V ]E × [V ]E is the dis-equality relation.
– F is the set of function definitions, and each function f : [V ]E×. . .×[V ]E →

[V ]E defines a relation between equivalent variable classes w.r.t. E.

We use [x]E to represent x’s equivalent variable class w.r.t. E. A state S =
(E,D,F ) is inconsistent when the following condition holds.

∃x, y ∈ V • (x, y) ∈ E ∧ ([x]E , [y]E) ∈ D (4)

Two states S1 and S2 are equivalent (denoted by S1 ≡ S2) if they have the same
E and D. The beginning term state Sini is (IDV , ∅, FUndef), where IDV is {(x, x) |
x ∈ V }, i.e., any variable should be equal to itself, and each function in FUndef

gives Undef for any inputs. Then, given a coherent trace t = 〈stmt1, ..., stmtn〉
of the program P, we can derive t’s state transitions starting from Sini by the
rules in Figure 6, wherein the following definitions are used. We use E[x :≡ y]
below to denote changing x’s equivalent elements to those that are equivalent
with y, wherein E ↓V represents E’s projection on the variable set V .

E[x :≡ y] ::= E ↓V \{x} ∪{(x, y′), (y′, x) | (y, y′) ∈ E} ∪ {(x, x)} (5)

D[x,E′] below represents redefining D w.r.t. a new equality relation E′ and
removing x related dis-equality relations.

D[x,E′] ::= {([x1]E′ , [x2]E′) | {x1, x2} ⊆ V \ {x} ∧ ([x1]E , [x2]E) ∈ D} (6)
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Stmt = skip

(E,D,F )→Stmt (E,D,F )

Stmt = x := y ∧ E′ = E[x :≡ y]

(E,D,F )→Stmt (E′, D[x,E′], F [x,E′])

Stmt = x := f(z) ∧ F JfK([z]E) = [y]E ∧ E′ = E[x :≡ y]

(E,D,F )→Stmt (E′, D[x,E′], F [x,E′])

Stmt = x := f(z) ∧ F JfK([z]E) = Undef ∧ E′ = E ↓V \{x} ∪{(x, x)}
(E,D,F )→Stmt (E′, D[x,E′], F [x,E′, f(z)])

Stmt = assume(x = y) ∧ E′ = LCC(E,F, x, y)∧
D′ = {([x1]E′ , [x2]E′) | ([x1]E , [x2]E) ∈ D}

(E,D,F )→Stmt (E′, D′, F [E′])

Stmt = assume(x 6= y)

(E,D,F )→Stmt (E,D ∪ {([x]E , [y]E), ([y]E , [x]E)}, F )

Fig. 6. Transition rules for term states, where LCC(E,F, x, y) represents the congruence
closure of E after adding the equality between x and y to E. Note that, x := c can
be replaced by x := xc where xc is a never-used variable and its initial term is c.
assert(〈cond〉) has been replaced by assume(¬〈cond〉) during verification.

We use F JfK to represent the function f in F and F [E′] defined as follows to
represent redefining the functions in F w.r.t. the equality relation E′.

F [E′]JfK([x1]E′ , . . . , [xn]E′) ::=

{
[u]E′ [u]E = F JfK([x1]E , . . . , [xn]E)
Undef otherwise

(7)

Then, based on F [E′], we define F [x,E′] to represent redefining the functions in
F w.r.t. E′ when x is assigned with another variable or constant. The function
relations defined on x are modified to Undef.

F [x,E′]JfK([x1]E′ , . . ., [xn]E′)::=

{
F [E′]JfK([x1]E′ , . . ., [xn]E′) x/∈{u, x1, . . ., xn}
Undef otherwise

(8)

Besides, if x is assigned with an uninterpreted function expression f(z) and z’s
value defined by f is Undef, the functions in F are redefined as follows.

