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ABSTRACT
Message passing is the standard paradigm of programming in high-
performance computing. However, verifying Message Passing In-
terface (MPI) programs is challenging, due to the complex program
features (such as non-determinism and non-blocking operations).
In this work, we present MPI symbolic verifier (MPI-SV), the first
symbolic execution based tool for automatically verifying MPI pro-
grams with non-blocking operations. MPI-SV combines symbolic
execution and model checking in a synergistic way to tackle the
challenges in MPI program verification. The synergy improves the
scalability and enlarges the scope of verifiable properties. We have
implemented MPI-SV1 and evaluated it with 111 real-world MPI
verification tasks. The pure symbolic execution-based technique
successfully verifies 61 out of the 111 tasks (55%) within one hour,
while in comparison, MPI-SV verifies 100 tasks (90%). On aver-
age, compared with pure symbolic execution, MPI-SV achieves 19x
speedups on verifying the satisfaction of the critical property and
5x speedups on finding violations.
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1 INTRODUCTION
Nowadays, an increasing number of high-performance computing
(HPC) applications have been developed to solve large-scale prob-
lems [11]. The Message Passing Interface (MPI) [78] is the current
de facto standard programming paradigm for developing HPC appli-
cations. Many MPI programs are developed with significant human
effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI
programs is challenging [29, 30].

Program analysis [64] is an effective technique for improving
program reliability. Existing methods for analyzing MPI programs
can be categorized into dynamic and static approaches. Most ex-
isting methods are dynamic, such as debugging [51], correctness
checking [71] and dynamic verification [83]. These methods need
concrete inputs to run MPI programs and perform analysis based
on runtime information. Hence, dynamic approaches may miss
input-related program errors. Static approaches [5, 9, 55, 74] ana-
lyze abstract models of MPI programs and suffer from false alarms,
manual effort, and poor scalability. To the best of our knowledge,
existing automated verification approaches for MPI programs either
do not support input-related analysis or fail to support the analysis
of the MPI programs with non-blocking operations, the invocations
of which do not block the program execution. Non-blocking opera-
tions are ubiquitous in real-world MPI programs for improving the
performance but introduce more complexity to programming.

Symbolic execution [27, 48] supports input-related analysis by
systematically exploring a program’s path space. In principle, sym-
bolic execution provides a balance between concrete execution and
static abstraction with improved input coverage or more precise
program abstraction. However, symbolic execution based analyses
suffer from path explosion due to the exponential increase of pro-
gram pathsw.r.t. the number of conditional statements. The problem
is particularly severe when analyzing MPI programs because of par-
allel execution and non-deterministic operations. Existing symbolic
execution based verification approaches [77][25] do not support
non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-
grams by smartly integrating symbolic execution and model check-
ing. As far as we know, MPI-SV is the first automated verifier
that supports non-blocking MPI programs and the verification of
LTL [58] properties. MPI-SV uses symbolic execution to extract
path-level models from MPI programs and verifies the models w.r.t.
the expected properties by model checking [17]. The two tech-
niques complement each other: (1) symbolic execution abstracts
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MPI Paradigm

• Key features of MPI Applications

• Non-deterministic, e.g. wildcard receive

• Blocking and non-blocking communications

• Data and control intensive

• MPI programs are hard to develop and maintain
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Verifying MPI programs is challenging



Challenges

• Non-determinism (Soundness)

• Input && Schedule coverage
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Challenges

• Non-determinism (Soundness)

• Input && Schedule coverage

 Send(P1, buff0)

P0

 if (x != ‘a’){
   Recv(P0, buff1)
 } else {
   Recv(ANY, buff1)
 }
 Recv(P2, buff1)

P1

 Send(P1, buff2)

P2
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Deadlock



Existing Work of MPI Verification
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Automation Input Coverage Non-Blocking

CIVL(TASS) Yes Yes No

MOPPER Yes No Yes

MPI-SPIN No Yes Yes

Either do not support input-related verification or fail 
to support the verification of non-blocking MPI 

programs
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Automation Input Coverage Non-Blocking

CIVL(TASS) Yes Yes No

MOPPER Yes No Yes

MPI-SPIN No Yes Yes

MPI-SV Yes Yes Yes

Existing Work of MPI Verification



Challenges

• The explosion of state space

• Parallel execution, wildcard receive, branches

• Exponential increasing
P0 P1 P2

... ...

