
QSF: Multi-objective Optimization Based Efficient Solving for
Floating-Point Constraints∗

XU YANG, National University of Defense Technology, China
ZHENBANG CHEN†, National University of Defense Technology, China
WEI DONG, National University of Defense Technology, China
JI WANG†, National University of Defense Technology, China

Floating-point constraint solving is challenging due to the complex representation and non-linear computations.
Search-based constraint solving provides an effective method for solving floating-point constraints. In this
paper, we propose QSF to improve the efficiency of search-based solving for floating-point constraints. The
key idea of QSF is to model the floating-point constraint solving problem as a multi-objective optimization
problem. Specifically, QSF considers both the number of unsatisfied constraints and the sum of the violation
degrees of unsatisfied constraints as the objectives for search-based optimization. Besides, we propose a new
evolutionary algorithm in which the mutation operators are specially designed for floating-point numbers,
aiming to solve the multi-objective problem more efficiently. We have implemented QSF and conducted
extensive experiments on both the SMT-COMP benchmark and the benchmark from real-world floating-point
programs. The results demonstrate that compared to SOTA floating-point solvers, QSF achieved an average
speedup of 15.72X under a 60-second timeout and an impressive 87.48X under a 600-second timeout on the
first benchmark. Similarly, on the second benchmark, QSF delivered an average speedup of 22.44X and 29.23X,
respectively, under the two timeout configurations. Furthermore, QSF has also enhanced the performance of
symbolic execution for floating-point programs.

CCS Concepts: • Software and its engineering → Software testing and debugging; Search-based
software engineering.

Additional Key Words and Phrases: Floating-Point, Constraint Solving, Multi-Objective Optimization, Search-
Based, Symbolic Execution

ACM Reference Format:
Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang. 2025. QSF: Multi-objective Optimization Based Efficient
Solving for Floating-Point Constraints. Proc. ACM Softw. Eng. 2, FSE, Article FSE024 (July 2025), 21 pages.
https://doi.org/10.1145/3715739

∗This work is supported by National Key R&D Program of China (No. 2022YFB4501903) and the NSFC Programs (No.
62172429, 62032024 and U2341212).
†Zhenbang Chen and Ji Wang are the corresponding authors.

Authors’ Contact Information: Xu Yang, State Key Laboratory of Complex & Critical Software Environment, College of
Computer Science and Technology, National University of Defense Technology, Changsha, Hunan, China, xuyang369@
nudt.edu.cn; Zhenbang Chen, State Key Laboratory of Complex & Critical Software Environment, College of Computer
Science and Technology, National University of Defense Technology, Changsha, Hunan, China, zbchen@nudt.edu.cn; Wei
Dong, State Key Laboratory of Complex & Critical Software Environment, College of Computer Science and Technology,
National University of Defense Technology, Changsha, Hunan, China, wdong@nudt.edu.cn; Ji Wang, State Key Laboratory
of Complex & Critical Software Environment, College of Computer Science and Technology, National University of Defense
Technology, Changsha, Hunan, China, wj@nudt.edu.cn.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2994-970X/2025/7-ARTFSE024
https://doi.org/10.1145/3715739

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

HTTPS://ORCID.ORG/0000-0002-6177-9164
HTTPS://ORCID.ORG/0000-0002-4066-7892
HTTPS://ORCID.ORG/0000-0002-8033-7943
HTTPS://ORCID.ORG/0000-0003-0637-8744
https://doi.org/10.1145/3715739
https://orcid.org/0000-0002-6177-9164
https://orcid.org/0000-0002-4066-7892
https://orcid.org/0000-0002-8033-7943
https://orcid.org/0000-0002-8033-7943
https://orcid.org/0000-0003-0637-8744
https://creativecommons.org/licenses/by-nc/4.0
https://creativecommons.org/licenses/by-nc/4.0
https://doi.org/10.1145/3715739

FSE024:2 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

1 INTRODUCTION
Constraint solving [9] is fundamental for addressing problems expressed in various logics. Satisfia-
bility Modulo Theories (SMT) [38] is an important method for constraint solving, offering decision
procedures to check the satisfiability of first-order logic formulas under different logical theories.
SMT has been widely used as a general problem-solving engine in numerous software engineering
domains, including software testing [48, 57], program verification [3, 25], program synthesis [8, 51],
etc. With the increasing scope of applications, SMT has evolved significantly, providing more
expressive logic for problem encoding and more efficient algorithms for problem-solving. Many
new SMT theories have been introduced, such as bit-vector [7], array [11], and point logic [62]
theories. Many excellent SMT solvers, such as Z3 [21], MathSAT5 [17], and CVC5 [4], have been
developed and are widely used in various software tools.
Due to the widespread use of floating-point programs, solving floating-point constraints is

crucial. Existing floating-point constraint solving methods can be divided into three categories: 1)
Representing float-point numbers as real numbers and using real arithmetic SMT solving [30, 44].
2) Precise representation of floating-point numbers based on bit-vector theory, i.e., QF_FP SMT
theory, whose solving procedure converts a floating-point constrain to a SAT [13] problem (i.e., an
NP-complete problem [18]) and employs an existing SAT solver for solving [17, 21]. 3) Search-based
methods transform the constraint solving problem into a search or optimization problem [27, 56].
The first category could be efficient but faces the imprecision problem and the expressiveness

problem. The results produced by real arithmetic SMT solvers are unsound for floating-point
constraints. The real arithmetic SMT theory does not support certain floating-point operations,
such as bitwise logical and shift operations. The second category enjoys the precise representation
but suffers from the scalability problem. The SAT problems of floating-point constraints may be
huge, especially for the non-linear constraints, making the solving procedure inefficient. Improving
the scalability of floating-point SMT theory is challenging. The third category may achieve good
scalability and efficiency through existing optimization or search techniques but encounters the
problem of incompleteness. Search-based methods are effective in improving efficiency when the
solution space is large. Nonetheless, the scalability issue remains challenging for the third category
when dealing with floating-point constraint solving problems with extremely small solution spaces.

This paper focuses on search-based methods for floating-point constraint solving, which use
scoring functions, guiding indicators, and fitness functions to find solutions for floating-point
constraints heuristically. We observe that existing approaches [42][36] typically rely on a single
objective to guide the search process. This can lead to inefficiencies in many scenarios, such as
prematurely discarding valuable intermediate solutions. Therefore, it is desirable to have multiple
objectives to evaluate the potential of intermediate solutions, thereby improving the efficiency of
the solving process.
Based on this observation, we propose QSF1, a method for quickly solving floating-point con-

straints. Inside QSF, we propose a bi-objective optimization-based method in which two indicators,
i.e., the number of unsatisfied constraints and the sum of the violation of unsatisfied constraints,
are used to evaluate the quality of intermediate solutions. Besides, we also propose a customized
evolutionary algorithm in which the evolutionary operators are specially designed for floating-point
type to improve the search efficiency. We have implemented QSF in a prototype and conducted
extensive experiments on a standard benchmark and a benchmark generated from the program
analysis of real-world floating-point programs. Besides, we embedded QSF to a state-of-the-art
symbolic execution tool (i.e., KLEE) for C programs to evaluate its ability to improve symbolic
execution’s effectiveness. The experimental results indicate the QSF’s efficiency.

1QSF is the abbreviation of a Quick Solver for Floating-point constraints.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:3

The main contributions of this paper are as follows:

• We propose a search-based constraint solving framework based on multi-objective optimiza-
tion. As far as we know, QSF is the first approach to employ multi-objective optimization for
floating-point constraint solving.
• We propose two objectives for solving the problem of floating-point constraints. The first
objective is the number of unsatisfied constraints, and the second objective function is the
violation degree of unsatisfied constraints.
• We present a multi-operator collaborative evolutionary algorithm (MOCEA) with mutation
operators specifically designed for floating-point types to enhance efficiency.
• We evaluate QSF by comparing its prototype with nine state-of-the-art floating-point con-
straint solvers. Experimental results on the standard benchmark of SMT-COMP 2023 show
that QSF outperforms other solvers, with average speedups of 15.72X and 87.48X at the 60s
and 600s, respectively. The benchmark results extracted from real-world floating-point pro-
grams (i.e., GNU Scientific Library [29]) demonstrate that QSF can solve the most instances
and has achieved an average speedup of 22.44X within 60 seconds and 29.23X within 600
seconds compared to other solvers.

The remainder of this paper is organized as follows. Section 2 introduces the preliminaries and
motivation. Section 3 describes QSF. Section 4 presents the experiments and analysis. Section 5
discusses threats to validity. Section 6 reviews related work. Section 7 concludes the paper.

2 PRELIMINARIES AND MOTIVATION
2.1 Floating-point Numbers
Real numbers in the real world are represented in computers as floating-point numbers. The IEEE
standard 754 [34] is the de-facto standard for floating-point numbers [1]. This standard defines a
floating-point number, denoted as 𝑓 𝑝 , in terms of three components: sign (𝑆), exponent (𝐸), and
mantissa (𝑀). The following formula describes the calculation of the number.

(−1)𝑆 ×𝑀 × 2𝐸 . (1)

The sign bit (𝑆) is the first bit of a floating-point number (𝑓 𝑝), indicating its sign. 𝑆 can be either
0 or 1, representing a positive or negative number, respectively. The mantissa (𝑀) is represented
as𝑚0.𝑚1𝑚2...𝑚𝑛 , where𝑚0 is the hidden bit and𝑚1𝑚2 ...𝑚𝑛 is the fraction. The exponent (𝐸) is
𝐸′ − 2𝑝−1 + 1, where 𝑝 denotes the number of exponent bits and 𝐸′ is the biased exponent. A single-
precision floating-point number has an 8-bit exponent and a 23-bit fraction. A double-precision
floating-point number has an 11-bit exponent and a 52-bit fraction. For example, if a single-precision
floating-point number’s binary representation is 00111111011000000000000000000000, then 𝑆 = 0
and 𝑝 = 8. Through calculation, 𝐸′ = 26 + 25 + 24 + 23 + 22 + 21 = 126,𝑀 = 1 + 2−1 + 2−2 = 1.75, and
𝐸 = 126 − 127 = −1. Therefore, this floating-point number represents 1.75 × 2−1 = 0.875.
We use ±𝑓 𝑝𝑚𝑎𝑥 and ±𝑓 𝑝𝑚𝑖𝑛 to represent the largest (smallest) and smallest (largest) positive

(negative) normalized floating-point numbers, respectively. That is, ±𝑓 𝑝𝑚𝑎𝑥 = ±1.11...11 × 2𝐸𝑚𝑎𝑥

and ±𝑓 𝑝𝑚𝑖𝑛 = ±1.0 × 2𝐸𝑚𝑖𝑛 . For single-precision floating-point numbers, 𝐸𝑚𝑎𝑥 = 254 − 127 = 127
and 𝐸𝑚𝑖𝑛 = 1 − 127 = −126. Hence, ±𝑓 𝑝𝑚𝑎𝑥 = ±1.11...11 × 2127 and ±𝑓 𝑝𝑚𝑖𝑛 = ±1.0 × 2−126.

