
Synthesize Solving Strategy for Symbolic Execution
Zhenbang Chen∗

College of Computer, National
University of Defense Technology

Changsha, China
zbchen@nudt.edu.cn

Zehua Chen
College of Computer, National

University of Defense Technology
Changsha, China

zehuachen2020@163.com

Ziqi Shuai
College of Computer, State Key
Laboratory of High Performance
Computing, National University of

Defense Technology
Changsha, China
szq@nudt.edu.cn

Guofeng Zhang
College of Computer, National

University of Defense Technology
Changsha, China

zhangguofeng16@nudt.edu.cn

Weiyu Pan
College of Computer, National

University of Defense Technology
Changsha, China

panweiyu@nudt.edu.cn

Yufeng Zhang
College of Computer Science and
Electronic Engineering, Hunan

University
Changsha, China

yufengzhang@nudt.edu.cn

Ji Wang
College of Computer, State Key
Laboratory of High Performance
Computing, National University of

Defense Technology
Changsha, China
wj@nudt.edu.cn

ABSTRACT
Symbolic execution is powered by constraint solving. The advance-
ment of constraint solving boosts the development and the appli-
cations of symbolic execution. Modern SMT solvers provide the
mechanism of solving strategy that allows the users to control
the solving procedure, which significantly improves the solver’s
generalization ability. We observe that the symbolic executions of
different programs are actually different constraint solving prob-
lems. Therefore, we propose to synthesize a solving strategy for a
program to fit the program’s symbolic execution best. To achieve
this, we divide symbolic execution into two stages. The SMT formu-
las solved in the first stage are used to online synthesize a solving
strategy, which is then employed during the constraint solving
in the second stage. We propose novel synthesis algorithms that
combine offline trained deep learning models and online tuning to
synthesize the solving strategy. The algorithms balance the syn-
thesis overhead and the improvement achieved by the synthesized
solving strategy.

∗Zhenbang Chen and Ji Wang are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’21, July 11–17, 2021, Virtual, Denmark
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464815

We have implemented our method on the state-of-the-art sym-
bolic execution engine KLEE for C programs. The results of the ex-
tensive experiments indicate that our method effectively improves
the efficiency of symbolic execution. On average, our method in-
creases the numbers of queries and paths by 58.76% and 66.11%,
respectively. Besides, we applied our method to a Java Pathfinder-
based concolic execution engine to validate the generalization abil-
ity. The results indicate that our method has a good generalization
ability and increases the numbers of queries and paths by 100.24%
and 102.6% for the benchmark Java programs, respectively.

CCS CONCEPTS
• Software and its engineering→ Software verification and
validation.

KEYWORDS
Symbolic Execution, SMT Solving Strategy, Synthesis

ACM Reference Format:
Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan,
Yufeng Zhang, Ji Wang. 2021. Synthesize Solving Strategy for Symbolic Exe-
cution. In Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA ’21), July 11–17, 2021, Virtual, Denmark.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3460319.3464815

1 INTRODUCTION
Symbolic execution [2, 16] provides a general method for systemat-
ically exploring a program’s path space. Recently, symbolic execu-
tion has been applied in many challenging problems in software

https://doi.org/10.1145/3460319.3464815
https://doi.org/10.1145/3460319.3464815

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

engineering and security, e.g., automatic software testing [5], vul-
nerability detection [1], and program repair [19]. Many successful
stories [5, 12, 29] are resulted from these applications. However,
the success of symbolic execution’s applications is still challenged
by the scalability problem caused by path explosion and constraint
solving [2].