F [x,E′, f(z)]JgK([y]E′)::=


F [x,E′]JgK([y]E′) g 6= f
[x]E′ g = f ∧ x /∈ {y} ∧ y ∈ [z]E
[u]E′ g = f ∧ x /∈ {u, y}∧

[u]E = F JfK([y]E)
Undef otherwise

(9)

For the functions other than f , the definitions are the same as those in F [x,E′];
otherwise, the values of z’s equivalent variables (not including x) are [x]E′ , and
f ’s relations defined on x are modified to Undef.

We use S1  t S2 to represent that S2 can be reached after executing the
trace t starting from S1. Then, a trace t is infeasible (denoted as infeasible(t))
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if an inconsistent state Sinc can be reached from the beginning state Sini, i.e.,
where t1 � t represents that t1 is a prefix of t.

∃t1 • t1 � t ∧ Sini  t1 Sinc (10)

Example Suppose that the current term state (E,D,F ) is as follows, where
V = {x, y, z} and there is only one uninterpreted function f .

E = {(x, x), (y, y), (z, z), (y, z), (z, y)} D = {([x]E , [y]E)}

F JfK = {f([x]E) = [y]E , f([y]E) = Undef, f([z]E) = Undef}

Then, after executing x := f(z), we can obtain the next term state (E′, D′, F ′)
(denoted as S′), i.e., (E,D,F )→x:=f(z) (E′, D′, F ′), which is as follows accord-
ing to the forth rule in Figure 6.

E′ = E ↓V \{x} ∪{(x, x)} = {(y, y), (z, z), (y, z), (z, y), (x, x)}

D′ = D[x,E′] = {([x1]E′ , [x2]E′) | {x1, x2} ⊆ {y, z} ∧ ([x1]E , [x2]E) ∈ D} = {}
F ′ = F [x,E′, f(z)]

F [x,E′, f(z)] defines f as follows.

F [x,E′, f(z)]JfK([x]E′) = Undef because x ∈ {x}
F [x,E′, f(z)]JfK([y]E′) = [x]E′ because x /∈ {y} ∧ y ∈ [z]E
F [x,E′, f(z)]JfK([z]E′) = [x]E′ because x /∈ {z} ∧ z ∈ [z]E

3.2 Trace Abstraction

Based on an infeasible coherent trace tc, we can abstract tc to an FSA, which
represents the equivalent infeasible traces of tc. Algorithm 1 shows the details of
trace abstraction. The inputs are an infeasible trace tc and the program P, and
the output is the abstraction FSA At. The algorithm removes the useless states
and transitions and generalizes the loop bodies with the same state transitions.

First, the algorithm constructs an initial automata to accept the infeasible
coherent trace tc (Lines 2−5). Especially, the statements after the inconsistent
state Sm make self loops on Sm (Line 4). Then, it recognizes those ghost variables
Pv in P and tc, including P’s observing variables [14] and the variables added to
tc for making tc coherent (Line 7). The algorithm removes each state’s relations
that are related to Pv (Line 8). After that, the states brought by ghost variables
are removed (Line 9), like the states (q9, q11, q15 and q17) in Figure 4. The
transitions of the remaining states that are connected by those deleted states
are established (Line 11). So far, the algorithm removes all the useless states.

Next, the algorithm matches the states that are the entry state of the same
loop body (denoted by LES(Si, Sj)) and have the same state transitions in the
loop body, which is defined as follows.

match(Si, Sj) ::= LES(Si, Sj)∧
∃k • ∀0 ≤ m ≤ k • Si+m ≡ Sj+m∧
∀1 ≤ n ≤ k • stmt i+n = stmtj+n

(11)
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Algorithm 1: Generalize(tc, P)

Input: An infeasible coherent trace tc = 〈stmt1, ..., stmtn〉 and tc’s transitions are
S0 →stmt1 S1...→stmtm Sm, where S0 is Sini, Sm is inconsistent, and m ≤ n.