2.2 Floating-point Constraints
Let F be the set of floating-point numbers. A floating-point constraint 𝜑 is defined as follows,
where ⊲⊳∈ {<, ≤, >, ≥,=,≠}, ⊙ ∈ {+,−,×, /}, 𝑐 ∈ F is a floating-point constant, 𝑥 is a floating-point
variable, 𝑓 is a floating-point function with 𝑛 parameters, and 𝑓 can be a library function, e.g.,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:4 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

trigonometric and logarithmic functions, or a user-defined function.

𝑒 := 𝑐 | 𝑥 | 𝑒1 ⊙ 𝑒2 | 𝑓 (𝑒1, . . . 𝑒𝑛) . (2)
𝜑 := ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝜑1 ∨ 𝜑2 | 𝑒1 ⊲⊳ 𝑒2. (3)

We use C to represent the set of floating-point constraints.
In principle, we can use De Morgan’s laws [19] to eliminate the negation operator in 𝜑 and

transform 𝜑 into Conjunctive Normal Form (CNF) [12], resulting in the following constraint 𝜓 .
Here, 𝐼 is the number of clauses, 𝐽𝑖 is the number of literals in the 𝑖-th clause, and 𝑒𝑖, 𝑗 ⊲⊳𝑖, 𝑗 𝑒

′
𝑖, 𝑗

represents the 𝑗-th literal in the 𝑖-th clause.

𝜓 :=
∧
𝑖∈𝐼

∨
𝑗∈ 𝐽𝑖

𝑒𝑖, 𝑗 ⊲⊳𝑖, 𝑗 𝑒
′
𝑖, 𝑗 . (4)

We regard the literal as an atomic constraint and the clause as a constraint.

2.3 Multi-Objective Optimization
Multi-objective optimization provides a paradigm for solving optimization problems and finds
widespread applications across various fields, such as software engineering [16, 68] and artificial
intelligence [43, 63]. In practical engineering scenarios, numerous problems can be effectively
represented and tackled by formulating them as multi-objective optimization problems (MOPs),
which are subsequently addressed via specialized multi-objective optimization algorithms. MOPs
involve the simultaneous optimization of multiple objective functions and can be formally defined
as follows [64], where 𝑋 is the decision variable, 𝐹 (𝑋) is an objective function vector consisting of
𝑚 conflicting objective functions, and Ω represents the decision space.{

min 𝐹 (𝑋) := (𝑓1 (𝑋), 𝑓2 (𝑋), . . . , 𝑓𝑚 (𝑋)),
subject to 𝑋 ∈ Ω. (5)

We expect to find a set of trade-off solutions, called Pareto optimal solutions [15], for MOPs.
Let 𝑋1, 𝑋2 ∈ Ω. 𝑋1 is said to dominate 𝑋2 (denoted by 𝑋1 ≺ 𝑋2) iff 𝑓𝑖 (𝑋1) ≤ 𝑓𝑖 (𝑋2) for each
𝑖 ∈ {1, . . . ,𝑚} and 𝑓𝑗 (𝑋1) < 𝑓𝑗 (𝑋2) for at least one 𝑗 ∈ {1, . . . ,𝑚}. If any 𝑋 in Ω cannot dominate
𝑋1, we call 𝑋1 a non-dominated or Pareto optimal solution.

Evolutionary algorithm (EA) [24] is a global optimization algorithm with high robustness and
wide applications, e.g., genetic algorithm [31], particle swarm optimization [35], and simulated
annealing [60]. Since EA can explore multiple solutions simultaneously, it supports multi-directional
search. Therefore, evolutionary algorithms are frequently used to solve multi-objective optimization
problems, including NSGA-II [22], MOEA/D [66], SPEA2 [70], etc.

2.4 Motivation Example
We use a motivation example to demonstrate QSF’s insight and its difference from the existing
methods. Consider a floating-point constraint formula 𝑥 ≥ 64 ∧ 𝑦 = 64 (denoted by 𝜓) and the
following two assignments that do not satisfy the constraint formula, where 𝑓1 represents the
number of unsatisfied constraints under the assignment, and 𝑓2 represents the distance at which
the current assignment becomes a satisfiable assignment, e.g., 𝑓2 = |𝑥 − 64| + |𝑦 − 64|.

[𝑥 ↦→ 0, 𝑦 ↦→ 64] (𝑓1 = 1, 𝑓2 = 64)
[𝑥 ↦→ 63, 𝑦 ↦→ 63] (𝑓1 = 2, 𝑓2 = 2)

If we use fuzzing-based solving [42] for𝜓 , the constraint solving problem is converted to a fuzzing
problem, and coverage is used to guide the searching procedure, in which coverage reflects the
number of satisfied constraints. Since the coverage is 0 (i.e., 2-𝑓1) under the second assignment, the

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:5

assignment [𝑥 ↦→ 63, 𝑦 ↦→ 63] will be disregarded. On the other hand, if we use a single objective
optimization-based solving method [36], which prioritizes the assignment with smaller 𝑓2, the first
assignment will be given a lower priority. However, as we can see, both assignments are promising
for solving 𝜓 and should be kept for future exploration.

𝑥𝑥 = 0

𝑥𝑥 = 128

0x00 0x00 0x00 0x00

0x43 0x00 0x00 0x00

𝑥𝑥 = 0

𝑥𝑥 ≈ 3.5733110840282835𝑒𝑒-43

0x00 0x00 0x00 0x00

0x00 0x00 0x00 0xff

𝑥𝑥 ≈ 9.183409485952689𝑒𝑒-41

0x00 0x00 0xff 0xff

Mutation

Exponent byte

Fraction byte

···
Fig. 1. The mutation of Exponent (Fraction) byte.

Therefore, we propose QSF, a floating-point
constraint solving method that simultaneously
considers the number of unsatisfied constraints
and the violation degree of unsatisfied con-
straints. Hence, QSF keeps both assignments
for solving the example constraint𝜓 . Besides,
finding solutions with respect to multiple eval-
uation metrics is a multi-objective optimization
problem, and we also improve the optimization
algorithm, especially for floating-point num-
bers. QSF includes mutation rules specifically
designed for floating-point numbers. Assume
that 𝑥 and 𝑦 in𝜓 are 32-bit floating-point num-
bers, andwewant to find a better solution based
on the first assignment. Since 64 is a satisfied
assignment for 𝑦 = 64, Figure 1 shows only the mutation process of 𝑥 . The left side illustrates the
mutation of the exponent byte, while the right side shows the mutation of the fraction bytes. It is
important to note that the exponent (fraction) bytes do not correspond exactly to the exponent
(fraction) bits in the floating-point representation but rather to the closest approximate bytes. As
shown in the figure, mutating the exponent part can generate an assignment of 𝑥 that satisfies
𝑥 ≥ 64 in one step, whereas mutating the fraction part requires more steps. Therefore, designing
mutation operators specific to floating-point numbers can improve search efficiency.

3 APPROACH
QSF consists of two main components: transformer and optimizer. The transformer transforms a
floating-point constraint formula into a multi-objective optimization problem, and the optimizer
solves it using the proposed MOCEA.

3.1 Problem Transformation
Given a floating-point constraint𝜓 , this constraint solving problem can be transformed into a multi-
objective optimization problem defined by the formula 6, which contains two objective functions
(i.e., 𝑓 𝜓1 and 𝑓

𝜓

2), making it a bi-objective optimization problem. 𝑓 𝜓1 and 𝑓
𝜓

2 are multiplied by 1
𝑛
for

normalization, where 𝑛 is the number of constraints in𝜓 . Here, S represents the assignment space,
and 𝛼 is an assignment. Given an expression 𝑒 , we use 𝛼 (𝑒) to represent the value of the expression
after mapping the variables in 𝑒 to the values under the assignment 𝛼 .{

min 𝐹𝜓 (𝛼) :=
(
1
𝑛 𝑓

𝜓

1 (𝛼),
1
𝑛 𝑓

𝜓

2 (𝛼)
)
,

subject to 𝛼 ∈ S.
(6)

The formula 7 defines 𝑓 𝜓1 (𝛼), which represents the number of unsatisfied constraints in𝜓 under
the assignment 𝛼 . In the constraints of

∨
connection, only one item must be satisfied, so

∨
is

converted to
∏
. All items must be satisfied in the constraints of

∧
connection, so

∧
is converted

to
∑
. SC indicates the satisfaction of the atomic constraints under the 𝛼 assignment, where 0 and 1

indicate that the atomic constraint is satisfied and unsatisfied, respectively. 𝛼 (𝑒1 ⊲⊳ 𝑒2) represents

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:6 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

the truth or falsity of the predicate expression.

𝑓
𝜓

1 (𝛼) :=
∑︁
𝑖∈𝐼

∏
𝑗∈ 𝐽

SC
(
𝑒𝑖, 𝑗 ⊲⊳𝑖, 𝑗 𝑒

′
𝑖, 𝑗 , 𝛼

)
. (7)

SC (𝑒1 ⊲⊳ 𝑒2, 𝛼) :=
{
0, if 𝛼 (𝑒1 ⊲⊳ 𝑒2),
1, otherwise.

(8)

The formula 9 defines 𝑓 𝜓2 (𝛼), which represents the sum of the violation degrees of unsatisfied
constraints in𝜓 under the assignment 𝛼 . For the constraints connected by

∨
, the smallest violation

degree of atomic constraint is selected as the violation degree of the constraint. For the constraints
connected by

∧
, sum up each constraint’s violation degrees. VC represents the violation degree of

the atomic constraint under an assignment, where 0 means that the atomic constraint is satisfied
and 𝛿 represents the violation degree value.

𝑓
𝜓

2 (𝛼):=
∑︁
𝑖∈𝐼

min
𝑗∈ 𝐽

(
VC

(
𝑒𝑖, 𝑗 ⊲⊳𝑖, 𝑗 𝑒

′
𝑖, 𝑗 , 𝛼

))
. (9)

VC (𝑒1 ⊲⊳ 𝑒2, 𝛼) =
{
0, if 𝛼 (𝑒1 ⊲⊳ 𝑒2),
𝛿 (𝑒1 ⊲⊳ 𝑒2, 𝛼) , otherwise.

