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ABSTRACT
Verifying the regular properties of programs has been a significant

challenge. This paper tackles this challenge by presenting symbolic
regular verification (SRV) that offers significant speedups over the
state-of-the-art. SRV is based on dynamic symbolic execution (DSE)

and enabled by novel techniques for mitigating path explosion: (1)

a regular property-oriented path slicing algorithm, and (2) a syner-

gistic combination of property-oriented path slicing and guiding.

Slicing prunes redundant paths, while guiding boosts the search

for counterexamples. We have implemented SRV for Java and eval-

uated it on 15 real-world open-source Java programs (totaling 259K

lines of code). Our evaluation results demonstrate the effectiveness

and efficiency of SRV. Compared with the state-of-the-art — pure

DSE, pure guiding, and pure path slicing — SRV achieves average

speedups of more than 8.4X, 8.6X, and 7X, respectively, making

symbolic regular property verification significantly more practical.
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1 INTRODUCTION
Regular properties are ones that can be specified by finite state ma-

chines (FSMs) [22]. They are widely used for property specification

in software analysis and verification (e.g., model-based testing [36],
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typestate analysis [21], model checking [14], and performance anal-

ysis [33]). However, scalable regular property verification is diffi-

cult, and practical verification of regular properties of real-world

programs is a significant software engineering research challenge.

Two main lines of research exist on regular property verifi-

cation: static and dynamic verification. Static verification (such

as [17, 20, 21]) soundly abstracts programs for verification, which

usually has high code coverage, but suffers from false alarms. Dy-

namic verification (such as [2, 12]), in contrast, executes the pro-

gram and monitors program executions online. Hence, dynamic

verification ensures completeness, i.e., every discovered violation is

real. However, dynamic approaches only verify a program’s behav-

ior under specific inputs, thus may miss bugs.

Symbolic execution [10, 23, 30] achieves trade-offs between static

and dynamic verification by using symbolic values for program ex-

ecution. A key step in symbolic execution is to explore all possible

cases when encountering a branch via forking states or re-executing

the program. Compared with static and dynamic approaches, sym-

bolic execution achieves better precision or coverage, respectively.

Our goal is to develop a practical technique for symbolic regular

property verification. At the high-level, it works as follows. For a

regular property φ and program P , an event in φ’s FSM represents

the execution of one ormore statements of P . For example, a method

invocation may produce an event. Hence, w.r.t. φ, an execution path

p of P generates an event sequence, denoted as Seq(p). If Seq(p) is
empty, p is an irrelevant path; otherwise, p is relevant. To verify

that P satisfies φ, we adopt symbolic execution to explore P ’s path
space. If there exists a path p that violates φ, i.e., Seq(p) is accepted
by the FSM of ¬φ (denoted by FSM¬φ ), a violation is found, and p
is a counterexample path. Otherwise, P satisfies φ.

However, symbolic execution is hindered by the problem of path
explosion — exponential path space w.r.t. the number of branches

in the program. Thus, how to steer symbolic execution to (1) com-

pletely explore the path space and (2) find counterexamples as soon
as possible is critical. This paper tackles these challenges and in-

troduces a scalable verification technique, called symbolic regular
verification (SRV), for regular properties via dynamic symbolic ex-

ecution (DSE) [23, 41]. SRV is inspired by two key observations.

First, there usually exist a large number of irrelevant paths in P
w.r.t. the regular property φ. Second, many of the relevant paths

in P are equivalent, i.e., the paths having identical event sequence

w.r.t. φ. Therefore, during DSE, it is desirable to (1) prune both

irrelevant and equivalent relevant paths, and (2) explore counterex-

ample paths as early as possible. Doing these can boost symbolic

verification to find counterexamples and finish path exploration

more promptly.

To verify a regular property φ for a program, the key idea of SRV
is to (1) slice a path w.r.t. related statements of φ, which results in
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pruned paths related to the sliced branches, and (2) use ¬φ to guide

the selection of branches to explore for finding counterexample

paths early. The main technical novelty of SRV is the design of a

slice algorithm and a verification framework. The algorithm is a reg-

ular property-oriented slicing algorithm based on path slicing [27].

Besides control and data dependencies, our algorithm also exploits

property-related program information to perform slicing. The al-

gorithm can slice the branches along which no counterexample

path exists; besides, the branches along which each counterexample

path has an equivalent previously explored path can also be sliced.

The verification framework combines regular property-oriented

path slicing and the property-oriented guiding technique [49] in a

synergistic manner, in which the combined techniques complement

and also boost each other.

We have implemented SRV for Java utilizing a regular property

guided symbolic execution engine [47] and a dynamic slicing tool

Javaslicer [15]. SRV has been extensively evaluated on 15 real-world

open-source Java programs using regular properties involving both

single or multiple objects. The evaluation results demonstrate SRV’s

effectiveness and efficiency for regular property verification.

This paper makes the following main contributions:

• A property-oriented path slicing algorithm that can prune paths

for verification w.r.t. regular properties. The explored paths us-

ing our slicing algorithm is two orders of magnitude less than

that using path slicing [27][16].

• A method that enhances regular property guided DSE [49] for

supporting multi-object regular properties.

• A DSE-based framework that integrates slicing and guiding for

practical regular property verification.

• A prototype implementation for Java that significantly outper-

forms the state-of-the-art: (1) successfully verified 30 out of 39

verification tasks on a total of 259K lines of code within 1 hour,

while pure DSE, guiding, and path slicing verified 22/22/23 tasks,

respectively; and (2) on the 30 successfully verified tasks, of-

fered more than 8.4X/8.6X/7X average speedups over pure DSE,

guiding, and path slicing, respectively.

The rest of this paper is organized as follows. Section 2 motivates

and illustrates symbolic regular verification (SRV) via a concrete

example, and Section 3 presents the details of SRV. Section 4 explains

our implementation and empirical evaluation of SRV. Finally, we

survey related work (Section 5) and conclude (Section 6).

2 ILLUSTRATING EXAMPLE
This section uses an example to motivate and illustrate our sym-

bolic regular property verification technique. Figure 1 shows a Java

program snippet that uses an Iterator to access an ArrayList.
The input parameters are an ArrayList arr and an integer variable
m. First, we increase m by 1 if m is greater than 10. Then, we obtain

arr’s iterator, and assign it to iter. The following for loop (Lines

6-9) finds the maximum value of the first half of arr, and stores it

in max. Next, max will be removed from arr if its value equals 100.
The following while loop (Lines 12-16) iterates arr by using the

iterator iter. During the iteration, we update the value of max to
the value of an element if the element is bigger than max. Finally,
the addition of m and max is returned.