Output: The generalization automata At = (Σ,S, T, SI , SF )
1: // Automata initialization
2: Σ ← {stmt1, ..., stmtm, ..., stmtn}
3: S ← {S0, S1, ..., Sm}
4: T ← {(Si, stmt i+1, Si+1) | 0 ≤ i ≤ m− 1} ∪ {(Sm, stmtj+1, Sm) | m ≤ j ≤ n− 1}
5: SI , SF ← S0, Sm

6: // Ghost elimination
7: Pv ← ghostVariables(P, tc)
8: S ← {Si ↓V \Pv | 0 ≤ i ≤ m} //Si ↓V represents Si’s projection on V
9: S ← S \ {Si | Si ∈ S ∧ ∃Sj ∈ S • Sj ≡ Si ∧ j < i}

10: // Connect these states interrupted by the states brought by ghost variables
11: T ← T ∪ {(Si, stmtj , Sj) | Si ∈ S ∧ j = arg min

k>i∧Sk∈S
k}

12: // Loop construction
13: for E ∈ [S]match do
14: i, j ← arg min

Sk∈E
k, arg min

k>i∧Sk∈E
k //Get the first and second entry states in E

15: C ← getCondition(stmti+1) // Get the Si’s loop condition C
16: e← arg min

k>i∧Sk−1→assume(¬C)Sk

k // Get the state Se after exiting the loop

17: T ← T \ {(Sf , stmt , St) | St = Sj} // Remove the transitions to Sj

18: T ← T \ {(Sf , stmt , St) | St = Se} // Remove the transitions to Se

19: T ← T ∪ {(Sj−1,assume(C), Si)} // Generalize by adding a loop
20: T ← T ∪ {(Sj−1,assume(¬C), Se)} // Add the edge for exiting the loop
21: end for
22: At ← (Σ,S, T, SI , SF ) // At’s unreachable states and transitions are removed
23: return At

For example, match(S8, S14) holds in Figure 4. If match(Si, Sj) and match(Sj , Sk)
hold, then {Si, Sj , Sk} constitutes an equivalent state class with respect to match.

After that, for each equivalent state class in [S]match, the algorithm keeps
just one loop body (i.e., the first one) and generalizes the trace by introducing
a loop in the FSA (Lines 14−20). The algorithm get the first and second entry
states (Si, Sj) in each equivalent state class and the corresponding state Se

after exiting the loop (Lines 14−16). Based on these information, the algorithm
constructs a loop. For example, in Figure 4, (Si, Sj , Se) can be (S8, S14, S20).
This loop construction advanced by cutting and adding the corresponding edges
and states (Lines 17−20). We do this for each equivalent state class to complete
the generalization of the loop bodies.

Finally, the algorithm removes the unreachable states and transitions in the
FSA (Line 22) (omitted for the sake of space). The following theorem ensures
the correctness of the trace abstraction algorithm.

Theorem 1 (Soundness). Given an infeasible coherent trace tc of the unin-
terpreted program P, each accepted trace of Generalize(tc,P) is also infeasible.
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Proof. The key point of proof is that each generalization step in Algorithm 1
does not introduce any feasible accepted traces. We prove by contradiction.

– Automata initialization: For Lines 2∼5 in Algorithm 1, the traces accepted
by automata are in the form of 〈stmt1, ..., stmtm, ...〉. If there exists a feasible
trace t = 〈stmt1, ..., stmtm, ..., stmt l〉, then it requires that all the states
reached by the trace should be consistent, which is not true since t will
enter the inconsistent state Sm after executing 〈stmt1, ..., stmtm〉. Therefore,
Automata initialization does not introduce accepted traces.

– Ghost elimination: For Lines 7∼11 in Algorithm 1, the only difference be-
tween the accepted trace t before this step and the accepted trace t′ after
this step is that t′ does not contain the statements related to these ghost
variables. If there exists a t′ that is feasible, the corresponding t must be
feasible since the ghost variables only observe the program states and do not
change the trace’s feasibility. However, t obtained by Automata initialization
should be an infeasible trace, which results in a conflict. Therefore, Ghost
elimination does not introduce accepted traces.