(10)

The formula 11 defines the function 𝑖𝑛𝑡 (𝑥 𝑓 𝑝), which is the integer representation of the floating
point number 𝑥 𝑓 𝑝 . 𝑏𝑣2𝑢𝑖𝑛𝑡 (𝑥𝑏𝑣) converts the bit vector 𝑥𝑏𝑣 into an unsigned integer.𝑚 is the bit
width of 𝑥 𝑓 𝑝 . 𝑏𝑖𝑛(𝑥 𝑓 𝑝) is the bit vector representation of floating-point numbers 𝑥 𝑓 𝑝 . The number
of non-negative integers within an𝑚-bit signed integer is 2𝑚−1.

𝑖𝑛𝑡 (𝑥 𝑓 𝑝) :=
{
𝑏𝑣2𝑢𝑖𝑛𝑡 (𝑏𝑖𝑛(𝑥 𝑓 𝑝)), if 𝑥 𝑓 𝑝 ≥ 0,
2𝑚−1 − 𝑏𝑣2𝑢𝑖𝑛𝑡 (𝑏𝑖𝑛(𝑥 𝑓 𝑝)), if 𝑥 𝑓 𝑝 < 0.

(11)

Formula 12 defines 𝛿 , and the value of 𝛿 belongs to [0, 1]. 𝐻 (𝑏𝑖𝑛(𝑥 𝑓 𝑝), 𝑏𝑖𝑛(𝑦𝑓 𝑝)) is the Hamming
distance [61] between bit vectors. The𝑚-bit maximum unsigned integer is 2𝑚 − 1.

𝛿 (𝑒1 ⊲⊳ 𝑒2, 𝛼) :=


1, if ⊲⊳ ∈ {≠},
𝐻 (𝑏𝑖𝑛 (𝛼 (𝑒1)),𝑏𝑖𝑛 (𝛼 (𝑒2)))

𝑚 , if ⊲⊳ ∈ {=},
|𝑖𝑛𝑡 (𝛼 (𝑒1))−𝑖𝑛𝑡 (𝛼 (𝑒2)) |

2𝑚−1 , if ⊲⊳ ∈ {≤, ≥},
|𝑖𝑛𝑡 (𝛼 (𝑒1))−𝑖𝑛𝑡 (𝛼 (𝑒2)) |+1

2𝑚−1 , if ⊲⊳ ∈ {<, >}.

(12)

When ⊲⊳ is ≠, the 𝛿 value is 1. When ⊲⊳ is =, the Hamming distance of the floating-point numbers
on the bit vector level is used to calculate the value of 𝛿 . Compared with directly using the difference
between the floating-point numbers on both sides of the equation, the Hamming distance can
better represent the similarity of the floating-point numbers. For example, both 𝑥 𝑓 𝑝 and 𝑦𝑓 𝑝 are
32-bit floating point numbers, 𝑥 𝑓 𝑝 = 2.0, and 𝑦𝑓 𝑝 = 36893488147419103000.0, then 𝑏𝑖𝑛(𝑥 𝑓 𝑝) =
01000000000000000000000000000000, and 𝑏𝑖𝑛(𝑦𝑓 𝑝) = 01100000000000000000000000000000. The
Hamming distance between 𝑥 𝑓 𝑝 and 𝑦𝑓 𝑝 is 1, but the difference of floating-point number is
36893488147419102998. The Hamming distance can better characterize the similarity between
two floating-point numbers. The Hamming distance is normalized by multiplying 1

𝑚
so that 𝛿 is

less than or equal to 1.
Floating-point numbers and integers of the same bit width can represent the same amount of

numbers. When ⊲⊳ is ≤ or ≥, converting the floating-point number to an integer to calculate the
value of 𝛿 can avoid Underflow in the normalization operation. For example, both 𝑥 𝑓 𝑝 and 𝑦𝑓 𝑝
are 32-bit floating point numbers, 𝑥 𝑓 𝑝 = 1.0, 𝑦𝑓 𝑝 = 2.0, then |𝑥𝑓 𝑝−𝑦𝑓 𝑝 |

𝑓 𝑝𝑚𝑎𝑥
= 0 (Underflow). However,

|𝑖𝑛𝑡 (𝑥𝑓 𝑝)−𝑖𝑛𝑡 (𝑦𝑓 𝑝) |
2𝑚−1 ≈ 0.00195, where 𝑖𝑛𝑡 (𝑥 𝑓 𝑝) = 1073741824, 𝑖𝑛𝑡 (𝑦𝑓 𝑝) = 1065353216. Since 1

2𝑚−1 is

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:7

Algorithm 1MOCEA
Input: 𝜓 , 𝑁 (Population size), 𝑠𝑒𝑒𝑑 (Special value), 𝑇𝑖𝑚𝑒𝑜𝑢𝑡 .
Output: SAT or UNKNOWN.
1: 𝑃 ← 𝐼𝑛𝑖𝑡𝑃𝑜𝑝 (𝑠𝑒𝑒𝑑,𝜓) ⊲ 𝑃 contains 𝑁 assignments
2: 𝐹𝑢𝑛𝑠 ← 𝐶𝑎𝑙𝑂𝑏 𝑗𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑃,𝜓) ⊲ 𝐹𝑢𝑛𝑠 is a 𝐹𝜓 array of length 𝑁

3: while 𝑇𝑟𝑢𝑒 do
4: for each 𝐹𝜓 (𝛼) in 𝐹𝑢𝑛𝑠 do
5: (𝑓 𝜓1 , 𝑓

𝜓

2) ← 𝐹𝜓 (𝛼)
6: if 𝑓 𝜓1 = 0 and 𝑓

𝜓

2 = 0 then
7: return (SAT, 𝛼)
8: end if
9: end for
10: 𝑃 ′ ← 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑃) ⊲ From the mutation operator pool
11: 𝐹𝑢𝑛𝑠 ← 𝐶𝑎𝑙𝑂𝑏 𝑗𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑃 ′,𝜓)
12: 𝑅 ← 𝑃 ∪ 𝑃 ′ ⊲ Merge parent and offspring
13: 𝐿 ← 𝑃𝑎𝑟𝑒𝑡𝑜𝑁𝑜𝑛𝑑𝑜𝑚𝑖𝑛𝑎𝑡𝑒𝑑𝑆𝑜𝑟𝑡 (𝑅) ⊲ 𝐿 = (𝑙1, 𝑙2, ...), where 𝑙𝑖 is a non-dominated layer
14: 𝐿′ ← 𝐶𝑎𝑙𝐶𝑟𝑜𝑤𝑑𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝐿) ⊲ Maintain population diversity
15: 𝑃 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑃𝑜𝑝 (𝐿′) ⊲ Update parent
16: end while
17: return UNKNOWN

much larger than 𝑓 𝑝𝑚𝑖𝑛 , the method of using integers instead of floating-point numbers can solve
the problem of Underflow in normalization operations.
Since |𝑖𝑛𝑡 (𝑥 𝑓 𝑝) − 𝑖𝑛𝑡 (𝑦𝑓 𝑝) | = 0 implies 𝑥 𝑓 𝑝 ≤ 𝑦𝑓 𝑝 but not 𝑥 𝑓 𝑝 < 𝑦𝑓 𝑝 , when ⊲⊳ is < or >, it is

necessary to add a minimum value (i.e., 1
2𝑚−1) to the 𝛿 values of ≤ and ≥.

An example. Assume𝜓 is 𝑥 ≥ 64.0 ∧ 𝑦 = 64.0, where 𝑥 and 𝑦 are 32-bit floating-point numbers.
When 𝛼 is [𝑥 ↦→ 63.0, 𝑦 ↦→ 63.0], 𝑓 𝜓1 (𝛼) and 𝑓

𝜓

2 (𝛼) are calculated using Formulas (7) and (9). Where,
𝑖𝑛𝑡 (63.0) = 1115422720, 𝑖𝑛𝑡 (64.0) = 1115684864, 𝑏𝑖𝑛(63.0) = 01000010011111000000000000000000,
𝑏𝑖𝑛(64.0) = 01000010100000000000000000000000.

𝑓1 (𝛼) =
1
2
× (SC(𝑥 ≥ 64.0, 𝛼) + SC(𝑦 = 64.0, 𝛼)) = 1

2
× (1 + 1) = 1.

𝑓2 (𝛼) =
1
2
× (VC(𝑥 ≥ 64.0, 𝛼) + VC(𝑦 = 64.0, 𝛼))

=
1
2
×
(
|𝑖𝑛𝑡 (63.0) − 𝑖𝑛𝑡 (64.0) |

232 − 1
+ 𝐻 (𝑏𝑖𝑛(63.0), 𝑏𝑖𝑛(64.0))

32

)
≈ 0.09.

Similarly, if 𝛼 is [𝑥 ↦→ 0, 𝑦 ↦→ 64], 𝑓 𝜓1 (𝛼) = 0.5, and 𝑓
𝜓

2 (𝛼) ≈ 0.13, the result is (0.5, 0.26). Since
(1, 0.09) and (0.5, 0.26) do not dominate each other, both [𝑥 ↦→ 63, 𝑦 ↦→ 63] and [𝑥 ↦→ 0, 𝑦 ↦→ 64]
are retained for further exploration.

3.2 Optimization Solving
Evolutionary algorithms, characterized by their parallel search capabilities, are suitable for solving
multi-objective optimization problems. The transformed optimization problem is a discontinuous,
non-differentiable discrete problem. We use a multi-objective optimization evolutionary algorithm
(MOEA) to find a solution for floating-point constraints. Designing optimized algorithms for specific
optimization problems is important. The difference between MOCEA and a conventional MOEA is
that MOCEA includes a preprocessing stage and specially designed mutation operators.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:8 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

Algorithm 1 provides the pseudocode for MOCEA. The input parameter 𝑠𝑒𝑒𝑑 contains the
constants from the floating-point constraint𝜓 . This algorithm is incomplete: if a solution is found
within the timeout period, it returns SAT; otherwise, it returns UNKNOWN. It cannot prove the
UNSAT of constraints. Line 1 initializes a parent population 𝑃 with the initial values obtained from
the preprocessing stage. 𝑃 contains 𝑁 elements, and each one is an assignment 𝛼 . Lines 2 and 11
compute the objective function values described in Section 3.1. Lines 4-9 check whether an 𝛼 in the
current population satisfies𝜓 .