1 public int test(ArrayList<Integer> arr, int m){
2 if(m > 10) //{q0}
3 m++; //{q0}
4 int max=0; //{q0}
5 Iterator iter=arr.iterator(); //{q1 ∼ q4}
6 for(int i = 0; i < arr.size()/2; i++){ //{q1 ∼ q4}
7 if(arr.get(i).intValue() > max) //{q1 ∼ q4}
8 max = arr.get(i).intValue(); //{q1 ∼ q4}
9 }//{q1 ∼ q4}
10 if(max == 100) //{q1 ∼ q4}
11 arr.remove(max); //{q3, q4}
12 while(iter.hasNext()){ //{q1, q3, q4}
13 int temp = iter.next(); //{q3, q4}
14 if(temp > max) //{q3, q4}
15 max = temp; //{q3, q4}
16 } //{q4}
17 return m+max; //{q4}
18 }

Figure 1: An example program.

For the motivation program, we are interested in the correct

usage of a collection’s Iterator, i.e., the collection cannot be mod-

ified while being iterated and the iterator should invoke method

hasNext before next. Note that such a safety property involves

two objects.The property can be specified as a regular property

φ, and FSM¬φ is shown in Figure 2, where a and i represent an
ArrayList object and the corresponding iterator object, respec-

tively. For brevity, we use a.update to represent adding an element

to a or removing an element from a. Event a.iterator denotes the
accessing of a’s iterator. We use i.hasNext and i.next to represent

invoking the method hasNext and next, respectively. Obviously,
when the first half of ArrayList has an element that equals 100, a

violation of φ occurs, i.e., the ArrayList removes an element while

being iterated. In this paper, we assume that every event is atomic,

i.e., no other events may be generated during its execution.

q0start q1 q2

q3q4

a.iterator

a.update
i.hasNext

a.updatei.next

i.hasNext

a.update

i.next

i.hasNext |a.update

i.next

i.hasNext |i.next |a.update

Figure 2: The FSM of iterator bug involving multi-objects.

When using pure DSE to verify the program w.r.t. φ, it requires
many iterations to unfold the two loops. In addition, the branch at

Line 2 doubles the huge path space. Symbolic regular verification

(SRV) aims to finish the path exploration and find counterexample

paths as soon as possible. For the example program and the property

φ, SRV (1) needs only two iterations to finish the path exploration

and (2) finds the first counterexample path in the second iteration.
SRV procedure consists of two stages. At the first stage, the

program is statically analyzed w.r.t. FSM¬φ through a backward
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data flow analysis to calculate the future behavior information,

called Postset, of every program location. A Postset of a location

loc contains some states of FSM¬φ , and each state q indicates

that there may exist a subsequent path p after loc and Seq(p)
can drive FSM¬φ from q to an accepted state. The comment of

each line in Figure 1 shows the Postset of the location after the
line. For brevity, we use {qj∼qk } to represent {ql | j ≤ l ≤ k}.
For example, after Line 10, there exists a subsequent path p that

Seq(p)=⟨update, hasNext, next⟩, which can drive q1 to the accepted
state. Hence, the Postset of the location after Line 10 contains q1.

At the second stage, the program will be analyzed via DSE. Dur-

ing DSE, the Postset information calculated earlier will be used to

select the paths to explore. Because DSE also runs the program

concretely, we can use the available runtime information to cal-

culate certain history information, called Preset, of a branch to be

explored. Same as Postset, the Preset of a branch b also contains

some states of FSM¬φ . A state q in Preset indicates that q can be

reached from the initial state via the path from the beginning of

the program to b. Based on the history and future information, we

can (1) prune the redundant program paths, which include irrel-

evant paths, non-counterexample paths and the equivalent paths

of previously explored paths; and (2) evaluate the possibility of a

branch for generating a counterexample path.

When a path p is explored by DSE, property-oriented path slicing
is employed on p to slice the branches w.r.t. φ. Slicing uses static

dependence analysis [27] and the history and future information to

reason about possibly accepted event sequences along a branch. If a

branch b’s intersection of the Preset and Postset is empty, it means

no counterexample path along b exists. Besides, if all the counterex-

ample paths along b have equivalent paths explored previously, it

is also no need to explore b. Under both of these conditions, b will

be pruned, which results in pruning all the paths along b. On the

other hand, we also use the intersection of the Preset and Postset to
calculate the heuristic value of b. If the size of the intersection is

larger, the possibility of having a counterexample path along b is

considered higher. Hence, b will be selected with a higher priority.

Consider the program in Figure 1 and the FSM¬φ in Figure 2. To

analyze the program via DSE, the two input parameters are made

symbolic variables. We assume that the Arraylist arr has a fixed

length and contains two elements arr [0] and arr [1]. Suppose the ini-
tial input to test is ⟨arr={1, 2}, m=3⟩. The first iteration generates

the event sequence ⟨iterator, hasNext, next, hasNext, next, hasNext ⟩, and
is not a counterexample path. Figure 3 shows the execution tree

after the first iteration, where dashed states are candidate states

to explore. The Preset and Postset of a candidate branch are above

and below the branch, respectively. For example, b3 corresponds
to the true branch of Line 10, and b3’s Preset and Postset are {q1}
and {q1,q2,q3,q4}, respectively. The pruned candidate branches

are dashed and grey, while the remaining are dotted and black.
The slicing of the first path prunes branches b1, b4, and b5, which

means the paths along these pruned branches are redundant for

verification. Branch b1 can be pruned according to path slicing [27].

The reason is that there is no events transitively data or control

depend on m, which means changing the value of m cannot generate
new event sequences. On the other hand, the reason for prun-

ing b4 and b5 is the intersection of Preset and Postset is empty,

s0

s1

s3

s5

s7

s9

s2

s4

s6

s8

s10

Pre:{q0}

Pre:{q1}

Pre:{q1}

Pre:{q1}

Pre:{q1}

Post:{q0}

Post:{q1 ∼ q4}

Post:{q1 ∼ q4}

Post:{q3, q4}

Post:{q3, q4}

m ≤ 10

arr [0] > 0

arr [0] , 100

arr [0] ≤ arr [0]

arr [1] > arr [0]

b1

b2

b3

b4

b5

Figure 3: Execution tree after the first iteration.

which implies no counterexample paths along these branches ex-

ist. Both of b2 and b3 have the same result of intersecting Preset
and Postset. In this situation, SRV will select the deeper branch,

i.e., b3, to explore. The path condition for generating the next

input is m ≤ 10 ∧ arr [0]>0 ∧ arr [0] == 100. Through solving

the new path condition, we assume that the generated input is

⟨arr = {100, 2}, m = 3⟩. The second iteration generates an accepted

event sequence ⟨iterator, update, hasNext, next⟩. Thus, the path is

a counterexample path.

s0

s1

s3

s5

s7

s9

s4

s6

Pre:{q1}

Pre:{q1}

Pre:{q1}
Post:{q1 ∼ q4}

m ≤ 10

arr [0] > 0

arr [0] , 100

arr [0] ≤ arr [0]

arr [1] > arr [0]

arr [0]==100

b2

Figure 4: Execution tree after the second iteration.