Pn

......
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Key Ideas (1/2)

• Challenge 1: non-determinism

• Symbolic execution for input coverage

• Blocking-driven matching of wildcard receives
P0 P1 P2

... ...

Pn

9

Message 
Matchings



Key Ideas (1/2)

• Challenge 1: non-determinism

• Symbolic execution for input coverage

• Blocking-driven matching of wildcard receives
P0 P1 P2

... ...

Pn

The happens-before 
requirements in MPI 

standard are 
preserved
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Key Ideas (2/2)

• Challenge 2: the explosion of state space

• Partial order reduction

• Model checking-based boosting

11



Basic Framework
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
No 

Yes 

Property 

Test Case 

CSP Model 

No 

Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
No 

Yes 

Property 

Test Case 

CSP Model 

No 

Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
No 

Yes 

Property 

Test Case 

CSP Model 

No 

Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  
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Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.
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Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
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Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
No 
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Test Case 
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Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
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Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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need to handle the non-determinism caused by the input x
and the wildcard receive IRecv(*,req). We adopt symbolic
execution [31] to cover the input.

However, two key technical challenges exist for symbolic
execution of MPI programs. �e �rst one is how to systemat-
ically explore the paths of an MPI program with non-blocking
and wildcard operations. To ensure soundness, all possible
paths need to be explored. However, non-blocking and wild-
card operations signi�cantly increase the complexity of MPI
programs. A non-blocking operation does not block but re-
turns immediately, causing out-of-order completion. �e
problem of handling wildcard operations is how to get all
the possible matched messages, especially for non-blocking
wildcard operations. �e second challenge is how to improve
the scalability of the symbolic execution based analysis. �is
challenge is inherent to symbolic execution [31], i.e., the
path explosion problem. However, it becomes even more
challenging when symbolically executing MPI programs, i.e.,
the path space also increases exponentially with the number
of processes and wildcard operations.
2.2 Our Approach
Figure 2 shows the basic framework of MPI-SV.�e inputs
of MPI-SV are an MPI program and a property, e.g, deadlock
freedom, to be veri�ed.

MPI 
Programs  

CSP Model Checker 

Violation 
Path Symbolic Executor 

State Pruner 

Violation 

MPI-SV 

Yes 
No 

Yes 

Property 

Test Case 

CSP Model 

No 

Figure 2. �e framework of MPI-SV.
MPI-SV uses the built-in symbolic executor to automati-

cally explore the path space, and checks the property along
with path exploration. For each path that violates the prop-
erty, called a violation path, MPI-SV generates a test case
that can trigger the violation. �e test case contains the
inputs of the MPI program, the interleaving sequence of MPI
operations and the matchings of non-deterministic MPI op-
erations. When the path p is violation-free, MPI-SV builds a
CSP model � for p. � represents all the equivalent paths of p
by changing the interleavings and matchings of the commu-
nication operations in p. �en, MPI-SV utilizes a CSP model
checker to verify the model w.r.t. the property. If the model
checker reports a counterexample, a violation is found. Oth-
erwise, if the model satis�es the property, MPI-SV prunes
the equivalent paths of the current path. �e synergy of sym-
bolic execution and model checking boosts both violation
detection and veri�cation.
Consider the MPI program in Figure 1 and the deadlock

freedom property. Since MPI processes are memory indepen-
dent, MPI-SV will select a process to execute in a round-robin
manner to avoid exploring the complete interleavings of the