Multiple mutation operator collaboration is the main feature of the algorithm. For each mutation
in 𝑃 , the algorithm randomly selects a mutation operator from the operator pool (Line 10). The
operator pool includes the operators that improve convergence, maintain diversity, focus on local
and global exploration capabilities, and the ones for floating-point numbers, etc. These mutation
operators will be detailed in Section 3.2.2. After applying the mutation, the parent and offspring
populations are merged to form 𝑅 (Line 12). Line 13 performs a non-dominated sorting [26] on
𝑅. Individuals in 𝑅 are layered based on the dominance relationship that minimizes 𝑓 𝜓1 and 𝑓

𝜓

2 ,
with individuals within the same layer not dominating each other. Line 14 calculates the crowding
distance [22] of individuals. The crowding distance [22] of an individual in the objective space
is the Manhattan distance [10] of its two nearest neighbors. Line 15 selects 𝑁 individuals from 𝑅

to form a new parent population 𝑃 . Specifically, individuals are selected from the non-dominated
layer 𝑙1 and added to 𝑃 , then from 𝑙2, and so on, until the condition 𝑙𝑒𝑛(𝑃) + 𝑙𝑒𝑛(𝑙𝑖) > 𝑁 is met. If
𝑙𝑒𝑛(𝑃) + 𝑙𝑒𝑛(𝑙𝑖−1) < 𝑁 , then 𝑙𝑖 is considered a boundary layer. Individuals with larger crowding
distances in 𝑙𝑖 will be prioritized for inclusion in 𝑃 until the size of 𝑃 reaches 𝑁 . 𝑙0 is empty, that is,
𝑙𝑒𝑛(𝑙0) = 0. The algorithm continues until an assignment is found or times out (omitted for brevity).

3.2.1 Preprocessing. Many constraints often include constants, which can assist in finding solu-
tions. The preprocessing procedure we propose is carried out concurrently with the Transformer.
This process extracts all the constants from the floating-point constraint. The constants obtained
from preprocessing are passed as a 𝑠𝑒𝑒𝑑 to Algorithm 1, generating a superior initial population.
Consequently, this can accelerate the solving process of MOCEA.

An example. Consider a floating-point constraint 𝑥 = 𝑎 ∧ 𝑥 = 𝑦, where 𝑥 and 𝑦 are 64-bit
floating-point variables and 𝑎 is a constant. According to the problem transformation Formula 9,
we can derive 𝑓 𝜓2 as follows.

𝑓
𝜓

2 (𝛼) =
1
2
× (VC(𝑥 = 𝑎, 𝛼) + VC(𝑥 = 𝑦, 𝛼)) = 1

2
×
(
𝐻 (𝑏𝑖𝑛(𝛼 (𝑥)), 𝑏𝑖𝑛(𝑎))

64
+ 𝐻 (𝑏𝑖𝑛(𝛼 (𝑥)), 𝑏𝑖𝑛(𝛼 (𝑦)))

64

)
.

Hence, [𝑥 ↦→ 𝑎,𝑦 ↦→ 𝑎] is a solution, i.e., 𝑓 𝜓2 = 0. However, without preprocessing information,
finding a solution with 𝑓

𝜓

2 = 0 in the search space is not easy. This difficulty arises because the
solution space for this problem is very small, i.e., 𝑥 = 𝑦 = 𝑎. Therefore, preprocessing can enhance
the efficiency of MOCEA.

1 0 0 0 1 0 0 0

𝑥𝑥1 𝑥𝑥2

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0

𝑥𝑥1 𝑥𝑥2

Fig. 2. Mask vectors for 32-bit (top) and 64-bit (bottom)
variables.

3.2.2 Mutation Operator. MOCEA’s operator
pool includes ten mutation operators, includ-
ing mutation operators specifically designed to
solve floating-point constraints and crossover
and mutation operators commonly used in
evolutionary algorithms. In evolutionary algo-
rithms, the mutation operation is performed on
individual chromosomes. Given an assignment
𝛼 , the values of the variables under 𝛼 form an individual chromosome, denoted as 𝑋 .

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:9

• Exponent byte mutation. In the vast search space, the common approach of existing advanced
large-scale MOEA [64] is to conduct a broad search followed by a refined one. Knowing the
floating-point format, we understand that the magnitude of a floating-point number is primarily
determined by its exponent bits. Prioritizing the search of the exponent part is greatly beneficial
for finding floating-point numbers that satisfy constraints. Because flipping a single bit of the
exponent is a local mutation that easily falls into local optima, we propose an operator that
mutates the exponent bytes. To implement this operator, a byte mask vector must be constructed
to identify the positions of the exponent and fraction bytes. The length of the byte mask vector
is the same as that of 𝐵𝑦𝑡𝑒 (𝑋), where 𝐵𝑦𝑡𝑒 (𝑋) means that 𝑋 is converted into the corresponding
byte vector. The two vectors in Figure 2 illustrate the byte mask vectors for 32-bit and 64-bit
floating-point variables, respectively, and 𝑥1 and 𝑥2 are the two variables. In the byte mask
vector, 1 indicates the exponent byte and 0 indicates the fraction byte. It is worth noting that
the exponent (fraction) byte is the closest approximate byte to the exponent (fraction) bits.
Then, randomly select a position that is 1 in the byte mask vector and replace the byte at the
corresponding position in 𝐵𝑦𝑡𝑒 (𝑋) with a random byte ranging from 0 to 255.
• Single-byte mutation. In the later stages of searching, a refined search can enhance the
precision of solutions. When the solution space is small, fine-tuning𝑋 can effectively prevent the
degradation of𝑋 . Thismutation operator randomly selects a positionwithin𝐵𝑦𝑡𝑒 (𝑋) and replaces
the byte at that position with a random byte ranging from 0 to 255. This operator encompasses
mutations of both the exponent and fraction bytes, effectively facilitating a combination of global
and fine-grained search capabilities.
• Special number mutation. The entire set of floating-point numbers constitutes a vast search
domain, and we posit that boundary values within the floating-point standard and seeds obtained
from preprocessing are more likely to be solutions that satisfy the constraints. We define a set
of special numbers, which includes ±0, ±1, and 32 (64)-bit largest (smallest) positive (negative)
normalized floating-point number, and the constants in the constraint formula. This operator
randomly selects a mutation point and replaces the value at that position in 𝑋 with a randomly
chosen special number from the special numbers set.
• Common mutations. There are many operators already in the state-of-the-art evolutionary
algorithms. We have implemented seven crossover or mutation operators as the basic operators of
the operator pool. Single-point crossover [37] preserves a continuous segment of the chromosome
sequence from the parent, which can improve the convergence of the algorithm. Uniform
crossover [58] retains genes (i.e., values in 𝑋) from the parents with equal probability, which can
enhance the diversity of the population. Simulated binary crossover [23] and simulated binary
mutation [23] are often used together in real-number encoded problems, balancing local and
global search capabilities. Reverse mutation [41] reverses the chromosome of the parent, helping
the algorithm to escape from local optima and improving convergence performance. Frame-Shift
mutation [20] significantly adjusts the structure of the parent chromosome, suitable for more
complex search spaces, and enhances the algorithm’s global search capability. Point mutation
[49] changes only one gene on the chromosome, focusing on exploring the local search space.

4 IMPLEMENTATION AND EVALUATION
4.1 Implementation
QSF is implemented based on goSAT [36], which depends on Z3 [21], LLVM [40], and NLopt [32].
The input for QSF is a file in SMTLIB2 format [6]. Initially, libz3 acts as an analyzer, parsing the
input to obtain the expression (expr) representing the formula and performing model verification.
Then, LLVM serves as the objective function code generator, traversing expr in a post-order manner

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:10 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

to generate the LLVM IR corresponding to the objective function. All constants in the formula are
extracted during the traversal of expr. Finally, the generated objective function code pointer and
special constant values are provided to NLopt, which is enhanced by MOCEA.

4.2 ResearchQuestions
Our evaluation aims to answer the following research questions (RQs):
• RQ1: How effective and efficient is QSF on the QF_FP SMTLIB benchmark?
• RQ2: How effective and efficient is QSF on the real-world program benchmark?
• RQ3: How do different components impact the overall performance of QSF?

4.3 Experimental Setup
4.3.1 Benchmarks. We evaluate the effectiveness and efficiency of QSF on two benchmarks. One
is the QF_FP benchmark from SMT-COMP 2023, which evaluates the generality of QSF. The other
is a benchmark from real-world programs used to evaluate the practicality of QSF.

QF_FP benchmark2 contains 40,407 instances. We removed the instances with the UNSAT label
in the benchmark, leaving 20,297 instances. The preprocessing of QSF can use the constants in
the formula as the initial solution. To reduce the likelihood of obtaining a solution directly after
preprocessing, we excluded the witersteiger class of QF_FP benchmark from the experiment.
This exclusion provides a fairer comparison for solvers without preprocessing. The final QF_FP
benchmark contains 266 instances.
The GNU Scientific Library (GSL) [29] is a C-language library for numerical computing that

contains implementations of basic mathematical functions, mathematical algorithms, and special
mathematical functions. We used the symbolic execution engine KLEE to analyze GSL and collected
a total of 8523 floating-point constraint instances. Then, we remove instances that return UNSAT
within 600 seconds using Bitwuzla. Finally, the remaining 3493 instances constitute the real-world
program benchmark3.

Table 1. The solvers compared in experiments.

Solvers Version Technique Category

Z3 [21] v4.6.0 Bit-blasting QF_FP SMT theory
CVC5 [4] v1.1.2 Bit-blasting QF_FP SMT theory

MathSAT5 [17] v5.5.1 Bit-blasting QF_FP SMT theory
Bitwuzla [47] v1.0 Bit-blasting QF_FP SMT theory
COLIBRI [44] r15172 Interval solving Real arithmetic SMT

JFS [42] r5ceecd1 Coverage-guided fuzzing Search-based
CORAL [56] v0.7 Meta-heuristic search Search-based
XSat [27] 2017 Mathematical optimisation Search-based
goSAT [36] rb5a423c Mathematical optimisation Search-based

4.3.2 Baseline. We surveyed the ex-
isting state-of-the-art floating-point
constraint solvers and classified them
according to the techniques, as
shown in Table 1. Bitwuzla and
CVC5 are the floating-point con-
straint solvers that have won the
championship of the SMT-COMP
QF_FP track in the past three years.
Comparing QSF with these solvers
allows for a more comprehensive evaluation of our method’s effectiveness and efficiency.

4.3.3 Configuration. All the experiments are conducted on a server with an Intel(R) Xeon(R)
Platinum 8269CY 80-Core CPU @ 3.10GHz and 192GB of memory. Table 1 shows the state-of-
the-art solvers we compared. The solution time for these solvers is limited to 60 seconds and 600
seconds. The configuration options for the solvers are either left at their default settings or adjusted
to match the recommendations in their papers. Specifically, the number of seeds in JFS is set to
100, CORAL used particle swarm optimization (PSO [35]) for its search algorithm, and goSAT used

2https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=239
3https://github.com/zbchen/QSF.git

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:11

Table 2. Comparison of QSF and other solvers on QF_FP benchmark.