Figure 4 shows the execution tree after the second iteration. For

brevity, we omit the pruned candidate branches and states generated

in the first iteration. Note that the second path terminates in the

accepted state s6, because a runtime property violation happens.

For branch b2, with the help of our property-oriented slicing method,

we can infer that all possible event sequences along b2 accepted by

FSM¬φ are equivalent to the one explored in the second iteration,

i.e., ⟨iterator, update, hasNext, next⟩. Hence, b2 can be pruned.

In total, SRV needs two iterations to explore the full path space

and finds the counterexample path in the second iteration regardless

of arr’s size. If we use depth-first search (DFS) or breadth-first

search (BFS), the exploration will get stuck due to unfolding the

two loops, failing to quickly find the counterexample path. If we

use pure path slicing [27], only branch b1 can be pruned, and the

exploration will also get stuck due to the two loops. If we use pure

regular property guiding [49], it will find the counterexample path

during the second iteration, but no path pruning happens, hence it

fails to complete the path exploration.
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3 SRV: SYMBOLIC REGULAR VERIFICATION
This section presents the technical details of SRV. It first presents

the overall synergic verification framework, then the two combined

techniques, and finally discusses SRV.

3.1 Synergic Verification Framework
SRV’s key insight is to use slicing w.r.t. φ to prune redundant pro-

gram paths, and the guiding method in [49] to find counterexamples

earlier. More precisely, in addition to the synergy between slicing

and guiding, (1) SRV’s property-oriented slicing method can prune

additional paths through exploiting the guiding information, i.e.,
Preset and Postset , compared with path slicing [27]; and (2) SRV

enhances the guiding method [49] with the support of multi-object

regular properties. SRV aims for full verification, which means ex-

ploring the program’s whole path space to successfully verify the

program or find all inequivalent violations of the property.

Algorithm 1: DSE-based Regular Property Verification

SRV(P ,M¬φ , I0)
Data: program P , FSMM¬φ and an initial input I0

1 begin
2 worklist,X ← ∅; PC ← true; I ← I0 ;
3 Postset← ComputeFutureInfo(P ,M¬φ );
4 while true do
5 (PC, pathc,Preset) ← runAndMonitor(I ,M¬φ );
6 if accept(M¬φ , Seq(pathc)) then
7 X ← X ∪ {LSeq(pathc)};
8 Report a counterexample path;

9 Rs ← Slice(P ,pathc ,M¬φ ,Preset,Postset);
10 update(worklist, Rs, PC);
11 if worklist = ∅ ∨ Timeout then
12 exit;

13 PC ← Select(worklist,Preset,Postset);
14 I ← Solve(PC);

Algorithm 1 shows the overall framework of SRV. The input to

SRV consists of a program P , an FSM M¬φ for the negation of the

regular property φ to be verified and an initial input I0 to P . The
algorithm first computes the Postset information of P w.r.t. M¬φ
(Line 3, cf. Section 3.2) that will be used by slicing and guiding later.

It uses aworklist to store the branches to be explored andX to store

the accepted event sequences. During each iteration, the algorithm

runs P and checks the property on the fly (Line 5, cf. Section 3.3). Be-
sides the path condition PC, the current path pathc is also collected
along with DSE. At the same time, the Preset information is also

calculated for each branch along pathc w.r.t. M¬φ (cf. Section 3.3).

If pathc is a counterexample path (Line 6), we add LSeq(pathc),
i.e., the generated event sequence with program location [37] in-

formation, to X and report pathc . Once a path is terminated, the

property-oriented path slicing algorithm Slice (cf. Algorithm 2) is

invoked to prune branches along the path (Line 9). Then, update is
invoked to save new branches toworklist and prune the branches

in worklist according to the slicing result. Based on the heuristic

value of each branch (cf. Section 3.5), Select selects a branch to

generate the path condition for the next iteration (Line 13). The

inputs of the next iteration can be generated by invoking a backend

SMT solver (Line 14). The algorithm repeats this process until the

worklist becomes empty or timeout (Lines 11&12).

3.2 Statically Compute Future Information
For slicing and guiding, we calculate the Postset for each static pro-

gram location. We improve the Postset calculation method in [49] in

two dimensions: (1) extending the flow functions in IFDS to support

multi-object regular properties; and (2) enhancing the data facts

and flow functions in IFDS to record encountered event sequences

for a program location. For each location l , the Postset contains two
types of information: (1) from which states the rest program after

l can drive M¬φ to an accepted state; and (2) the generated event

sequences after l that can drive a state to an accepted state.

More precisely, we first construct the reversed FSM (denoted

by

←−−−
M¬φ ) [22] of M¬φ , which accepts the reversed ones of M¬φ ’s

accepted paths. For example, Figure 5 shows

←−−−
M¬φ of the FSM in

Figure 2, and

←−−−
M¬φ accepts ⟨i .next ,a.iterator ⟩ that is the reverse

of ⟨a.iterator , i .next⟩ accepted by the FSM in Figure 2. Observe

that one state of

←−−−
M¬φ may correspond to a set of states of M¬φ .

For example, Figure 5’s FSM has a state {q1,q3,q4}, to which there

exists a transition from state {q4}. The transition means there exists

a transition from state q1 to state q4 in the FSM in Figure 2.

{q4 }start {q1, q3, q4 } {q1 ∼ q4 }

{q3, q4 } {q0 }

i.next

a.update |i.hasNext

a.update |i.next

i.hasNext a.iterator

a.update |i.hasNext |i.next

a.iteratori.next

i.hasNext

a.u
pd
ate

Figure 5: The reversed FSM of iterator bug.

To calculate the Postset , we update the data facts during explor-

ing the program statements according to the transitions in

←−−−
M¬φ and

merge the data facts at merging points in the control flow graph.

Take the program in Figure 1 for example, and there exists a data

fact ((o1,o2), {q3,q4}) before exploring the statement at Line 11,

where o1 and o2 correspond to the ArrayList object and Iterator
object, respectively. According to the transitions in Figure 5, the

data fact becomes ((o1,o2), {q1∼q4}) after exploring o1.remove . Ac-
tually, the data fact ((o1,o2), {q3,q4}) also explores the false branch
that has no effect on the fact, because no events can be encoun-

tered in the branch. Hence, there exist two data facts at Line 10

through merging the data facts from the true and false branches,

i.e., ((o1,o2), {q1∼q4}) and ((o1,o2), {q3,q4}).
To make the Postset analysis inter-procedural, we carry out a

data flow analysis on the program’s inter-procedural control flow
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graph (ICFG) w.r.t.
←−−−
M¬φ . The data flow analysis is implemented by

employing the IFDS framework [40].