processes. A process keeps running until it blocks or ter-
minates, and the encountered MPI operations are collected
instead of being executed. �e intuition behind is to collect
the message exchanges as thoroughly as possible, which
helps �nd all the possible matchings for the wildcard receive
operations. In this way, MPI-SV �rst symbolically executes
P0, which only sends a message to P1. Note that the Send(1)
operation returns immediately under the assumption of in�-
nite local bu�ers. Hence, P0 terminates, and the operation
Send(1) is recorded. �en, MPI-SV starts to execute P1 and
explores the two branches as follows.
(1) True branch (x != ‘a’). In this case, P1 encounters a
blocking receive Recv(0) and blocks. MPI-SV records the re-
ceive operation for P1, and starts executing P2. Similar to P0,
Send(1) is recorded for P2, and P2 terminates, a�er which P3
is selected and behaves the same as P2. A�er P3 terminates,
only P1 blocks, and all the other processes terminate. When
the global execution blocks, MPI-SV matches the recorded
operations, performs the message exchanges and continues
to execute the matched processes. Obviously, the Recv(0)
in P1 should be matched with the Send(1) in P0. A�er ex-
ecuting the send and receive operations, P1 is selected to
execute, because P0 has already terminated. �en, P1 blocks
at Recv(3). Same as earlier, the global execution blocks and
operation matching needs to be done. Recv(3) is matched
with the Send(1) in P3. A�er executing the Recv(3) and
Send(1) operations, P1 terminates. So, all the processes
terminate successfully.
(2) False branch (x == ‘a’). �e execution of P1 proceeds
until reaching the blocking receive Recv(3). Additionally,
the two issued receive operations, i.e., IRecv(*,req) and
Recv(3), are recorded. Similar to the true branch, when
every process blocks or terminates, we handle operation
matching. Here P0, P2 and P3 terminate, and P1 blocks at the
Recv(3) operation. IRecv(*,req) should be matched �rst
because of the non-overtaken policy in the MPI standard [17].
�ere are three Send operation candidates from P0, P2 and
P3 for IRecv(*,req), respectively. To ensure soundness,
MPI-SV forks a state for each candidate. Suppose MPI-SV
�rst explores the state where IRecv(*,req) is matched with
Send(1) in P0. A�er matching and executing Recv(3) in P1
and Send(1) in P3, the path terminates successfully.
Violation detection. In principle, MPI-SV could continue
to explore the remaining two cases. Without CSP-based
boosting, the deadlockwill be found in the fourth path, where
IRecv(*,req) is matched with Send(1) in P3 and Recv(3)

in P1 has no matched operation. However, MPI-SV generates
a CSP model � based on the deadlock free path of the �rst
case where IRecv(*,req) is matched with Send(1) in P0.
Each MPI process is modeled as a CSP process, and all the
CSP processes are composed in parallel to form �. Notably,
in �, we collect the possible matchings of a wildcard receive
through statically matching the arguments of operations in
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Experiments

• Property

• Deadlock freedom

• Non-reachability 
properties

• Analyze each task 
(program/property) 
in one hour

Program
s

LOC Description
DTG 90 Dependence transition group 

Matmat 105 Matrix multiplication

Integrate 181 Integral computing

Diffusion2d 197 Simulation of diffusion equation

Gauss_elim 341 Gaussian elimination

Heat 613 Heat equation solver

Mandelbrot 268 Mandelbrot set drawing 
Sorting 218 Array sorting 

Image_mani
p

360 Image manipulation

DepSolver 8988 Multimaterial electrostatic solver

Kfray 12728 KF-Ray parallel raytracer

ClusterW 23265 Multiple sequence alignment

Total 47354 12 open source MPI programs
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No 
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MPI-SV is more effective and efficient than pure 
symbolic execution
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Table 2: Experimental results.

Program (#Procs) T Deadlock Time(s) #Iterations
Symbolic execution Our approach Symbolic execution Our approach

DTG(5)

o 0 10.12 9.02 3 1
m1 0 13.69 9.50 10 2
m2 1 10.02 8.93 4 2
m3 1 10.21 9.49 4 2
m4 1 10.08 9.19 4 2
m5 1 9.04 9.29 2 2

Matmat
⇤(4) o 0 36.94 10.43 54 1

Integrate(6/8/10)
o 0/0/0 78.17/��/�� 8.87/10.45/44.00 120/3912/3162 1/1/1
m1 0/0/-1 ��/��/�� 49.94 /��/�� 4773/3712/3206 32 /128/79
m2 1/1/1 9.35/9.83/9.94 9.39/10.76/44.09 2/2/2 2/2/2

Integrate
⇤ (4/6) o 0/0 24.18/123.55 9.39/32.03 27/125 1/1

Diffusion2d(4/6)

o 0/0 106.86/�� 9.84/13.19 90/2041 1/1
m1 0/1 110.25/11.95 10.18 /13.81 90/2 1 /2
m2 0/1 3236.02/12.66 17.05 /14.38 5850/3 16/2
m3 0/0 ��/�� 19.26/199.95 5590/4923 16/64
m4 1/1 11.35 /11.52 11.14 /14.22 3/2 2 /2
m5 1/0 10.98/�� 10.85/13.44 2/1991 2/ 1