Solvers Timeout (s) Both Only QSF Only other Neither

Z3
60 156 (58.65%) 44 (16.54%) 10 (3.76%) 56 (21.05%)
600 180 (67.67%) 20 (7.52%) 10 (3.76%) 56 (21.05%)

CVC5
60 175 (65.79%) 25 (9.40%) 23 (8.65%) 43 (16.17%)
600 196 (73.68%) 4 (1.50%) 27 (10.15%) 39 (14.66%)

MathSAT5
60 172 (64.66%) 28 (10.53%) 17 (6.39%) 49 (18.42%)
600 198 (74.44%) 2 (0.75%) 20 (7.52%) 46 (17.29%)

Bitwuzla
60 184 (69.17%) 16 (6.02%) 21 (7.89%) 45 (16.92%)
600 196 (73.68%) 4 (1.50%) 27 (10.15%) 39 (14.66%)

COLIBRI
60 177 (66.54%) 23 (8.65%) 10 (3.76%) 56 (21.05%)
600 179 (67.29%) 21 (7.89%) 12 (4.51%) 54 (20.30%)

JFS
60 176 (66.17%) 24 (9.02%) 4 (1.50%) 62 (23.31%)
600 180 (67.67%) 20 (7.52%) 6 (2.26%) 60 (22.56%)

CORAL
60 58 (21.80%) 142 (53.38%) 2 (0.75%) 64 (24.06%)
600 62 (23.31%) 138 (51.88%) 1 (0.38%) 65 (24.44%)

XSat
60 110 (41.35%) 90 (33.83%) 8 (3.01%) 58 (21.80%)
600 110 (41.35%) 90 (33.83%) 11 (4.14%) 55 (20.68%)

goSAT
60 141 (53.01%) 59 (22.18%) 3 (1.13%) 63 (23.68%)
600 153 (57.52%) 47 (17.67%) 2 (0.75%) 64 (24.06%)

CRS2 [33] for its optimization algorithm. The population size is set to 100 for the proposed MOCEA.
All experiments were run ten times to improve the soundness of the experimental results.

4.4 Results on QF_FP Benchmark (RQ1)
4.4.1 Effectiveness. Table 2 presents the experimental results of QSF compared with the state-
of-the-art floating-point constraint solvers. The data in the table are the median results out of 10
runs. Timeout indicates the solver’s time limit. Both represents the number of instances where
both QSF and the compared solver return SAT. Only QSF represents the number of instances
where QSF returns SAT and the compared solver returns UNKNOWN. Conversely, Only other
indicates the number of instances where QSF returns UNKNOWN and the compared solver returns
SAT. Neither represents the number of instances where both solvers return UNKNOWN due to a
timeout or lack of support for the instance.

Table 2 demonstrates that within 60 and 600 seconds,QSF outperforms 8 out of 9 solvers and 6 out
of 9 solvers, respectively, by solving more instances successfully. Cases where the comparison solver
succeeds but QSF fails are typically associated with problems involving many equality constraints.
This indicates that QSF tends to perform less effectively on problems with smaller solution spaces.
From the table, it can also be observed that the QSF has an advantage when compared with real
arithmetic SMT solvers and search-based solvers. This directly answers the effectiveness of RQ1.
Besides, QSF successfully solves 200 instances in both the 60-second and 600-second timeouts. By
manually observing the remaining 66 instances, it is found that their satisfiable solutions contain
special numbers (e.g., INF, NaN, etc.). Since floating-point special numbers are not in the domain of
QSF search, increasing the solving time does not increase the number of solved instances.

4.4.2 Efficiency. Figure 3 illustrates the scatter plots depicting the execution times of QSF and
the comparative solvers for the respective timeout limits of 60 and 600 seconds. In the subfigures,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:12 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

0 10−1 100 101

QSF
0

10−1

100

101

Z3

126
47

45.58X speedup

0 10−1 100 101

QSF
0

10−1

100

101

CV
C5 121

36

12.11X speedup

0 10−1 100 101

QSF
0

10−1

100

101

M
at

hS
AT

5 119
22

12.3X speedup

0 10−1 100 101

QSF
0

10−1

100

101

Bi
tw

uz
la 114

54

4.78X speedup

0 10−1 100 101

QSF
0

10−1

100

101

CO
LI

BR
I 179

12

2.82X speedup

0 10−1 100 101

QSF
0

10−1

100

101

JF
S 165

11

1.12X speedup

0 10−1 100 101

QSF
0

10−1

100

101

CO
RA

L 64
3

8.16X speedup

0 10−1 100 101

QSF
0

10−1

100

101

XS
at 105

7

7.18X speedup

0 10−1 100 101

QSF
0

10−1

100

101

go
SA

T 107
11

47.41X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

Z3

122
17

54.07X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

CV
C5 122

31

21.03X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102
M

at
hS

AT
5 128

24

40.3X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

Bi
tw

uz
la 114

39

9.76X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

CO
LI

BR
I 179

15

7.55X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

JF
S 164

11

2.36X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

CO
RA

L 64
2

13.23X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

XS
at 105

12

19.09X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

go
SA

T 94
3

619.96X speedup

Fig. 3. Scatter plots comparing the execution time of QSF and other solvers on QF_FP benchmark.

the horizontal axis represents the execution time of QSF, while the vertical axis represents the
execution time of the comparison solver. In the subgraph, each blue solid point corresponds to a
benchmark instance, and the values mapped to the horizontal and vertical axes are the average
execution times of QSF and the comparison solver over multiple runs (using 60 or 600 when there is
a timeout). Each point in the subfigures corresponds to a benchmark instance. Points falling on the
diagonal indicate that both solvers took the same time to solve the instance or both timed out. Points
above the diagonal (i.e., in the upper left) represent cases where QSF solved the instance faster than
the comparison solver or the comparison solver timed out while QSF did not. Conversely, points
below the diagonal (i.e., in the lower right) indicate that the comparison solver solved the instance
faster, or QSF timed out while the comparison solver did not. The bold numbers in the upper left
and lower right corners represent the number of instances win by QSF and the comparison solver,
respectively. Some instances are not shown in the scatter plot because the solver times for these
instances are incomparable4.
As indicated by Figure 3, the execution time of QSF is significantly shorter than that of other

solvers. In the remaining few instances, the execution time of QSF is slightly longer than that of
other methods. This is attributed to the fact thatQSF is a search-based approach, which may require
a longer search time when dealing with constraint problems with a smaller solution space. The
title of each subgraph gives the speedup of QSF over another solver. Taking comparable5 instances
into account, the speedup is determined by dividing the total solving time of QSF by the total
solving time of another solver. Under 60-second and 600-second timeout conditions, compared to
QF_FP SMT solvers, our method achieved an average speedup of 18.69X and 31.29X, respectively.
Compared to a real arithmetic SMT solver, the speedup is 2.82X and 7.55X, respectively. And when
compared to search-based solvers, the average speedup is 15.97X and 163.66X, respectively. In
summary, compared to nine benchmarked solvers, our method achieved an average speedup of

4The confidence intervals at the 99.9% confidence level overlap.
5The confidence intervals at the 99.9% confidence level do not overlap.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:13

100 120 140 160 180 200 220
Accumulated score

0
100

101

Ru
nt

im
e

(s
)

Bitwuzla
COLIBRI+Bitwuzla
JFS+Bitwuzla
CORAL+Bitwuzla
XSat+Bitwuzla
goSAT+Bitwuzla
QSF+Bitwuzla

100 120 140 160 180 200 220
Accumulated score

0
100

101

102

Ru
nt

im
e

(s
)

Bitwuzla
COLIBRI+Bitwuzla
JFS+Bitwuzla
CORAL+Bitwuzla
XSat+Bitwuzla
goSAT+Bitwuzla
QSF+Bitwuzla

Fig. 4. Quantile plots comparing the performance of portfolio solvers on the QF_FP benchmark.

15.72X and 87.48X under 60-second and 600-second timeout conditions, respectively. This directly
addresses the efficiency aspect of RQ1.

4.4.3 Complementarity. From Table 2, we find that when QSF is compared with different solvers,
Only other is not 0, which suggests that QSF cannot entirely replace existing floating-point
constraint solvers. Observing the results, we find that QSF complements the QF_FP SMT theory
solvers. Consequently, we combined QSF with Bitwuzla, which achieved the best performance,
to form a sequential portfolio solver (i.e., QSF+Bitwuzla). QSF+Bitwuzla represents a complete
portfolio solver that runs both QSF and Bitwuzla in parallel and returns the answer from whichever
solver answers first. To evaluate the performance of QSF+Bitwuzla, wemakemore combinations, i.e.,
COLIBRI+Bitwuzla, JFS+Bitwuzla, CORL+Bitwuzla, XSat+Bitwuzla, and goSAT+Bitwuzla. Figure 4
shows the performance of these sequential portfolio solvers on the SMTLIB-QF_FP benchmark.
Each curve on the graph corresponds to bitwuzla and the sequential portfolio solver described
above. The curves are plotted by computing the score6 for each instance in the benchmark, sorting
the correct answers by solver execution time, and then plotting the accumulating score against
solver execution time. The solver’s total score is the X-value of the rightmost point of the curve.
There is almost no difference in the runtime of each solver within the accumulated score range of
0-100, so the X-axis starts at 100 on the far left. The total execution time of a solver on correctly
solved instances is equal to the area under the curve.

The quantile plots show that QSF+Bitwuzla has the shortest total execution time but solves most
instances. The rightmost values of each curve in the quantile plot of the 60-second timeout are
Bitwuzla (205), COLIBRI+Bitwuzla (208), JFS+Bitwuzla (216), CORL+Bitwuzla (216), XSat+Bitwuzla
(204), goSAT+Bitwuzla (218), and QSF+Bitwuzla (220). For 600 seconds, the total scores of the
sequential portfolio solvers are 223, 219, 227, 225, 208, 225, and 227. Although JFS+Bitwuzla and
QSF+Bitwuzla both achieved the best results in the end, the latter took less time. Therefore,
QSF+Bitwuzla has the best performance, indirectly providing strong support for RQ1.

Answer to RQ1: 1) Effectiveness: QSF has an advantage in the 60-second timeout. With
the extended timeout, QSF is slightly inferior to the QF_FP SMT theory solvers but better
than the same family of solvers (search-based methods). 2) Efficiency: Compared with the
state-of-the-art solvers, QSF has a significant efficiency advantage. 3) Complementarity:
QSF+Bitwuzla outperforms other sequential portfolio solvers in effectiveness and efficiency.