For a multi-object property φ involving k objects, a data flow

fact in IFDS is an element (Ta ,qr ,b, s) in the domain

⋃
1≤n≤k

On ×

S × B × E (denoted by D), where O is the set of the identities of

static objects, i.e., the static locations of object creations [37], S is

the state set of the reversed FSM

←−−−
M¬φ of ¬φ, B is the set of the

basic blocks in the program, and E is the set of event sequences.

For example, a data fact ((o1,o2), {q},b, s) of a program location l
means that 1) from state q the program after l can drive M¬φ to

an accepted state, 2) the event sequence s can be generated by o1
and o2 after l , and 3) s can drive M¬φ to an accepted state from q.
The relationship between an event and its corresponding object

can be obtained through checking whether the class or interface

of the event corresponds to the type of the object. For example,

there exists a data fact ((o1,o2), {q1∼q4},b, ⟨update, hasNext, next⟩)
in the Postset of Line 10 in the example program in Figure 1, where

o1 and o2 represent the identity of the ArrayList and Iterator
objects, and b is the corresponding basic block of Line 10. Obviously,
⟨update, hasNext, next⟩ can drive state q1 to the accepted state of

the FSM in Figure 2, and update is related to the ArrayList object,

while hasNext and next are related to the Iterator object.
Two different typed static objects o1 and o2 are related if their

types are specified by φ. Take the motivation program for example,

an Iterator object is related with an ArrayList object according

to the property specification in Figure 2. Without loss of generality,

we assume φ specifies two objects for brevity. There are four kinds

of flow functions in IFDS: call-to-start, exit-to-return, call-to-return
and normal functions. The normal and exit-to-return functions do

not have any influence on calculating Postset, and both of them

are identity functions. If a method invocation statement does not

produce any event, its call-to-start function is the identity function;

otherwise, it is a killall function [40] that kills all the data facts. The

call-to-return function fcr : D → D is the main one that drives the

calculation of Postset.
For a method invocation statement obj.meth(...), if the state-

ment does not produce an event, its fcr is the identity function.

Otherwise, suppose the identity set of obj isOs , the produced event

is e1 that can make the transition from q1 to q2 in
←−−−
M¬φ , and the

block of the statement is bn , then fcr is the smallest function [29]

satisfying the following conditions, where s1 ◦ s2 represents the
concatenation of sequences s1 and s2:

• For each d ∈ domain(fcr ) and d is ((o1),q1,b, s): (1) if o1 < Os
and no element in Os is related to o1, then d ∈ ranдe(fcr ); (2)
if o1 ∈ Os , then ((o1),q2,bn , ⟨e1⟩ ◦ s) ∈ ranдe(fcr ); (3) if there
exists o2 ∈ Os , and o2 is related to o1, then ((o1,o2),q2,bn , ⟨e1⟩ ◦
s) ∈ ranдe(fcr ) and also d ∈ ranдe(fcr ). On the other hand,

if d is ((o1,o2),q1,b, s) and {o1,o2} ∩ Os is not empty, then

((o1,o2),q2,bn , ⟨e1⟩ ◦ s) ∈ ranдe(fcr ). All possible cases of re-
lated objects are considered.

• If the initial state of

←−−−
M¬φ can make a transition to qe via e1, then

for each o ∈ Os , we have ((o),qe ,bn , ⟨e1⟩) ∈ ranдe(fcr ).
• If obj points to multiple static objects, i.e., |Os | > 1, then we

have domain(fcr ) ⊆ range(fcr ). We adopt weak update [1] to

achieve an over-approximation.

When calculating the fixed point in IFDS, the first three parts
(Ta ,q,b) of a data fact constitute the key that identifies the data

fact. Hence, considering the numbers of states, static objects, and

basic blocks are finite, the termination of IFDS is guaranteed. Given

a static location, there may exists multiple data facts with a same

key, and these facts have different event sequences. Each of the

sequences is a possibly produced event sequence after the location.

For example, in Figure 1, the Postset below Line 10 contains four

data facts with a same key ((o1,o2), {q1∼q4},b) but having the fol-

lowing four event sequences: ⟨U,H,N⟩, ⟨U,H,N,H⟩, ⟨U,H,N,H,N⟩,
⟨U,H,N,H,N,H⟩, where U, H and N denote update, hasNext and
next, respectively, o1 and o2 are the identities of the ArrayList and
Iterator objects, and b is the basic block of Line 10.

For the future information of a branchbr (denoted by Postset(br ))
whose location is l , its soundness means that the Postset of l includes
the data facts of all the possible cases that can reach an accepted

state after executing the remaining program after l . The following
theorem gives a sufficient condition that makes Postset sound.

Theorem 3.1. Given a program P and a regular property φ, if φ
is only parametric with objects, and the related objects of φ when
running P are not data-dependent on the inputs, Postset is sound.

Proof. Postset is computed by IFDS framework, and the flow

functions result in an over-approximation when the event informa-

tion is computed soundly. If there are some events of the property

in which the requirements of values exist, e.g., the return value of a

method invocation must be true, it is beyond the capability of our

static data flow analysis. Because the property φ is only parametric

with objects, and we use pointer-to analysis to get the information

of static objects, the event information computed by our static anal-

ysis is static object sensitive. Furthermore, the related objects of φ
when running P do not depend on the inputs. Hence, we can obtain

sound results of computing events, and thus Postset is sound. □

3.3 Compute History Information
Different from Postset, Preset is calculated dynamically. The Preset
of a location contains the states that are reached via the execution

from the program entry to the location. Similar to the guiding

method [49], we adopt runtime verification [31] to calculate the

Preset information. Note that we enhance the calculation method

to support multi-object properties.

A runtime object is a sensitive object if the corresponding class
or interface is specified by the property φ, e.g., the sensitive objects
of the property given by Figure 2 include the ArrayList object and
the Iterator object. We create a monitor to monitor the method

invocations of every sensitive object, and record the current state

of each monitored object. Note that for a multi-object property,

the monitors of related objects will be merged according to the

property specification. Preset is a set of monitors. Formally, we use

(Is ,q) to represent a monitor, where Is is a set of object identities,
and q is a state of the FSM M¬φ . If any object’s method invocation

results in an event of M¬φ , the monitor performs a state transition

w.r.t. M¬φ to compute Preset, which we formalize as

(Is ,q1)
o .e1
−−−→ (Is ,q2) (1)

where o ∈ Is , and state q1 ∈ M¬φ is transited to state q2 by event e1
generated by the method invocation on the object identified by o.
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For a multi-object property, a monitor’s sensitive objects are not

created simultaneously. Suppose sensitive object o produces event
e1, if o is related to the objects in Is w.r.t. the property φ and o < Is ,
following rule is used, where e1 makes a transition from q1 to q2:

(Is ,q1)
o .e1
−−−→ (Is ∪ {o},q2) (2)

Take the second iteration of the motivation program (cf. Figure 4)
for example, and suppose o1 and o2 represent the identities of the
ArrayList and Iterator objects, respectively. Obviously, the en-
countered event sequence at Line 11 is ⟨o1.iterator, o1.remove⟩. As
a result, according to the FSM in Figure 2, the Preset of location
line 11 is ((o1,o2),q3).