Gauss_elim(6/8/10) o 0/0/0 ��/��/�� 13.47/15.12/87.45 2756/2055/1662 1/1/1
m1 1/1/1 155.40/��/�� 14.31/16.99/88.79 121/2131/559 2/2/2

Heat(6/8/10)

o 1/1/1 17.31/17.99/20.51 16.75 /19.27/22.75 2/2/2 1/1/1
m1 1/1/1 17.33/18.21/20.78 17.03 /19.75/23.16 2/2/2 1/1/1
m2 1/1/1 18.35/18.19/20.74 16.36 /19.53/23.07 2/2/2 1/1/1
m3 1/1/1 19.64/20.21/23.08 16.36/19.72/22.95 3/3/3 1/1/1
m4 1/1/1 22.9/24.73/27.78 16.4/19.69/22.90 9/9/9 1/1/1
m5 1/1/1 24.28/28.57/32.67 16.61/19.59/22.42 7/7/7 1/1/1

Mandelbrot(6/8/10)

o 0/0/-1 ��/��/�� 117.68 / 831.87 /�� 500/491/447 9 / 9 /9
m1 -1/-1/-1 ��/��/�� ��/��/�� 1037/1621/1459 173/227/246
m2 -1/-1/-1 ��/��/�� ��/��/�� 1093/1032/916 178/136/90
m3 1/1/1 10.71/11.17/11.92 10.84/11.68/13.5 2/2/2 2/2/2

Mandelbort
⇤ (4/6) o 0/0 68.09/270.65 12.65/13.21 72/240 2/2

Sorting
⇤ (4/6) o 0/0 ��/�� 19.18/46.19 584/519 1/1

Image_mani(6/8/10) o 0/0/0 97.69/118.72/141.87 18.68/23.84/27.89 96/96/96 4/4/4
m1 1/1/1 12.92/15.80/15.59 14.15/ 14.53 /16.86 2/2/2 2/2/2

DepSolver(6/8/10) o 0/0/0 94.17/116.5/148.38 97.19/123.36/151.83 4/4/4 4/4/4

Kfray(6/8/10)

o 0/0/0 ��/��/�� 51.59/68.25/226.96 1054/981/1146 1/1/1
m1 1/1/1 52.15/53.50/46.83 53.14/69.58/229.97 2/2/2 2/2/2
m2 -1/-1/-1 ��/��/�� ��/��/�� 1603/1583/1374 239/137/21
m3 1/1/1 51.31/43.34/48.33 50.40 /71.15/230.18 2/2/2 2/2/2

Kfray
⇤ (4/6) o 0/0 ��/�� 53.44/282.46 1301/1575 1/1

Clustalw(6/8/10)

o 0/0/0 ��/��/�� 47.28/79.38/238.37 1234/1105/1162 1/1/1
m1 0/0/0 ��/��/�� 47.94/80.10/266.16 1365/1127/982 1/1/1
m2 0/0/0 ��/��/�� 47.71/90.32/266.08 1241/1223/915 1/1/1
m3 1/1/1 895.63/��/�� 149.71/1083.95/301.99 175/1342/866 5/17/2
m4 0/0/0 ��/��/�� 47.49/79.94/234.99 1347/1452/993 1/1/1
m5 0/0/0 ��/��/�� 47.75/80.33/223.77 1353/1289/1153 1/1/1

channels as rendezvous ones; thus, the reduction cannot handle the
programs with wildcard receives. MPI-SV leverages model checking
to prune redundant paths caused by wildcard receives. We applied
MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-
dom, andMPI-SV successfully analyzed 15 automatically, indicating
the e�ectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support
for APIs. For the real-world program gausselim, MPI-SPIN needs

171s to verify that the model is deadlock-free under 5 processes,
while MPI-SV only needs 27s to verify the program automatically. If
the number of the processes is 8, MPI-SPIN timed out in 30 minutes,
but MPI-SV used 66s to complete veri�cation.

Temporal properties.We specify two temporal safety properties
�1 and �2 for Integrate and Mandelbrot, respectively, where �1
requires process one cannot receive a message before process two,
and �2 requires process one cannot send a message before process
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Table 2: Experimental results.