6Based on the median of 10 runs, 1 for correct and 0 for incorrect or unknown.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:14 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

Table 3. Comparison of QSF and other solvers on real-world program benchmark.

Solvers Timeout (s) Both Only QSF Only other Neither

Z3
60 3029 (86.72%) 182 (5.21%) 15 (0.43%) 267 (7.64%)
600 3104 (88.86%) 114 (3.26%) 15 (0.43%) 260 (7.44%)

CVC5
60 3092 (88.52%) 119 (3.41%) 14 (0.40%) 268 (7.67%)
600 3167 (90.67%) 51 (1.46%) 21 (0.60%) 254 (7.27%)

MathSAT5
60 3069 (87.86%) 142 (4.07%) 13 (0.37%) 269 (7.70%)
600 3161 (90.50%) 57 (1.63%) 23 (0.66%) 252 (7.21%)

Bitwuzla
60 3119 (89.29%) 92 (2.63%) 15 (0.43%) 267 (7.64%)
600 3182 (91.10%) 36 (1.03%) 24 (0.69%) 251 (7.19%)

COLIBRI
60 2665 (76.30%) 546 (15.63%) 9 (0.26%) 273 (7.82%)
600 2677 (76.64%) 541 (15.49%) 3 (0.09%) 272 (7.79%)

JFS
60 3014 (86.29%) 197 (5.64%) 31 (0.89%) 251 (7.19%)
600 3101 (88.78%) 117 (3.35%) 35 (1.00%) 240 (6.87%)

goSAT
60 1963 (56.20%) 1248 (35.73%) 1 (0.03%) 281 (8.04%)
600 2186 (62.58%) 1032 (29.54%) 1 (0.03%) 274 (7.84%)

4.5 Results on Real-world Program Benchmark (RQ2)
4.5.1 Effectiveness. Table 3 presents the comparison results between QSF and state-of-the-art
floating-point constraint solvers on a real-world program benchmark. The structure of Table 3
is consistent with that of Table 2. It is important to note that the benchmark in this experiment
includes converting bit-vector to floating-point (i.e., to_fp). Since CORAL and XSat do not support
bit vectors, they are excluded from this comparison. In addition, COLIBRI considers arithmetic
operations on bit-vectors as real number arithmetic operations. Compared with existing floating-
point constraint solvers,QSF demonstrates advantages in the 60-second and 600-second evaluations.
This shows thatQSF is more suitable for solving constraint formulas from real-world programs.QSF
solves 3211 (91.93%) of the instances within 60 seconds and 3218 (92.13%) within 600 seconds. This
indicates that QSF only solved seven additional instances in the subsequent nine minutes, resulting
in a marginal increase of just 0.2% in total successful cases. Besides, QSF solves more instances
in 60 seconds than the other methods do in 600 seconds. This result supports the effectiveness of
RQ2. In addition, a careful look at the Only QSF and Only other columns in Table 3 shows that
the complementarity between QSF and other solvers is not obvious under the real-world program
benchmark. Therefore, we do not combine sequential portfolio solvers on this benchmark.

4.5.2 Efficiency. The data in Figure 5 are the average results of 10 runs. It can be seen from the
figure that QSF is significantly better than the competing methods in terms of solving speed.
QSF has a winning rate of over 87% compared with solvers other than Bitwuzla. Compared with
Bitwuzla, the winning rates are 71.11% and 71.55% for the 60-second and 600-second evaluations,
respectively. Under 60-second and 600-second timeout conditions, our method achieved an average
speedup of 5.38X and 6.24X, respectively, when compared to QF_FP SMT solvers. Compared to
real arithmetic SMT solvers, the speedup is 1.19X and 1.24X, respectively. And when compared
to search-based solvers, the average speedup is 67.18X and 89.21X, respectively. Overall, when
compared with seven other solvers, our method achieved an average speedup of 22.44X and 29.23X
under the 60-second and 600-second timeout conditions, respectively. This positively answers the
efficiency of RQ2. The distribution of solid points in the subfigure shows that QSF can solve most
instances within one second. In the execution time comparison scatter plot, QSF loses to other
methods in a few cases. This is because QSF falls into a local optimum and causes a timeout.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:15

0 10−1 100 101

QSF
0

10−1

100

101

Z3

1389
196

7.38X speedup

0 10−1 100 101

QSF
0

10−1

100

101

CV
C5 1789

209

4.84X speedup

0 10−1 100 101

QSF
0

10−1

100

101

M
at

hS
AT

5 2664
181

6.7X speedup

0 10−1 100 101

QSF
0

10−1

100

101

Bi
tw

uz
la 1322

537

2.58X speedup

0 10−1 100 101

QSF
0

10−1

100

101

CO
LI

BR
I 2597

167

1.19X speedup

0 10−1 100 101

QSF
0

10−1

100

101

JF
S 2992

196

2.73X speedup

0 10−1 100 101

QSF
0

10−1

100

101

go
SA

T 1802
84

131.64X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

Z3

1417
181

8.66X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

CV
C5 1876

198

5.78X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

M
at

hS
AT

5 2678
176

7.57X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

Bi
tw

uz
la 1343

534

2.94X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

CO
LI

BR
I 2590

145

1.24X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

JF
S 2988

177

3.16X speedup

0 10−1 100 101 102

QSF
0

10−1

100

101

102

go
SA

T 1449
66

175.26X speedup

Fig. 5. Scatter plots comparing the execution time of QSF and other solvers on real-world program benchmark.

0 100 101

Elapsed Timed (min)

1250

1500

1750

2000

2250

2500

2750

3000

To
ta

l N
um

be
r o

f C
ov

er
ed

 B
ra

nc
he

s

Z3
CVC5

MathSAT5
Bitwuzla

COLIBRI
JFS

goSAT
QSF

0 100 101

Elapsed Timed (min)

1000

1250

1500

1750

2000

2250

2500

2750

To
ta

l N
um

be
r o

f C
ov

er
ed

 B
ra

nc
he

s

Z3
CVC5

MathSAT5
Bitwuzla

COLIBRI
JFS

goSAT
QSF

Fig. 6. The trends of the number of covered branches by each method under BFS (left) and DFS (right) for
real-world programs.

4.5.3 Practical Application. Symbolic execution is an important application of constraint solving.
We have integrated QSF and seven comparative solvers into the symbolic execution engine (i.e.,
KLEE 2.3 [14]) to explore whether QSF can enhance the performance of symbolic execution
for floating-point programs. We evaluated the capability of KLEE with different solvers on 252
benchmark programs from the GNU Scientific Library. The common experimental configuration
is as follows: the total analysis time for each program is set to 1 hour, with a 60-second timeout
for each solver invocation. JFS, goSAT, QSF, and COLIBRI have inherent randomness. Therefore,
they are run five times each to enhance the soundness of the results, while the other solvers were
executed only once. When COLIBRI obtains a real number solution that cannot be represented as a
floating-point number, it searches for floating-point numbers around the real number that satisfy
the constraints.

Figure 6 illustrates eachmethod’s total number of covered branches under BFS and DFS, where the
solid line represents the mean, and the shaded area indicates the 99% confidence interval . From the
figure, it can be observed that our method outperforms the comparative methods comprehensively.
Specifically, under BFS,QSF achieves themaximum branch coverage after approximately 20minutes,
whereas under DFS, it takes about 40 minutes for QSF to reach the maximum branch coverage.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:16 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

Table 4. Comparison of different component configurations of QSF.

Benchmarks Solvers Timeout (s) Both Only QSF Only other Neither

QF_FP

QSF_𝑓𝜓1
60 189 (71.05%) 11 (4.14%) 0 (0.00%) 66 (24.81%)
600 189 (71.05%) 11 (4.14%) 0 (0.00%) 66 (24.81%)

QSF_𝑓𝜓2
60 193 (72.56%) 7 (2.63%) 0 (0.00%) 66 (24.81%)
600 194 (72.93%) 6 (2.26%) 0 (0.00%) 66 (24.81%)

QSF_NSGA-II
60 182 (68.42%) 18 (6.77%) 0 (0.00%) 66 (24.81%)
600 183 (68.80%) 17 (6.39%) 0 (0.00%) 66 (24.81%)

QSF_NoPre
60 174 (65.41%) 26 (9.77%) 0 (0.00%) 66 (24.81%)
600 175 (65.79%) 25 (9.40%) 0 (0.00%) 66 (24.81%)

RWP

QSF_𝑓𝜓1
60 2962 (84.80%) 249 (7.13%) 6 (0.17%) 276 (7.90%)
600 2989 (85.57%) 229 (6.56%) 2 (0.06%) 273 (7.82%)

QSF_𝑓𝜓2
60 3187 (91.24%) 24 (0.69%) 6 (0.17%) 276 (7.90%)
600 3192 (91.38%) 26 (0.74%) 2 (0.06%) 273 (7.82%)

QSF_NSGA-II
60 2620 (75.01%) 591 (16.92%) 1 (0.03%) 281 (8.04%)
600 2617 (74.92%) 601 (17.21%) 1 (0.03%) 274 (7.84%)

QSF_NoPre
60 2891 (82.77%) 320 (9.16%) 2 (0.06%) 280 (8.02%)
600 2891 (82.77%) 327 (9.36%) 2 (0.06%) 273 (7.82%)

The reason is that the path constraints are relatively shorter under BFS, which may allow for a
larger solution space. Overall, the number of branches covered by each method under BFS exceeds
that under DFS, due to the more complex path constraints in DFS. By examining Figure 6, we can
perform a simple analysis of the performance of existing solution methods in program analysis
applications. Z3, Bitwuzla, COLIBRI, and JFS are in the first tier. CVC5 and goSAT are in the second
tier, with MathSAT5 performing the worst. The poor results from CVC5 and MathSAT5 may be
due to limitations in their solving capabilities. goSAT’s mediocre performance is due to its poor
search capabilities. A close observation of Figure 6 reveals that JFS has good results under both BFS
and DFS, which may be attributed to the path constraints in the program that include a significant
amount of non-linear calculations and some basic mathematical functions (e.g., sin, log, etc.). In
summary,QSF enhances the performance of symbolic execution engines in analyzing floating-point
programs and indirectly provides strong support for RQ2.

Answer to RQ2: On real-world program benchmarks, QSF outperforms comparable solvers
in both effectiveness and efficiency. QSF performs well in practical applications.