For a given branch br , the soundness of history information

means that Preset contains all the reached states from the initial

state via the path from the beginning of the program to branch b.

Theorem 3.2. Given a program P and a regular property φ, if the
sensitive objects of P are not data-dependent on the inputs, Preset is
sound.

Proof. Recall that we compute the history information along

with DSE, and Preset is calculated as the reached state set of the

other branch of br , denoted by ¬br , executed in the current path.

Suppose the corresponding event sequence to¬br is ⟨⟩ or ⟨e0, . . ., ei ⟩,
where i ≥ 0. Because the sensitive objects do not depend on the

inputs, the event sequence of br is the same as that of ¬br . Hence,
Preset of br contains the same reached states of ¬br , which implies

the soundness of Preset. □

A static object is identified by its creation location. We relate a

runtime object with a static object by their creation locations. Given

the Preset and Postset of a branch br , there intersection, denoted by

Preset(br )⊓Postset(br ), is defined as follows, where St (Is ) represents
the set of the creation locations of the objects identified by Is , S(Ta )
denotes the set of all elements in tuple Ta , andM(X1,X2) denotes

X1 ⊆ X2 ∨ X2 ⊆ X1.

{q |∃(Is , q)∈Preset, (Ta, qr , b, s)∈Postset•M (St (Is ), S (Ta ))∧q∈qr } (3)

Take the candidate branch b3 in the first iteration of the motiva-

tion program (cf. Figure 3) for example. There exists a data fact, i.e.,
((o1,o2), {q1∼q4},b, ⟨U,H,N⟩), in the Postset below Line 10, where

o1 and o2 correspond to the identities of the static ArrayList and
Iterator objects, respectively. The computed Preset at Line 10 is
((o′

1
,o′

2
),q1), where o

′
1
and o′

2
represent the ArrayList object and

Iterator object, respectively. Clearly, the set of the creation loca-

tions of o′
1
and o′

2
is equal to (o1,o2). Besides, since q1 ∈ {q1∼q4},

we have q1 in the intersection of Preset and Postset.

3.4 Regular Property-Oriented Path Slicing
We now describe the algorithm for regular property-oriented path

slicing, which is based on path slicing [27]. Specifically, our slicing

algorithm enhances path slicing through exploiting the guiding

information, i.e., Preset and Postset, to prune additional branches.

Before elaborating the slicing algorithm, we first give the defini-

tion of the equivalence relation of event sequences. An FSMM is a

triple (Σ,Q,q0,δ , F ), where Σ is the event alphabet, Q is the state

set, q0 is the initial state, δ : Q × Σ→ Q is the transition function,

and F is the set of accepted states. An event sequence s = ⟨e1, ..., en⟩
(n ≥ 1) is accepted by M if for each ei , where 1 ≤ i ≤ n , there

exists qi ∈ Q such that (qi−1, ei ,qi ) ∈ δ , and qn ∈ F . We use R(s)

to denote the event sequence after removing any event ek in s that
makes a self-circled transition, i.e., (qk−1, ek ,qk ) ∈ δ and qk−1 is
equal to qk .

Definition 3.1. Given an FSMM and two accepted event sequence

s1 and s2 of M , s1 and s2 are equivalent (denoted by s1 ≡M s2) iff
R(s1) = R(s2).

For example, the sequences ⟨iterator, update, hasNext, next⟩ and
⟨iterator, update, hasNext, next, hasNext⟩ are equivalent w.r.t. the
FSM in Figure 2.

Algorithm 2: Regular Property-Oriented Path Slicing

Slice(P ,pathc ,M¬φ ,Preset,Postset)
Data: program P , a path pathc , and FSM M¬φ

1 begin
2 i← tail(L(pathc)); S ← ∅;
3 while i , null do
4 if i is a branch instruction then
5 if Preset(¬i) ⊓ Postset(¬i) , ∅ then
6 T←Concatenate(¬i);
7 if ∃s1 ∈ T ,∀s2 ∈ X • ¬(s2 ≡ML

¬φ
s1) then

8 if any e ∈ Seq(pathc ) depends on i
∨ ¬i can reach any new event

9 then
10 S ← S ∪ {i};

11 else
12 if any e ∈ Seq(pathc ) depends on i then
13 S ← S ∪ {i};

14 i← before(i);

15 return S;

Algorithm 2 gives our regular property-oriented path slicing.

The input to the algorithm consists of the program P under verifi-

cation, the current path pathc , and the FSM M¬φ corresponding to

the negation of the regular property to be verified. The algorithm

processes the instructions in pathc in a backward manner, where

L(pathc) denotes the instruction list of pathc . Finally, all the re-

maining instructions are stored in S and returned. The branches

not in S are pruned.

For a branch instruction i in L(pathc), we use ¬i to represent i’s
branch not explored in pathc . To decide whether i can be pruned,

we exploit Preset and Postset in two ways. First, considering that

both Preset(¬i) and Postset(¬i) are sound, the emptiness of their in-

tersection implies that there exists no path along ¬i that can violate

the property. Hence, we can slice branch i if Preset(¬i)⊓Postset(¬i)
is empty (Lines 5). Second, we also prune branch i if all possi-
ble accepted event sequences of ¬i have an equivalent accepted

event sequence explored before (Lines 6&7). The Concatenate op-
eration concatenates the event sequence before ¬i (recorded during
running) and the possible event sequences after ¬i (calculated in

Postset), and produces an accepted event sequence set T . If every
sequence in T has an equivalent sequence in X (cf. Algorithm 1),

whichmeans that all the possible accepted event sequences along¬i
have been explored in an equivalent manner, i can be sliced. We also

use the criteria in path slicing [27] to further slice the instructions



Symbolic Verification of Regular Properties ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden

that cannot alter the event sequence of the current path pathc , i.e., a
branch instruction i can be sliced if there is no event in Seq(pathc )
transitively data- or control- depends on it and no new event can

be reached along the direction of ¬i (Lines 8-10), similar rules also

apply to the remaining types of instructions (Lines 12&13).