Program (#Procs) T Deadlock Time(s) #Iterations
Symbolic execution Our approach Symbolic execution Our approach

DTG(5)

o 0 10.12 9.02 3 1
m1 0 13.69 9.50 10 2
m2 1 10.02 8.93 4 2
m3 1 10.21 9.49 4 2
m4 1 10.08 9.19 4 2
m5 1 9.04 9.29 2 2

Matmat
⇤(4) o 0 36.94 10.43 54 1

Integrate(6/8/10)
o 0/0/0 78.17/��/�� 8.87/10.45/44.00 120/3912/3162 1/1/1
m1 0/0/-1 ��/��/�� 49.94 /��/�� 4773/3712/3206 32 /128/79
m2 1/1/1 9.35/9.83/9.94 9.39/10.76/44.09 2/2/2 2/2/2

Integrate
⇤ (4/6) o 0/0 24.18/123.55 9.39/32.03 27/125 1/1

Diffusion2d(4/6)

o 0/0 106.86/�� 9.84/13.19 90/2041 1/1
m1 0/1 110.25/11.95 10.18 /13.81 90/2 1 /2
m2 0/1 3236.02/12.66 17.05 /14.38 5850/3 16/2
m3 0/0 ��/�� 19.26/199.95 5590/4923 16/64
m4 1/1 11.35 /11.52 11.14 /14.22 3/2 2 /2
m5 1/0 10.98/�� 10.85/13.44 2/1991 2/ 1

Gauss_elim(6/8/10) o 0/0/0 ��/��/�� 13.47/15.12/87.45 2756/2055/1662 1/1/1
m1 1/1/1 155.40/��/�� 14.31/16.99/88.79 121/2131/559 2/2/2

Heat(6/8/10)

o 1/1/1 17.31/17.99/20.51 16.75 /19.27/22.75 2/2/2 1/1/1
m1 1/1/1 17.33/18.21/20.78 17.03 /19.75/23.16 2/2/2 1/1/1
m2 1/1/1 18.35/18.19/20.74 16.36 /19.53/23.07 2/2/2 1/1/1
m3 1/1/1 19.64/20.21/23.08 16.36/19.72/22.95 3/3/3 1/1/1
m4 1/1/1 22.9/24.73/27.78 16.4/19.69/22.90 9/9/9 1/1/1
m5 1/1/1 24.28/28.57/32.67 16.61/19.59/22.42 7/7/7 1/1/1

Mandelbrot(6/8/10)

o 0/0/-1 ��/��/�� 117.68 / 831.87 /�� 500/491/447 9 / 9 /9
m1 -1/-1/-1 ��/��/�� ��/��/�� 1037/1621/1459 173/227/246
m2 -1/-1/-1 ��/��/�� ��/��/�� 1093/1032/916 178/136/90
m3 1/1/1 10.71/11.17/11.92 10.84/11.68/13.5 2/2/2 2/2/2

Mandelbort
⇤ (4/6) o 0/0 68.09/270.65 12.65/13.21 72/240 2/2

Sorting
⇤ (4/6) o 0/0 ��/�� 19.18/46.19 584/519 1/1

Image_mani(6/8/10) o 0/0/0 97.69/118.72/141.87 18.68/23.84/27.89 96/96/96 4/4/4
m1 1/1/1 12.92/15.80/15.59 14.15/ 14.53 /16.86 2/2/2 2/2/2

DepSolver(6/8/10) o 0/0/0 94.17/116.5/148.38 97.19/123.36/151.83 4/4/4 4/4/4

Kfray(6/8/10)

o 0/0/0 ��/��/�� 51.59/68.25/226.96 1054/981/1146 1/1/1
m1 1/1/1 52.15/53.50/46.83 53.14/69.58/229.97 2/2/2 2/2/2
m2 -1/-1/-1 ��/��/�� ��/��/�� 1603/1583/1374 239/137/21
m3 1/1/1 51.31/43.34/48.33 50.40 /71.15/230.18 2/2/2 2/2/2