– Loop construction: Similar to ghost elimination, the difference between the
accepted trace t before loop construction and the accepted trace t′ after
this step is that t′ may have different copies of loop bodies. According to
the match’s definition, the executions of these loop bodies do not change the
state that exits the loop, which implies that t and t′ have the same feasibility.
If t′ is feasible, the corresponding t must be feasible. However, t obtained by
Ghost elimination should be an infeasible trace, which results in a conflict.
Therefore, Loop construction does not introduce any accepted traces either.

In total, Generalize(tc,P) does not introduce any feasible accepted traces.

4 Evaluation

We have implemented our method as a prototype3 in Python. Our prototype
supports the uninterpreted programs in Boogie language [2]. We evaluate our
method’s effectiveness and efficiency by applying the prototype on verifying
general uninterpreted programs. Since there is no standard benchmark of unin-
terpreted programs, we designed a program generator to generate Boogie unin-
terpreted programs automatically. The generator composes the component pro-
grams randomly by branch operator. The types of the component programs are
as follows: the ones satisfying memoizing or not, the ones satisfying early as-
sumes or not, the ones containing if-else or not, and the ones containing while
or not. The generator covers the representative cases of uninterpreted programs.

We compare our prototype with the state-of-the-art tool ULTIMATE [7]
on the benchmark programs in terms of effectiveness and efficiency. We use 10
minutes as the time threshold for each verification task. All the experiments were
carried out on a machine with eight cores and 8G memory, and the operating
system is Ubuntu 18.04.
3 Our implementation and benchmark are available at the GitHub repository
https://github.com/Verifier4UP/Trace-Refinement-based-Verification
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Table 1. The experimental results, where TO stands for timeout and the grey cell
means that the corresponding tool performs better. The first column lists the bench-
mark programs and the second column shows the Lines of Code (LoC) of each program.
The third and fourth columns show the results of ULTIMATE. The columns between
fifth and ninth show the results of our method. The columns named Result show the
verification results. The columns named Time show the time of verification. The col-
umn Partition shows the time for partition in our method. The column C(#) shows
the time of verifying coherent sub-programs and the number of coherent sub-programs.
The column NC(#) shows the time of verifying non-coherent sub-programs and the
number of non-coherent sub-programs.

Program LoC
ULTIMATE Our Method
Result Time Result Time Partition C(#) NC(#)