Path slicing [27] also slices a program execution path in a back-

ward manner. More precisely, it keeps track of a set of variables

(called live set) that determines the feasibility of the suffix of the

path’s event sequence and the latest remained instruction (called

step location). A branch instruction i will be remained if one of

the following three conditions is satisfied. (1) ¬i can bypass the

step location; and (2) there exists a path in the direction of ¬i that
can modify the sensitive variables in live set; and (3) there exists

a path in the direction of ¬i that can reach a new event. Actually,

the first two conditions correspond to transitive data and control

dependence, respectively. On the other hand, a normal instruction

will be remained if it can modify the variables in live set.
Concatenation. The insight of concatenation is to infer the pos-

sible accepted event sequences of a branch br based on Preset(br)
and Postset(br). For an element (Ta ,qr ,b, s) in Postset(br), we use
Aes(br, q) to represent the set of statically calculated event se-

quences that can drive q to an accepted state, which can be derived

from Postset as follows, where Dc is the set of calculated data facts

during data flow analysis and Dc ⊆ D .

Aes(br ,q) = {si | (Ta ,qr ,b, si ) ∈ Dc ∧ q ∈ qr } (4)

Then, we define Concatenate(br ) as the following set

{s1 ◦ s2 | ∃ q ∈ Preset(br ) ⊓ Postset(br ) • s2 ∈ Aes(br, q)} (5)

where s1 is the event sequence before br . A natural way to obtain

the accepted event sequences along br is to concatenate the event

sequence produced before br and the event sequences in Aes(br, q).
In principle, to ensure the soundness of slicing, both s1 and

Aes(br, q) need to be context and flow sensitive [37]. In practice,

Aes(br, q) is flow-sensitive, but not context-sensitive. We check

the equivalence relation w.r.t. a location sensitive variant of M¬φ ,
denoted by ML

¬φ . The intuition is that the reasons of the bugs

caused by the same statement under different contexts tend to be

the same.ML
¬φ can be computed according to the program P in two

steps. First, we collect all possible static locations for every event

by an inter-procedural control flow analysis. Second, we replace

every transition with the transitions of location sensitive events.

In the illustration example, after the second iteration (cf. Figure 4),
the accepted sequence ⟨iterator5, update11, hasNext12, next13 ⟩ is added
to X.ML

¬φ is the FSM after replace the event of each transition in

Figure 2 by the event with location information. Then, according to

the Preset and Postset of b2, Preset(b2) ⊓ Postset(b2) only contains

q1. Based on the example in Section 3.2, Aes(b2,q1) has four event
sequences. Besides, the sequence before b2 is ⟨iterator5⟩. Hence,
Concatenate(b2) contains four accepted event sequences, each of

which is equivalent to ⟨iterator5, update11, hasNext12, next13⟩ w.r.t.
ML
¬φ . Therefore, b2 is pruned.

3.5 Branch Selection
For a regular property φ, only the relevant paths with specific

event sequences can violate φ. It is desirable to evaluate a branch’s

probability of generating the accepted paths w.r.t. M¬φ . Then, after

slicing, the branch with a higher probability will be selected first,

in order to find counter-example paths earlier. Same as the regular

property guided DSE [49], we use the size of Preset ⊓ Postset as the
main heuristic value for evaluating a branch. When two branches

have the same size of Preset⊓Postset, the deeper one will be selected
for efficient exploration.

3.6 Discussions
In principle, slicing and guiding are the orthogonal techniques that

are synergistically combined in SRV. Slicing prunes irrelevant and

equivalent relevant paths during DSE, while guiding boosts finding

counterexample paths. Both are important for boosting verification.

Since slicing is used when a path is completed, the effectiveness of

slicing is related to how fast completed paths are generated. For

example, if there exist very short paths in a program, BFS may be a

good choice. On the other hand, guiding is insensitive to the search

strategy. Without any knowledge of the shape of the path space,

we integrate these two techniques with the DFS strategy.

In addition to their compatibility, slicing can boost the efficiency

of property guiding. Finding accepted paths may be hindered by

exploring relevant paths due to the imprecision of the guiding

method. With the help of slicing, after one path is explored, the

equivalent ones of the path can be pruned. Therefore, compared

with pure guiding, SRV tends to find counterexamples faster.

Since slicing performs static analysis, its overhead may be high,

e.g., when the path is long and the control flow graph is complex. To

improve the performance, we perform slicing selectively based on

the history results of slicing. The intuition is the locality of program

paths, i.e., if a branch cannot be pruned, it tends not to be pruned

either along the nearby paths. If the branch of any constraint in

the current path is pruned at last time or first encountered, slicing

would be carried out. With the help of such a lightweight dynamic

prediction, we can reduce the effort of slicing, achieving a good

balance between path pruning and slicing overhead.

Theorems 3.1&3.2 give sufficient conditions for the soundness

of Preset and Postset , respectively. Even though, there still exist a

large number of properties and programs satisfying such conditions,

e.g., the ones used in our experiment. However, considering our

approach for computing the event sequences in Postset is not con-
text sensitive, SRV is not sound, i.e., SRV may miss bugs resulting

from different contexts but having same static location. We believe

SRV is practical, because the root causes for the bugs of the same

statement under different contexts tend to be the same.

4 IMPLEMENTATION AND EVALUATION
We have realized a prototype of SRV based on a regular property

guided DSE tool [47], which is implemented on the DSE engine

JPF-JDart [26] and WALA [24] static analysis platform. We have

developed a property-oriented path slicer for Java bytecode based

on Javaslicer [15], i.e., a dynamic slicing [45] tool.

We evaluate SRV along two dimensions:

• Effectiveness and efficiency of SRV. Can SRV effectively ver-

ify regular properties for real-world Java programs? How effi-

cient is SRV compared with DFS, pure guiding and pure slicing?

• Synergy between slicing and guiding. Can slicing boost guid-
ing in finding counterexample paths? How significant is the

improvement?



ICSE ’18, May 27-June 3, 2018, Gothenburg, Sweden Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong

4.1 Evaluation Setup
Table 1 lists the programs in our evaluation, which are all real-

world open-source Java programs, totaling 259K lines of code (LOC).

Rhino-a and soot-c come from the Ashes benchmark
1
suite. Jlex

is a Java lexical analyzer. Bloat is from the DaCapo benchmark

suite [6]. BMPDecoder is a decoder for BMP files. Ftpclient is

an FTP client. The six programs, pobs, jpat, jericho, nano-xml,
htmlparser and xml, are parser programs. The remaining, i.e.,
fastjason, jep and udl, are library programs.

Table 1: Programs in the experiments

Program LOC Brief Description
rohino-a 19799 Javascript interpreter

soot-c 32358 Static analysis editor

jlex 4400 Lexical analyzer

bloat 45357 Java bytecode optimization

bmpdecoder 531 BMP file decoder

ftpclient 2436 FTP client in Java

pobs 5488 Java parser objects

jpat 3254 Java string parser

jericho 25657 Jericho HTML Parser

nano-xml 3317 Non-validating XML parser

htmlparser 21830 HTML parser in Java

xml 5138 XML parser in Java

fastjson 20223 JSON library from alibaba

jep 42868 Mathematics library

udl 26896 UDL language library

Total 259642 15 open source programs

As Table 2 shows, we applied SRV to verify widely-used regular

properties, including both single- and multi-object ones. Properties

with superscript ∗ are multi-object ones; the remaining are single

object properties. In addition, we also verify some user-defined

properties. For example, the property we defined for htmlparser
requires that the input string is in the JSP format, i.e., “ <% . . .%> ”.