Kfray
⇤ (4/6) o 0/0 ��/�� 53.44/282.46 1301/1575 1/1

Clustalw(6/8/10)

o 0/0/0 ��/��/�� 47.28/79.38/238.37 1234/1105/1162 1/1/1
m1 0/0/0 ��/��/�� 47.94/80.10/266.16 1365/1127/982 1/1/1
m2 0/0/0 ��/��/�� 47.71/90.32/266.08 1241/1223/915 1/1/1
m3 1/1/1 895.63/��/�� 149.71/1083.95/301.99 175/1342/866 5/17/2
m4 0/0/0 ��/��/�� 47.49/79.94/234.99 1347/1452/993 1/1/1
m5 0/0/0 ��/��/�� 47.75/80.33/223.77 1353/1289/1153 1/1/1

channels as rendezvous ones; thus, the reduction cannot handle the
programs with wildcard receives. MPI-SV leverages model checking
to prune redundant paths caused by wildcard receives. We applied
MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-
dom, andMPI-SV successfully analyzed 15 automatically, indicating
the e�ectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support
for APIs. For the real-world program gausselim, MPI-SPIN needs

171s to verify that the model is deadlock-free under 5 processes,
while MPI-SV only needs 27s to verify the program automatically. If
the number of the processes is 8, MPI-SPIN timed out in 30 minutes,
but MPI-SV used 66s to complete veri�cation.

Temporal properties.We specify two temporal safety properties
�1 and �2 for Integrate and Mandelbrot, respectively, where �1
requires process one cannot receive a message before process two,
and �2 requires process one cannot send a message before process
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ABSTRACT
Message passing is the standard paradigm of programming in high-
performance computing. However, verifying Message Passing In-
terface (MPI) programs is challenging, due to the complex program
features (such as non-determinism and non-blocking operations).
In this work, we present MPI symbolic verifier (MPI-SV), the first
symbolic execution based tool for automatically verifying MPI pro-
grams with non-blocking operations. MPI-SV combines symbolic
execution and model checking in a synergistic way to tackle the
challenges in MPI program verification. The synergy improves the
scalability and enlarges the scope of verifiable properties. We have
implemented MPI-SV1 and evaluated it with 111 real-world MPI
verification tasks. The pure symbolic execution-based technique
successfully verifies 61 out of the 111 tasks (55%) within one hour,
while in comparison, MPI-SV verifies 100 tasks (90%). On aver-
age, compared with pure symbolic execution, MPI-SV achieves 19x
speedups on verifying the satisfaction of the critical property and
5x speedups on finding violations.
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1 INTRODUCTION
Nowadays, an increasing number of high-performance computing
(HPC) applications have been developed to solve large-scale prob-
lems [11]. The Message Passing Interface (MPI) [78] is the current
de facto standard programming paradigm for developing HPC appli-
cations. Many MPI programs are developed with significant human
effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI
programs is challenging [29, 30].

Program analysis [64] is an effective technique for improving
program reliability. Existing methods for analyzing MPI programs
can be categorized into dynamic and static approaches. Most ex-
isting methods are dynamic, such as debugging [51], correctness
checking [71] and dynamic verification [83]. These methods need
concrete inputs to run MPI programs and perform analysis based
on runtime information. Hence, dynamic approaches may miss
input-related program errors. Static approaches [5, 9, 55, 74] ana-
lyze abstract models of MPI programs and suffer from false alarms,
manual effort, and poor scalability. To the best of our knowledge,
existing automated verification approaches for MPI programs either
do not support input-related analysis or fail to support the analysis
of the MPI programs with non-blocking operations, the invocations
of which do not block the program execution. Non-blocking opera-
tions are ubiquitous in real-world MPI programs for improving the
performance but introduce more complexity to programming.

Symbolic execution [27, 48] supports input-related analysis by
systematically exploring a program’s path space. In principle, sym-
bolic execution provides a balance between concrete execution and
static abstraction with improved input coverage or more precise
program abstraction. However, symbolic execution based analyses
suffer from path explosion due to the exponential increase of pro-
gram pathsw.r.t. the number of conditional statements. The problem
is particularly severe when analyzing MPI programs because of par-
allel execution and non-deterministic operations. Existing symbolic
execution based verification approaches [77][25] do not support
non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-
grams by smartly integrating symbolic execution and model check-
ing. As far as we know, MPI-SV is the first automated verifier
that supports non-blocking MPI programs and the verification of
LTL [58] properties. MPI-SV uses symbolic execution to extract
path-level models from MPI programs and verifies the models w.r.t.
the expected properties by model checking [17]. The two tech-
niques complement each other: (1) symbolic execution abstracts
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