

Symbolic Verification of Message Passing Interface Programs

Zhenbang Chen (<u>zbchen@nudt.edu.cn</u>)

Joint work with Hengbiao Yu, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

High Performance Computing

MPI Paradigm

- Key features of MPI Applications
 - Non-deterministic, e.g. wildcard receive
 - Blocking and non-blocking communications
 - Data and control intensive
- MPI programs are hard to develop and maintain

Verifying MPI programs is challenging

Challenges

- Non-determinism (Soundness)
 - Input && Schedule coverage

Challenges

- Non-determinism (Soundness)
 - Input && Schedule coverage

Existing Work of MPI Verification

	Automation	Input Coverage	Non-Blocking
CIVL(TASS)	Yes	Yes	No
MOPPER	Yes	No	Yes
MPI-SPIN	No	Yes	Yes

Either do not support input-related verification or fail to support the verification of non-blocking MPI programs

Existing Work of MPI Verification

	Automation	Input Coverage	Non-Blocking
CIVL(TASS)	Yes	Yes	No
MOPPER	Yes	No	Yes
MPI-SPIN	No	Yes	Yes
MPI-SV	Yes	Yes	Yes

Challenges

- The explosion of state space
 - Parallel execution, wildcard receive, branches
 - Exponential increasing

Key Ideas (1/2)

- Challenge I: non-determinism
 - Symbolic execution for input coverage
 - Blocking-driven matching of wildcard receives

Key Ideas (1/2)

- Challenge I: non-determinism
 - Symbolic execution for input coverage
 - Blocking-driven matching of wildcard receives

Key Ideas (2/2)

- Challenge 2: the explosion of state space
 - Partial order reduction
 - Model checking-based boosting

CSP modeling is sound and complete

CSP modeling is sound and complete

Experiments

• Property

- Deadlock freedom
- Non-reachability properties
- Analyze each task (program/property) in one hour

Program	LOC	Description	
DTG	90	Dependence transition group	
Matmat	105	Matrix multiplication	
Integrate	181	Integral computing	
Diffusion2d	197	Simulation of diffusion equation	
Gauss_elim	341	Gaussian elimination	
Heat	613	Heat equation solver	
Mandelbrot	268	Mandelbrot set drawing	
Sorting	218	Array sorting	
lmage_mani	360	Image manipulation	
DepSolver	8988	Multimaterial electrostatic solver	
Kfray	12728	KF-Ray parallel raytracer	
ClusterW	23265	Multiple sequence alignment	
Total	47354	12 open source MPI programs	