benchmark0 41 incorrect 1.816 incorrect 1.424 0.175 0.04(2) 1.209(10)
benchmark1 43 correct 1.958 correct 1.162 0.137 0.086(6) 0.938(12)
benchmark2 54 TO TO correct 33.647 0.612 0.245(12) 32.79(15)
benchmark3 49 TO TO correct 10.101 0.248 0.115(8) 9.738(10)
benchmark4 41 incorrect 1.606 incorrect 0.212 0.178 0.034(3) 0(9)
benchmark5 46 TO TO correct 3.010 0.138 0.076(6) 2.796(12)
benchmark6 42 TO TO correct 2.011 0.176 0.038(4) 1.797(8)
benchmark7 52 TO TO correct 15.395 0.387 0.327(6) 14.682(12)
benchmark8 44 incorrect 1.593 incorrect 0.091 0.077 0.014(3) 0(9)
benchmark9 40 incorrect 1.582 incorrect 0.066 0.045 0.021(4) 0(4)
benchmark10 46 incorrect 1.796 incorrect 0.200 0.186 0.014(5) 0(13)
benchmark11 54 TO TO correct 9.522 0.605 0.608(15) 8.308(12)
benchmark12 37 incorrect 1.589 incorrect 0.089 0.076 0.013(3) 0(5)
benchmark13 39 incorrect 1.559 incorrect 0.115 0.101 0.014(2) 0(6)
benchmark14 50 correct 46.887 correct 254.083 214.727 39.356(8) 0(0)
benchmark15 41 incorrect 1.587 incorrect 0.107 0.094 0.013(6) 0(6)
benchmark16 40 correct 95.587 correct 0.842 0.19 0.219(7) 0.433(1)
benchmark17 47 incorrect 1.562 incorrect 9.650 0.105 0.034(3) 9.51(9)
benchmark18 46 incorrect 1.585 incorrect 73.801 60.686 13.054(4) 0.061(4)
benchmark19 49 correct 1.909 correct 186.273 172.073 14.2(12) 0(0)
benchmark20 37 incorrect 1.614 incorrect 1.139 0.07 0.054(4) 1.014(4)
benchmark21 39 incorrect 1.645 incorrect 1.404 0.05 0.043(3) 1.311(5)
benchmark22 48 incorrect 1.613 incorrect 0.165 0.143 0.022(6) 0(2)
benchmark23 54 TO TO correct 3.191 0.325 0.212(12) 2.655(15)
benchmark24 41 incorrect 1.592 incorrect 0.211 0.199 0.011(4) 0(8)
benchmark25 44 incorrect 1.56 incorrect 9.361 0.167 0(0) 9.193(12)
benchmark26 47 TO TO correct 1.723 0.202 0.179(10) 1.342(8)
benchmark27 48 incorrect 1.627 incorrect 0.231 0.198 0.033(5) 0(13)
benchmark28 45 incorrect 1.674 incorrect 0.298 0.206 0.092(7) 0(5)
benchmark29 45 TO TO correct 1.843 0.073 0.065(6) 1.705(6)
benchmark30 57 correct 1.748 correct 31.438 26.878 2.906(10) 1.654(8)
benchmark31 39 incorrect 1.589 incorrect 0.071 0.045 0.026(2) 0(6)
benchmark32 41 incorrect 1.588 incorrect 3.836 0.218 0.036(2) 3.583(10)
benchmark33 46 incorrect 1.556 incorrect 0.152 0.139 0.013(3) 0(9)
benchmark34 55 TO TO correct 9.955 0.456 0.091(6) 9.408(21)
benchmark35 51 incorrect 1.606 incorrect 60.027 41.231 18.776(9) 0.021(3)
benchmark36 43 incorrect 1.619 incorrect 0.121 0.107 0.014(6) 0(6)
benchmark37 41 incorrect 1.598 incorrect 1.466 0.118 0.103(6) 1.244(6)
benchmark38 49 TO TO correct 2.138 0.203 0.11(6) 1.826(12)
benchmark39 47 TO TO correct 3.380 0.127 0.086(6) 3.167(12)
benchmark40 42 TO TO correct 1.662 0.129 0.067(5) 1.465(7)
benchmark41 41 incorrect 1.586 incorrect 0.281 0.242 0.039(8) 0(4)
benchmark42 22 correct 1.645 correct 0.023 0.007 0.005(2) 0.011(1)
benchmark43 46 incorrect 1.626 incorrect 33.946 32.568 1.379(8) 0(0)
benchmark44 40 correct 1.914 correct 2.064 0.087 0.066(2) 1.911(6)
benchmark45 53 TO TO correct 18.148 0.379 0.083(5) 17.686(13)
benchmark46 28 TO TO correct 0.185 0.029 0.031(2) 0.124(1)
benchmark47 46 correct 1.806 correct 1.736 0.149 0.146(9) 1.441(9)
benchmark48 53 correct 1.899 correct 27.209 23.601 3.608(12) 0(0)
benchmark49 44 TO TO correct 10.421 0.176 0.156(4) 10.089(4)
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4.1 Effectiveness & Efficiency

Table 1 shows the experimental results. In the total 50 programs (half correct and
half incorrect), our tool completes the verification tasks of 50 programs (100%),
while ULTIMATE completes the verification of 34 programs (68%), which indi-
cates the effectiveness of our method. For the 34 programs verified by both our
method and ULTIMATE, our method performed better on 23 programs (67.6%).
On average, our method achieves 3.6x speedups for the verified programs, indi-
cating that our method is efficient. The speedup calculation is as follows, where
T (Ours) and T (ULTIMATE) are the verification time of our prototype and ULTI-
MATE, respectively.

speedup =


T (ULTIMATE)

T (Ours) , T (ULTIMATE) > T (Ours)

0, T (ULTIMATE) = T (Ours)

− T (Ours)
T (ULTIMATE) , T (ULTIMATE) < T (Ours)

(12)

For the programs on which ULTIMATE performs better than us (e.g., bench-
mark14), our method usually spends much time on the coherence checking in the
program partition, whose complexity is the same as verifying coherent programs.