Table 2: Regular properties in the experiments

Property Meaning
Enumeration Call hasMoreElements before nextElement

Iterator
Call hasNext before next

Do not update the collection while iterating
∗

Reader
Do not read a closed stream

No read if dependent input stream closed
∗

Writer
Do not write a closed stream

No write if dependent output stream closed
∗

Socket Do not use a closed socket

Since most of the programs are violation free, to further evaluate

our method, we mutate [28] the programs. First, we collect all the

branch statements along DSE, then we randomly select a branch to

automatically inject an event, e.g., a close operation for the Reader
property. We generate three mutants for each program, except for

those with user-defined properties. Note that such injections may

not necessarily lead to real violations.

An evaluation task comprises a program and a property. A task

was run in four modes: DFS (D), pure guiding (G), pure path slicing

(S) and SRV (S
′

). Under each mode, the time limit is 1 hour. All the

experiments are carried out on the identical servers, each of which

has 256GB RAM and four 2.13GHz XEON CPUs with 32 cores.

1
http://www.sable.mcgill.ca/ashes/

4.2 Evaluation Results
Table 3 lists evaluation results. The first column gives the verifica-

tion tasks, including the names of the programs and the verified

properties, where a multi-object property has a superscript ∗. The

second column Type indicates whether an analyzed program has

been mutated or not, with O represents the original program, and

bugi the ith mutant. The column Total Time(s) lists time consumed

for each verification task in four modes, where to represents time-

out. In our evaluation, completing a verification means having

explored all the path space. The time for finding the first counterex-

ample is shown in the column First Violation Time(s), where no
means no counterexample path and na represents unknown due to

timeout.

Table 3 shows that SRV completes 30 tasks in 39, while DFS

(D), pure guiding (G) and pure slicing (S) complete 22, 22 and 23

tasks, respectively. Compared with these alternatives, SRV achieves

36%, 36% and 30% improvement, respectively. For the successfully

verified 30 tasks, SRV at least has an average 8.4X, 8.6X, and 7X

speedups over DFS, pure guiding and pure slicing, respectively.
2
We

inspected the programs that SRV fails to verify, i.e., jlex, rhino-a,
htmlparser and udl, and found that those programs have complex

and sensitive control flow. Most paths of those programs are rele-

vant, and only a few paths are counterexample paths. As a result,

the overhead of static analysis used in slicing and guiding becomes

very high, and only a small part of path space can be pruned.
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Figure 6: Completed tasks under a time threshold.

Figure 6 shows the relationship between the number of com-

pleted verification tasks and the time threshold. The X -axis varies

the time threshold from five minutes to one hour, while the Y -axis
is the number of completed verification tasks. SRV can complete

the most tasks under a given time threshold. In addition, all the

completed 30 tasks by SRV are completed within 5 minutes, demon-

strating SRV’s efficiency.

To show the effectiveness of property guiding, we also collect

the time for finding the first counterexample path. For the tasks in

which violations exist, pure guiding is the most efficient to find the

first violation. Due to the overhead of slicing, SRV is slower than

pure guiding in most tasks, but has the same order of magnitude

in time. Both SRV and pure guiding achieve orders of magnitude

2
A timeout is counted as 1 hour.
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Table 3: Experiment results of analysis time (D: DFS, G: pure guiding, S: pure path slicing, S
′

: SRV)
Program
(Property) Type Total Time(s) First Violation Time(s)

D G S S
′

D G S S
′

soot-c

(Writer)

O 28.43 374.23 95.14 398.98 NO NO NO NO

bug1 28.59 354.26 101.32 413.83 18.41 343.72 85.01 413.71

bug2 27.61 358.01 97.06 389.1 19.39 346.6 81.62 389.09

bug3 26.71 369.87 104.37 469.51 15.12 358.99 83.77 469.39

soot-c

(Writer
∗
)

O 27.2 177.91 91.86 214.85 NO NO NO NO

bug4 29.82 187.74 97.91 219.26 NO NO NO NO

bug5 27.9 187.41 98.15 218.9 15.71 176.27 79.4 216.47

bug6 29.2 174.32 103 206.73 NO NO NO NO

bloat (Iterator) O 24.49 48.1 57.56 66.97 10.13 36.02 35.2 50.14

bloat

(Iterator
∗
)

O 27.1 71.75 54.23 90.54 NO NO NO NO

bug1 29.2 71.81 102.07 128.85 NO NO NO NO

bug2 25.85 70.02 60.74 92.19 25.85 70.02 42.86 92.19

bug3 26.63 72.05 64.57 96.88 26.63 70.95 40.11 78.92

bmpdecoder

(Reader)

O 8.65 16.97 21.71 16.71 NO NO NO NO

bug1 9.18 17.45 19.79 22.04 NO NO NO NO

bug2 9.15 17.92 21.01 18 7.93 12.54 20.48 17.96

bug3 9.26 17.88 20.97 23.26 NO NO NO NO

ftpclient

(Socket)

O 12.44 37.08 37.83 49.78 NO NO NO NO

bug1 14.12 41.48 42.12 55.1 9.19 36.44 38.89 54.55

bug2 13.57 37.66 37.47 50.55 11.73 33.96 37.2 50.55

bug3 15.52 40.45 40.29 53.39 NO NO NO NO

jlex

(Reader)

O TO TO TO 29.48 NA NA NA NO

bug1 TO TO TO TO 12.75 23.35 400.71 63.97

bug2 TO TO TO TO NA 14.58 NA 27.04

bug3 TO TO TO TO NA NA NA NA

jlex

(Reader
∗
)

O TO TO TO 29.81 NA NA NA NO

bug4 TO TO TO TO NA 20.07 NA 52.24

bug5 TO TO TO TO 217.56 38.18 NA 109.39

bug6 TO TO TO TO 51.33 146.88 NA NA

rhino-a (Enumeration) O TO TO TO TO NA NA NA NA

jpat (UserDefined) O TO TO TO 46.94 NA 23.36 NA 43.99

nano-xml (UserDefined) O TO TO TO 19.18 NA 14.02 NA 19.16

pobs (UserDefined) O TO TO 21.44 26.31 NA 14.96 20.79 23.07

jericho (UserDefined) O TO TO 53.7 27.66 NA 19.6 53.33 27.66

fastjason (UserDefined) O TO TO TO 102.6 NA NA NA 102.52

jep (UserDefined) O 2590.38 1090.05 TO 167.87 1439.06 29.72 NA 167.84

htmlparser (UserDefined) O TO TO TO TO 27.62 50.95 NA 106.03

udl (UserDefined) O TO TO TO TO NA 2829.57 NA NA

xmlparser (UserDefined) O TO TO TO 24.89 NA 18.25 NA 24.89

speedups over DFS and pure path slicing in finding the first coun-

terexamples. When a violation is very deep and there possibly exist

a large number of relevant paths, it cannot be detected without

slicing. For example, for fastjason, pure guiding fails to detect

a violation within one hour, while SRV needs only 102.6 seconds.