4.6 Ablation Study (RQ3)
QSF consists of two components: the multi-objective problem transformation and the multi-
objective algorithm. To address RQ3, this section investigates the impact of bi-objective and
MOCEA for our method on the QF_FP and real-world program (RWP) benchmarks. QSF_𝑓 𝜓1 and
QSF_𝑓 𝜓2 denote the versions of QSF that utilize only 𝑓

𝜓

1 and 𝑓
𝜓

2 guidance, respectively. QSF_NSGA-
II represents the version of QSF that employs NSGA-II [22], which is one of the most classic
multi-objective optimization algorithms. Preprocessing is an important algorithmic configuration
in this study, so QSF_NoPre is included. QSF_NoPre indicates that QSF does not use the constants
in the formula as initial values, with the default variable initialization set to 0.
Table 4 presents a comparative result of the QSF solver for each configuration. From the table,

it can be observed that the impact of single-objective guidance on QSF is relatively minor. This

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:17

is because multi-objective guidance’s advantage accelerates the search efficiency of search-based
methods. QSF_𝑓 𝜓2 yields better results than QSF_𝑓 𝜓1 , indicating that 𝑓 𝜓2 focuses on the effectiveness
of QSF while 𝑓

𝜓

1 emphasizes efficiency. On the QF_FP benchmark, preprocessing has the most
significant impact onQSF. This is attributed to the presence of numerous constants in the benchmark
that direct the search for the algorithm, with solutions that satisfy the constraints potentially
existing within the formulas themselves. In the RWP benchmark, MOCEA contributes the most to
QSF’s performance. The reason is that the multi-operator collaborative mutation has an inherent
advantage over traditional mutation mechanisms, as it can simultaneously draw on the strengths of
various operators. Specifically, for constraints with many variables, MOCEA can employ exponent
byte mutation to achieve rapid convergence. For constraints with a higher number of equal terms,
MOCEA can use special number mutation to expedite the discovery of satisfying solutions and
fine-tune with single-byte mutation. For constraints involving complex arithmetic operations,
MOCEA can utilize simulated binary crossover and mutation operators to balance local and global
exploration capabilities. Additionally, the regular mutation in the operator pool can balance the
algorithm’s convergence and diversity, preventing it from falling into local optima. Hence, it is
evident that the full QSF outperforms any version missing its components.

Answer to RQ3: The loss of each component will affect the overall performance of QSF.

5 DISCUSSION
In the following discussion, we will address the limitations of our approach and potential threats to
the validity of our experiments.

Generality of QSF. In Section 3.1, we formalized the construction process of floating-point
constraint formulas into a bi-objective function. This transformation only applies to the quantifier-
free floating-point theory (QF_FP). Modifying the function of the violation degree of unsatisfied
constraints can quickly extend it to other theories. The operator pool of MOCEA we implemented
includes some mutation strategies specifically for floating-point numbers. Therefore, QSF may
perform poorly on non-floating-point theory problems. However, extending MOCEA to other
theories is also simple by replacing the mutation operators in the operator pool. The search domain
of QSF only includes normalized floating-point numbers. Therefore, our method cannot find 𝐼𝑁 𝐹 ,
𝑁𝑎𝑁 , and denormalized floating-point numbers.

Threats to Validity. There are three aspects to internal threats. The first is the randomness of
QSF, the initialization and mutation process of MOCEA. The second is the randomness of other
solver methods, including JFS, CORAL, XSat, and goSAT. We try to improve the soundness of the
experimental results by running ten times. The third is the nature of incompleteness of search-based
solving methods, which are limited to UNSAT constraints. External threats have two aspects. The
first is the evaluation benchmark. The benchmarks in this paper may not be representative. The
real-world program benchmark only comes from GSL, one of many scientific computing libraries.
The second is the experimental setting, including the comparison solvers’ parameter settings and
solving time. Although we all used the configurations recommended in the literature, there may be
better configuration settings for different benchmarks.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

FSE024:18 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

6 RELATEDWORK
Existing floating-point constraint solving methods can be divided into three categories.

QF_FP SMT theory based method. This type of method transforms floating-point operations
into bit-vector circuits, which are then bit-blasted into SAT problems. The resulting SAT problems
are subsequently solved using a SAT solver. However, this transformation can result in extremely
complex SAT formulas that cause the solver to time out when dealing with non-linear floating-point
operations. Related work include Z3 [21], CVC5 [4], and MathSAT5 [17].

Real arithmetic SMT solving based method. Marre et al. proposed COLIBRI [44], which
converts the SMT problem into a constraint programming problem (CP). Then, it relies on dense
interreduction between many domain representations to reduce the search space greatly. FPCS
[45] proposed by Michel et al. also belongs to this category of methods, but we cannot obtain it for
comparative experiments.

Search-based Method. Liew et al. [42] conducted an in-depth study of the potential of coverage-
guided mutation-based fuzzing for solving SMT formulations. They converted the SMT formula
into a program whose input corresponds to the assignment of free variables in the formula. If and
only if an input can reach any in the goal sets, the input is a solution to the formula. A coverage-
guided fuzzer aims to find inputs that maximize coverage, so when applied to the program, it will
continuously search for inputs that achieve the goal, i.e., corresponding to satisfiable assignments
of the formula. Souza et al. [56] also proposed a heuristic search-based method for solving complex
floating-point constraints. In addition, both the XSat [27] and goSAT [36] solvers approach the con-
straint solving problem as an optimization problem and apply existing mathematical optimization
algorithms [2, 52] to try to search for the global minimum. The key to this method is the fitness
function’s design and the optimization algorithm’s selection.

Floating-point Program Analysis. Research related to floating-point constraint solving is
ubiquitous in the research community, such as symbolic execution, model checking, abstract in-
terpretation, and other fields. Lakhotia et al. [39] introduced a search-based method to address
floating-point constraints within the symbolic execution engine Pex [59]. Romano [53] recom-
mended replacing floating-point operations with corresponding integer operations to analyze
floating-point programs, thereby transforming programs containing floating-point operations into
programs that only involve integer operations. Barr et al. [5] presented Ariadne, which utilizes real
number solving to enhance floating-point constraint solving in symbolic execution. Zitoun et al.
[69] leverage the properties of floating-point domains (e.g., domain density) and constraints (e.g.,
floating-point arithmetic) to enhance the performance of counterexample search in bounded model
checking. Ponsini et al. [50] introduce a hybrid approach that combines abstract interpretation with
constraint programming techniques within a single static and automatic analysis framework. The
application of floating-point constraint solving in program analysis is diverse [28, 46, 54, 55, 65, 67].

7 CONCLUSION
Solving floating-point constraints is a highly challenging problem. Current mainstream floating-
point SMT solvers struggle with large-scale or non-linear floating-point constraint formulas due to
long solving time. To address the efficiency problem in floating-point constraint solving, this paper
proposesQSF, the first method that adopts a dual guidance mechanism. Specifically,QSF transforms
the floating-point constraint solving problem into a multi-objective optimization problem and
introduces the MOCEA optimization algorithm for solving it. Then, the preprocessing mechanism
can further improve the efficiency of MOCEA. We conducted comparative experiments with

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:19

the existing top floating-point constraint solvers on SMT-COMP 2023 and real-world program
benchmarks. The experimental results demonstrate QSF’s effectiveness and efficiency. In addition,
experiments also show that our method can improve the performance of symbolic execution for
floating-point programs.
Constraint solving based on multi-objective optimization is a general method. Although this

work focuses on floating-point constraint solving, it applies to constraint-solving problems in other
theories. In the future, we plan to extend QSF to support more theories, such as integer arithmetic
(IA) and real arithmetic (RA). Developing better objective function models and proposing more
efficient optimization algorithms are key aspects of our future work.

Data availability: the artifacts of this work are available at https://github.com/zbchen/QSF.git.

References
[1] 1985. IEEE standard for binary floating-point arithmetic - IEEE standard 754-1985. Beuth.
[2] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. 2003. An introduction to MCMC for

machine learning. Machine learning 50 (2003), 5–43.
[3] Sepideh Asadi, Martin Blicha, Antti EJ Hyvärinen, Grigory Fedyukovich, and Natasha Sharygina. 2022. SMT-based

verification of program changes through summary repair. Formal Methods in System Design 60, 3 (2022), 350–380.
[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, et al. 2022. cvc5: A versatile and industrial-strength SMT solver. In
International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 415–442.

[5] Earl T Barr, Thanh Vo, Vu Le, and Zhendong Su. 2013. Automatic detection of floating-point exceptions. ACM Sigplan
Notices 48, 1 (2013), 549–560.

[6] Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010. The smt-lib standard: Version 2.0. In Proceedings of the 8th
international workshop on satisfiability modulo theories (Edinburgh, UK), Vol. 13. 14.

[7] Clark W Barrett, David L Dill, and Jeremy R Levitt. 1998. A decision procedure for bit-vector arithmetic. In Proceedings
of the 35th Annual Design Automation Conference. 522–527.

[8] Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2023. From SMT to ASP: Solver-based approaches to
solving datalog synthesis-as-rule-selection problems. Proceedings of the ACM on Programming Languages 7, POPL
(2023), 185–217.

[9] Armin Biere, Marijn Heule, and Hans van Maaren. 2009. Handbook of satisfiability. Vol. 185. IOS press.
[10] Paul E Black. 1998. Dictionary of algorithms and data structures. (1998).
[11] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, and Albert Rubio. 2008. A write-based

solver for SAT modulo the theory of arrays. In 2008 Formal Methods in Computer-Aided Design. IEEE, 1–8.
[12] Aaron R Bradley and ZoharManna. 2007. The calculus of computation: decision procedures with applications to verification.

Springer Science & Business Media.
[13] Martin Brain, Florian Schanda, and Youcheng Sun. 2019. Building better bit-blasting for floating-point problems. In

Tools and Algorithms for the Construction and Analysis of Systems: 25th International Conference, TACAS 2019, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6–11, 2019, Proceedings, Part I 25. Springer, 79–98.

[14] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. Klee: unassisted and automatic generation of high-coverage
tests for complex systems programs.. In OSDI, Vol. 8. 209–224.

[15] Yair Censor. 1977. Pareto optimality in multiobjective problems. Applied Mathematics and Optimization 4, 1 (1977),
41–59.

[16] Tao Chen and Miqing Li. 2024. Adapting Multi-objectivized Software Configuration Tuning. Proceedings of the ACM
on Software Engineering 1, FSE (2024), 539–561.

[17] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani. 2013. The mathsat5 smt solver.
In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 93–107.

[18] Stephen A Cook. 2023. The complexity of theorem-proving procedures. In Logic, Automata, and Computational
Complexity: The Works of Stephen A. Cook. 143–152.