4.2 The Results of Different Trace Abstraction Methods

The CEGAR module in our framework plays an important role in tackling with
non-coherent programs. To further inspect our trace abstraction method’s ef-
fectiveness, we compare the verification performance under three different con-
figurations: partition with congruence-based CEGAR module, partition with
interpolant-based CEGAR module (ULTIMATE), and ULTIMATE. We only
conduct this experiment on the 25 correct programs in the above benchmark.
The reason is that for the incorrect programs, the running under different con-
figurations might terminate early by finding different true counterexamples.

68%

8%
24%

Partition + Congruence

Partition + Interpolant

ULTIMATE

Fig. 7. The influence of different configura-
tions. The percentage indicates the ratio of
programs in which the corresponding config-
urations performs better.

As shown in Figure 7, our
method, that is, partition with
congruence-based CEGAR module,
performs better on 17 programs
while the other two perform better
on 2 and 6 programs, respectively.
This result indicates that for small
programs (the sub-programs after
the partition), the congruence-based
trace abstraction is more efficient
than the interpolant-based trace ab-
straction. Besides, the program par-
tition and the congruence-based trace abstraction are both necessary.

4.3 The Results on SV-COMP Benchmark

To further evaluate the performance of the congruence-based verification and
the trace abstraction in our method, we selected 46 benchmark C programs
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from the loops category of SV-COMP4 [19] and manually transformed them into
Boogie programs. In these C programs, there are only equality and dis-equality
constraints, and the expressions can be modeled as uninterpreted functions. Be-
sides, these programs can no longer be partitioned into sub-programs, which
means that the whole program is either coherent or non-coherent. We compare
our prototype and ULTIMATE on these benchmark programs.

1 3 15 25 35 46
−2.5

−1.5

−0.5

0

0.5

1.5

2.5

3

S
p

ee
d

u
p

Fig. 8. The evaluation results on SV-
COMP benchmark.

Figure 8 shows the results, where
the x-axis displays the indexes of the
programs, and the y-axis shows the
speedup value (calculated by Equa-
tion 12) of the verification time. In the
total 46 programs, our method per-
forms better on 44 programs (95.7%)
than ULTIMATE. On average, our
method achieves 1.90x speedups. Be-
sides, for the 29 coherent programs,
our method achieves 2.13x speedups
on average; for the remaining 17
non-coherent programs, our method
achieves 1.52x speedups on average.
These results indicate that the congruence-based verification method and the
congruence-based trace abstraction method are effective and efficient on the
benchmark.

5 Conclusion and Future work

This paper applies a CEGAR framework for verifying uninterpreted programs.
With the help of program partition, we partition an uninterpreted program into
coherent and non-coherent sub-programs. Then, for the coherent sub-programs,
we verify them by the method in [15]. For the remaining sub-programs, we
propose a congruence-based trace abstraction method to carry out the CEGAR
loop. We have implemented our method, and the experimental results indicate
that our method is more effective and efficient than the state-of-the-art.

The future work lies in several directions: (1) extend our verification frame-
work to other uninterpreted programs, such as the ones in [17] that have dynamic
memory allocations; (2) enhance the trace abstraction method further, e.g., by
automated synthesized loop invariants; (3) more extensive evaluation on more
uninterpreted programs.

Acknowledgments. This research was supported by National Key R&D Pro-
gram of China (No. 2017YFB1001802) and the NSFC Programs (No. 62172429,
61632015, 62032024, and 61690203).

4 SV-COMP is one of the most popular benchmarks for software verification.
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