Within one hour, guiding and SRV can find a counterexample for

23 and 22 programs respectively, while DFS and pure path slicing

can only find 15 and 13, indicating the effectiveness and efficiency

of guiding.

Pruning branches with positive heuristic values can boost finding

counterexamples. For the 24 tasks with counterexamples found,

slicing can boost guiding by reducing the number of iterations

for finding the first counterexample in 7 (29%) tasks. Notably, for

fastjason, SRV needs only 5 iterations, but all the other modes

fail to detect a violation after thousands of iterations. To inspect the

boosting of slicing to guiding further, we collect the information of

the pruned branches with positive heuristic values.

Figure 7 shows the improvement by synthesizing the results of

all the tasks, where the X -axis is the path order for the first 2000

paths, and the Y -axis is the number of the pruned branches with a

positive heuristic value for guiding. As shown in the figure, much

of the boosting happens during the early stage, i.e., in the first 1500

paths, which indicates the necessity of selective slicing.

In addition, we collect the information about iterations, and the

results show that SRV uses the fewest iterations to complete path

exploration. Specifically, the iterations using our slicing algorithm

is two orders of magnitude less than that using path slicing [27].

Furthermore, we adjust the time threshold to 24 hours for the failed

tasks, and found that all the tasks were still failed to be verified,

except that program jep can be verified in pure slicing mode.
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Figure 7: Branch pruning of each path.

Threats to Validity. Threats to the validity of our results are

mainly external. The programs are representative because (1) the

programs are of various types, such as parser and network ma-

nipulation; (2) the programs are of different sizes, i.e., from 0.5K

to 45K LOC, and 259K in total; and (3) they are commonly used

for evaluating Java program analyses [7, 21, 49]. Furthermore, the

verified regular properties are mainly common contracts [18] of

Java programs. User-defined properties have practical meanings

w.r.t. functionalities. Although SRV is implemented and evaluated

for Java, it is general and can be applied to programs in other lan-

guages, such as C and C++. Finally, we set the time threshold to be

1 hour, which is fairly enough for a verification task. Increasing the

time threshold to 24 hours only results in one more completed task.

5 RELATEDWORK
The closest related work to SRV is regular property guided DSE [49]

and Woodpecker [16]. Different from the objective of [49], i.e.,
finding an accepted path as soon as possible, SRV aims to quickly

complete the path exploration of the program by employing slic-

ing to prune redundant paths, and the slicing can also reduce

the iterations for finding counterexample paths. Compared with

Woodpecker [16], which uses path slicing [27] to prune redun-

dant paths for verifying system rules via symbolic execution, as

demonstrated by the evaluation results (cf. Section 4.2), SRV is more

scalable because it can prune more paths and find violations faster.

Meta Compilation (MC) [19, 20] is a scalable static approach

to detecting violations of properties specified by a state machine

language. MC is neither sound nor complete. ESP [17] is a path-

sensitive static verifier for regular properties. ESP achieves strong

scalability by merging symbolic states. However, ESP may produce

false alarms due to imprecise modeling of program statements.

In [21], a staged static typestate property [43] verification frame-

work is proposed based on a parametric abstract domain. The false

alarms can be eliminated gradually by the staged analysis. Clara [7]

employs forward and backward data flow analysis to remove in-

strumentations for runtime monitoring of typestate properties. Our

guiding method makes the backward analysis of Clara to be inter-

procedural for calculating Postset. Comparedwith static approaches,

SRV enjoys completeness by trading scalability because it executes

the program under verification.

Dynamic methods are mainly from runtime verification [31].

The basic procedure is to generate a monitor for verification from a

property, and the monitor is usually implemented via instrumenta-

tions to the program. The verification takes place at runtime based

on the information collected by instrumentations. Hence, dynamic

approaches verify a single program path. JavaMOP [12] and Trace-

matches [2] are representative tools for runtime verification of Java

programs. The calculation of Preset uses the idea of monitoring

in runtime verification, and the monitoring is implemented at the

virtual machine level. Compared with dynamic approaches, SRV em-

ploys DSE to explore the path space of the program systematically,

which improves code coverage and finds more bugs.

Software model checking has also been used for regular prop-

erty verification. SLAM [4] uses predicate abstraction [5] to obtain

an abstract model of a program. Then, at the model level, SLAM

uses model checking to verify regular properties. When a coun-

terexample is found by model checking, it is reported when it is

a real violation; otherwise, the counterexample is used to refine

the abstract model. YOGI [38] improves SLAM by integrating DSE

to speed up model refinement and finding real counterexamples.

Compared with these approaches, SRV is lightweight and scalable

because it adopts efficient static analysis to boost verification.

Furthermore, guiding and pruning are commonly investigated

for improving the scalability of symbolic execution. For guiding

symbolic execution, different methods are proposed w.r.t. different
goals, including improving code coverage [9, 10, 32, 42, 44, 46],

reaching a program location [3, 11, 34, 48], targeting the differences

between two program versions [35, 39], aiming at the unverified

path space [13], and generating a path satisfying a regular prop-

erty [49]. On the other hand, pruning path space is also an effective

method to mitigate path explosion. Same as guiding, the existing

work on pruning also differs in their perspectives to decide redun-

dance, such as read-write information [8], assertion violation [25],

and rule violation [16]. SRV extends the existing work by the syn-

ergy of guiding and pruning for verifying regular properties.

6 CONCLUSION
This paper presents symbolic regular verification, a practical DSE-

based technique for verifying regular properties. To improve scala-

bility, we introduce a synergistic combination of property-oriented

path slicing and guiding. SRV’s property-oriented path slicing

prunes redundant paths, while guiding helps finding counterexam-

ples quickly. The two combined techniques not only complement,

but also strengthen each other. We have developed a prototype of

SRV for Java and evaluated it on real-world programs w.r.t. widely-
used regular properties. Our extensive evaluation demonstrates that

SRV is effective and efficient, and outperforms the state-of-the-art

significantly for regular property verification. Interesting future

work includes (1) techniques to further reduce slicing overhead and

(2) further improvements to our tool’s usability and feasibility for

releasing to and benefiting the community.
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