[19] Irving M Copi, Carl Cohen, and Kenneth McMahon. 2016. Introduction to logic. Routledge.
[20] Ivan De Falco, Antonio Della Cioppa, and Ernesto Tarantino. 2002. Mutation-based genetic algorithm: performance

evaluation. Applied Soft Computing 1, 4 (2002), 285–299.
[21] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In International conference on Tools and

Algorithms for the Construction and Analysis of Systems. Springer, 337–340.

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

https://github.com/zbchen/QSF.git

FSE024:20 Xu Yang, Zhenbang Chen, Wei Dong, and Ji Wang

[22] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. 2002. A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE transactions on evolutionary computation 6, 2 (2002), 182–197.

[23] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. 2007. Self-adaptive simulated binary crossover for real-parameter
optimization. In Proceedings of the 9th annual conference on genetic and evolutionary computation. 1187–1194.

[24] Agoston E Eiben, James E Smith, AE Eiben, and JE Smith. 2015. What is an evolutionary algorithm? Introduction to
evolutionary computing (2015), 25–48.

[25] Hongyu Fan, Weiting Liu, and Fei He. 2022. Interference relation-guided SMT solving for multi-threaded program
verification. In Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
163–176.

[26] Hongbing Fang, Qian Wang, Yi-Cheng Tu, and Mark F Horstemeyer. 2008. An efficient non-dominated sorting method
for evolutionary algorithms. Evolutionary computation 16, 3 (2008), 355–384.

[27] Zhoulai Fu and Zhendong Su. 2016. Xsat: A fast floating-point satisfiability solver. In Computer Aided Verification: 28th
International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II 28. Springer, 187–209.

[28] Mikhail R Gadelha, Lucas C Cordeiro, and Denis A Nicole. 2020. An efficient floating-point bit-blasting API for
verifying C programs. In International Workshop on Numerical Software Verification. Springer, 178–195.

[29] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman, Patrick Alken, Michael Booth, Fabrice Rossi,
and Rhys Ulerich. 2002. GNU scientific library. Network Theory Limited Godalming.

[30] Sicun Gao, Soonho Kong, and Edmund M Clarke. 2013. dReal: An SMT solver for nonlinear theories over the reals. In
International conference on automated deduction. Springer, 208–214.

[31] John H Holland. 1992. Genetic algorithms. Scientific american 267, 1 (1992), 66–73.
[32] Steven G. Johnson. 2007. The NLopt nonlinear-optimization package. https://github.com/stevengj/nlopt.
[33] P Kaelo and MM Ali. 2006. Some variants of the controlled random search algorithm for global optimization. Journal

of optimization theory and applications 130 (2006), 253–264.
[34] William Kahan. 1996. IEEE standard 754 for binary floating-point arithmetic. Lecture Notes on the Status of IEEE 754,

94720-1776 (1996), 11.
[35] James Kennedy and Russell Eberhart. 1995. Particle swarm optimization. In Proceedings of ICNN’95-international

conference on neural networks, Vol. 4. ieee, 1942–1948.
[36] M Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2017. goSAT: floating-point satisfiability as global

optimization. In 2017 Formal Methods in Computer Aided Design (FMCAD). IEEE, 11–14.
[37] Padmavathi Kora and Priyanka Yadlapalli. 2017. Crossover operators in genetic algorithms: A review. International

Journal of Computer Applications 162, 10 (2017).
[38] Daniel Kroening and Ofer Strichman. 2016. Decision procedures. Springer.
[39] Kiran Lakhotia, Nikolai Tillmann, Mark Harman, and Jonathan De Halleux. 2010. Flopsy-search-based floating point

constraint solving for symbolic execution. In IFIP International Conference on Testing Software and Systems. Springer,
142–157.

[40] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis & transformation.
In International symposium on code generation and optimization, 2004. CGO 2004. IEEE, 75–86.

[41] Zhang Li-min, Zhang Yuan, and Liu Wen-biao. 2012. The design of target assignment model based on the reverse
mutation ant colony algorithm. Procedia Engineering 29 (2012), 1554–1558.

[42] Daniel Liew, Cristian Cadar, Alastair F Donaldson, and J Ryan Stinnett. 2019. Just fuzz it: solving floating-point
constraints using coverage-guided fuzzing. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 521–532.

[43] Suyun Liu and Luis Nunes Vicente. 2024. The stochastic multi-gradient algorithm for multi-objective optimization and
its application to supervised machine learning. Annals of Operations Research 339, 3 (2024), 1119–1148.

[44] Bruno Marre, François Bobot, and Zakaria Chihani. 2017. Real behavior of floating point numbers. In The SMT
Workshop.

[45] Claude Michel, Michel Rueher, and Yahia Lebbah. 2001. Solving constraints over floating-point numbers. In Principles
and Practice of Constraint Programming—CP 2001: 7th International Conference, CP 2001 Paphos, Cyprus, November
26–December 1, 2001 Proceedings 7. Springer, 524–538.

[46] Benjamin Mikek and Qirun Zhang. 2023. Speeding up SMT Solving via Compiler Optimization. In Proceedings of the
31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
1177–1189.

[47] Aina Niemetz and Mathias Preiner. 2023. Bitwuzla. In Computer Aided Verification - 35th International Conference, CAV
2023, Paris, France, July 17-22, 2023, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 13965), Constantin Enea
and Akash Lal (Eds.). Springer, 3–17.

[48] Jan Peleska, Elena Vorobev, and Florian Lapschies. 2011. Automated test case generation with SMT-solving and abstract
interpretation. In NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

https://github.com/stevengj/nlopt

QSF: Multi-objective Optimization Based Efficient Solving for Floating-Point Constraints FSE024:21

2011. Proceedings 3. Springer, 298–312.
[49] Riccardo Poli and William B Langdon. 1998. Schema theory for genetic programming with one-point crossover and

point mutation. Evolutionary Computation 6, 3 (1998), 231–252.
[50] Olivier Ponsini, Claude Michel, and Michel Rueher. 2016. Verifying floating-point programs with constraint program-

ming and abstract interpretation techniques. Automated Software Engineering 23 (2016), 191–217.
[51] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2019. Refutation-based synthesis

in smt. Formal methods in system design 55 (2019), 73–102.
[52] Christian P Robert, George Casella, and George Casella. 1999. Monte Carlo statistical methods. Vol. 2. Springer.
[53] Anthony Romano. 2014. Practical floating-point tests with integer code. In International Conference on Verification,

Model Checking, and Abstract Interpretation. Springer, 337–356.
[54] Richard Rutledge, Keita Teranishi, and Orso Alessandro. 2022. Improving Floating Point Symbolic Execution Coverage

with Fixed Point Approximations. Technical Report. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
[55] Ziqi Shuai, Zhenbang Chen, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun, and Ji Wang. 2024. Partial Solution Based

Constraint Solving Cache in Symbolic Execution. Proceedings of the ACM on Software Engineering 1, FSE (2024),
2493–2514.

[56] Matheus Souza, Mateus Borges, Marcelo d’Amorim, and Corina S Păsăreanu. 2011. Coral: Solving complex constraints
for symbolic pathfinder. In NASA Formal Methods: Third International Symposium, NFM 2011, Pasadena, CA, USA, April
18-20, 2011. Proceedings 3. Springer, 359–374.

[57] Kenta Sugai, Hiroshi Hosobe, and Shaoying Liu. 2021. SMT-Based Theorem Verification for Testing-Based Formal
Verification. In Proceedings of the 2021 10th International Conference on Software and Computer Applications. 251–257.

[58] Gilbert Syswerda et al. 1989. Uniform crossover in genetic algorithms.. In ICGA, Vol. 3.
[59] Nikolai Tillmann and Jonathan De Halleux. 2008. Pex–white box test generation for. net. In International conference on

tests and proofs. Springer, 134–153.
[60] Peter JM Van Laarhoven, Emile HL Aarts, Peter JM van Laarhoven, and Emile HL Aarts. 1987. Simulated annealing.

Springer.
[61] Bill Waggener and William N Waggener. 1995. Pulse code modulation techniques. Springer Science & Business Media.
[62] Guo-JunWang and Yan-Hong She. 2006. A topological characterization of consistency of logic theories in propositional

logic. Mathematical Logic Quarterly 52, 5 (2006), 470–477.
[63] Yu Xue, Chen Chen, and Adam Słowik. 2023. Neural architecture search based on a multi-objective evolutionary

algorithm with probability stack. IEEE Transactions on Evolutionary Computation 27, 4 (2023), 778–786.
[64] Xu Yang, Juan Zou, Shengxiang Yang, Jinhua Zheng, and Yuan Liu. 2021. A fuzzy decision variables framework for

large-scale multiobjective optimization. IEEE Transactions on Evolutionary Computation 27, 3 (2021), 445–459.
[65] Guofeng Zhang, Zhenbang Chen, and Ziqi Shuai. 2022. Symbolic Execution of Floating-point Programs: How far are

we?. In 2022 29th Asia-Pacific Software Engineering Conference (APSEC). IEEE, 179–188.
[66] Qingfu Zhang and Hui Li. 2007. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE

Transactions on evolutionary computation 11, 6 (2007), 712–731.
[67] Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Tianqi Zhang, Kenli Li, and Ji Wang. 2020. Multiplex symbolic execution:

Exploring multiple paths by solving once. In Proceedings of the 35th IEEE/ACM International Conference on Automated
Software Engineering. 846–857.

[68] Shasha Zhou, Mingyu Huang, Yanan Sun, and Ke Li. 2024. Evolutionary Multi-objective Optimization for Contextual
Adversarial Example Generation. Proceedings of the ACM on Software Engineering 1, FSE (2024), 2285–2308.

[69] Heytem Zitoun, Claude Michel, Michel Rueher, and Laurent Michel. 2017. Search strategies for floating point constraint
systems. In Principles and Practice of Constraint Programming: 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28–September 1, 2017, Proceedings 23. Springer, 707–722.

[70] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving the strength Pareto evolutionary algorithm.
TIK report 103 (2001).

Received 2024-09-16; accepted 2025-01-14

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE024. Publication date: July 2025.

	Abstract
	1 INTRODUCTION
	2 PRELIMINARIES AND MOTIVATION
	2.1 Floating-point Numbers
	2.2 Floating-point Constraints
	2.3 Multi-Objective Optimization
	2.4 Motivation Example

	3 APPROACH
	3.1 Problem Transformation
	3.2 Optimization Solving

	4 IMPLEMENTATION AND EVALUATION
	4.1 Implementation
	4.2 Research Questions
	4.3 Experimental Setup
	4.4 Results on QF_FP Benchmark (RQ1)
	4.5 Results on Real-world Program Benchmark (RQ2)
	4.6 Ablation Study (RQ3)

	5 DISCUSSION
	6 RELATED WORK
	7 CONCLUSION
	References