Main Results

Program (#Procs)	т	Deadlock	Ti	me(s)	#Iteratio	ns
. 1051am (#11003)	· ·	Deadlock	Symbolic execution	Our approach	Symbolic execution	Our appr
DTG(5)	0	0	10.12	9.02	3	1
	m_1	0	13.69	9.50	10	2
	m_2	1	10.02	8.93	4	2
	m_3	1	10.21	9.49	4	2
	m_4	1	10.08	9.19	4	2
	m_5	1	9.04	9.29	2	2
Matmat*(4)	0	0	36.94	10.43	54	1
	0	0/0/0	78.17/то/то	8.87/10.45/44.00	120/3912/3162	1/1/
Integrate(6/8/10)	m_1	0/0/-1	то/то/то	49.94 /то/то	4773/3712/3206	32 / 128
	m_2	1/1/1	9.35/9.83/9.94	9.39/10.76/44.09	2/2/2	2/2/2
Integrate [*] (4/6)	0	0/0	24.18/123.55	9.39/32.03	27/125	1/1
	0	0/0	106.86/TO	9.84/13.19	90/2041	1/1
	m_1	0/1	110.25/11.95	10.18 /13.81	90/2	1 /2
Diffusion2d(4/6)	m_2	0/1	3236.02/12.66	17.05 /14.38	5850/3	16/2
b1110310020(4/0)	m3	0/0	то/то	19.26/199.95	5590/4923	16/64
	<i>m</i> 4	1/1	11.35/11.52	11.14 /14.22	3/2	2 /2
	me	1/0	10.98/TO	10.85/13.44	2/1991	2/1
	0	0/0/0	то/то/то	13.47/15.12/87.45	2756/2055/1662	1/1/1
Gauss_elim(6/8/10)	<i>m</i> 1	1/1/1	155.40/то/то	14.31/16.99/88.79	121/2131/559	2/2/2
	0	1/1/1	17 31/17 99/20 51	16 75 /19 27/22 75	2/2/2	1/1/
	m.	1/1/1	17 33/18 21/20 78	17.03 /19.75/23.16	2/2/2	1/1/
	m	1/1/1	18 35/18 19/20 74	16 36 /19 53/23 07	2/2/2	1/1/
Heat(6/8/10)	m2	1/1/1	10.53/10.17/20.74	16 36/10 72/22 05	3/3/3	1/1/
	m	1/1/1	22 0/24 73/27 78	16 4/10 60/22 00	9/9/9	1/1/
	ma	1/1/1	24.28/28 57/32.67	16 61/10 50/22 42	7/7/7	1/1/
	1115	0/0/ 1	24.20/20.37/32.07	117.69 / 921.97 /mo	500/401/447	0/0
	0	0/0/-1	TO/TO/TO	117.68 / 851.87 /10	500/491/44/	9/9
Mandelbrot(6/8/10)	m1	-1/-1/-1	TO/TO/TO	TO/TO/TO	103//1021/1439	178/136
	m2	1/1/1	10/10/10	10 84/11 68/13 5	2/2/2	2/2/2
Mandalbant*(4/6)	<i>m</i> ₃	1/1/1	10./1/11.1//11.92 68.00/270.65	10.04/11.00/13.3	2/2/2	2/2/
Conting*(4/6)	0	0/0	00.09/2/0.03	10.18/46.10	72/240 584/510	2/2
301 L11g (4/8)	0	0/0	10/10	19.10/40.19	304/319	1/1
Image_mani(6/8/10)	0	0/0/0	97.09/110.72/141.07	10.00/23.04/27.09	96/96/96	4/4/
B B 3 (1(B(12))	m_1	1/1/1	12.92/15.80/15.59	14.15/ 14.53 /16.86	2/2/2	2/2/3
DepSolver(6/8/10)	0	0/0/0	94.17/116.5/148.38	97.19/123.36/151.83	4/4/4	4/4/4
-	0	0/0/0	TO/TO/TO	51.59/68.25/226.96	1054/981/1146	1/1/
Kfray(6/8/10)	<i>m</i> ₁	1/1/1	52.15/53.50/46.83	55.14/69.58/229.9/	2/2/2	2/2/
	<i>m</i> ₂	-1/-1/-1	10/10/10	10/10/10	1605/1585/15/4	239/13/
	m ₃	1/1/1	51.31/43.34/48.33	50.40 //1.15/230.18	2/2/2	2/2/2
Kfray [~] (4/6)	0	0/0	то/то	53.44/282.46	1301/1575	1/1
	0	0/0/0	то/то/то	47.28/79.38/238.37	1234/1105/1162	1/1/1
	<i>m</i> ₁	0/0/0	то/то/то	47.94/80.10/266.16	1365/1127/982	1/1/
Clustalw(6/8/10)	m_2	0/0/0	то/то/то	47.71/90.32/266.08	1241/1223/915	1/1/
	<i>m</i> ₃	1/1/1	895.63/то/то	149.71/1083.95/301.99	175/1342/866	5/17/
	<i>m</i> ₄	0/0/0	TO/TO/TO	47.49/79.94/234.99	1347/1452/993	1/1/
	m ₅	U/0/0	TO/TO/TO	47.75/80.33/223.77	1353/1289/1153	1/1/

III verification tasks

MPI-SV is more effective and efficient than pure symbolic execution

The Progress Distribution

Conclusion

Existing Work of MPI Verification

	Automation	Input Coverage	Non-Blocking
CIVL(TASS)	Yes	Yes	No
MOPPER	Yes	No	Yes
MPI-SPIN	No	Yes	Yes
MPI-SV	Yes	Yes	Yes

7

Thank you! Q&A