Symbolic execution analyzes a program P by executing P in a
symbolic manner. P’s inputs are symbolized (maybe partially) and
assigned with symbolic values at the beginning. Symbolic execution
maintains a constraint (denoted as PC) for each symbolic path p. If
an input I satisfies PC , executing P under I results in path p. In the
beginning, the PC is true . Then, when a non-branch statement S
in P is executed, the symbolic computation corresponding to the
symbolic values of the variables in S is carried out. When execut-
ing a branch statement Sb with condition b, symbolic execution
calculates b’s symbolic condition Cb and checks the feasibility of
Sb ’s true and false branches with respect to the current PC . This
feasibility checking invokes a constraint solver [17]. If PC ∧Cb is
satisfiable [17], the true branch is feasible; if PC ∧ ¬Cb is satisfi-
able, the false branch is feasible. When both branches are feasible,
symbolic execution forks the state into two states and continues to
execute the statements of the two branches, and the paths condi-
tions are updated to PC∧Cb and PC∧¬Cb , respectively; otherwise,
the infeasible branches are abandoned, i.e., no input can steer P
to this branch. In this way, P’s path space can be systematically
explored.

Symbolic execution invokes the constraint solver on-the-fly
when exploring the program’s path space. Constraint solving is
one of the main technical challenges faced by symbolic execution
[2, 6] and determines symbolic execution’s scalability and feasibil-
ity. Most existing symbolic executors use the solver in a black-box
manner. The existing approaches for optimizing the constraint solv-
ing in symbolic execution do the optimizations before invoking
the solver, such as caching [5], reusing [30] and simplification [5].
On the other hand, existing high-performance constraint solvers
(e.g., SAT/SMT [17] solvers) are highly tuned for specific classes
of problems. The solvers may perform poorly on new problems
[8]. Hence, if we can customize the constraint solver in symbolic
execution specifically for the program under analysis, symbolic
execution’s scalability can be improved further.

Modern SMT solvers (e.g., Z3 [7] and CVC4 [4]) provide mecha-
nisms for the users to control the solving procedure, e.g., solving
strategy [8] in Z3. We observe that solving an SMT formula with a
different solving strategy may have a very different performance.
For example, consider the following SMT formula in floating-point
bit-vector theory [17], where the type of x is double.

x3 = 8.0

If we use Z3 to solve this constraint by the default strategy, the
solving time is around 56s1. However, if we use a customized solving
strategy, e.g., the following one, the solving time is only around 22s.

(check-sat-using (then simplify smt))

As far as we know, all the existing symbolic executors use the
underlying SMT solver’s default solving strategy. Besides, the path
constraints collected during the symbolic executions of different
1Z3’s version is 4.6.2. The CPU is 2.5GHz.

programs may diverge in principle. Hence, customizing a better
SMT solving strategy specifically for the program under symbolic
execution can improve the solving performance, which directly
improves symbolic execution’s scalability.

This paper proposes to synthesize a customized solving strategy
for the program under symbolic execution. Our key idea is to use
the SMT formulas solved in the early stage of symbolic execution to
synthesize a strategy that can be used later. In principle, our synthe-
sis is challenged by the trade-off between the synthesis overhead
and the synthesized solving strategy’s effectiveness. We propose to
utilize deep learning and decision tree techniques to online synthe-
size a solving strategy during symbolic execution, which achieves
a balance between the synthesis overhead and the efficiency im-
provement achieved by the synthesized solving strategy. We have
implemented our synthesis method on KLEE [5], i.e., a state-of-the-
art symbolic executor for C programs, and a Symbolic Pathfinder
(SPF) [20] based concolic testing [11, 25] tool for Java programs.
The results of the extensive experiments on real-world open-source
programs indicate the effectiveness and the generalization ability
of our synthesis method.

The main contributions of this paper are as follows.

• We propose a synthesis method to online generate a solv-
ing strategy for the program under symbolic execution to
improve efficiency.
• We formalize the tactic-based constraint solving procedure
as a Markov Decision Process with cost and propose to use
an offline trained deep reinforcement learning model to gen-
erate candidate tactic sequences for synthesis.
• We have implemented our method on two state-of-the-art
symbolic execution engines and conducted extensive experi-
ments on real-world open-source programs.
• Our synthesis method can, on average, increase the queries
and paths in the symbolic execution for C programs by
58.76% and 66.11%, respectively. Besides, our method has a
good generalization ability and achieves 100.24% and 102.6%
relative increases of the queries and paths for Java programs,
respectively.

The remainder of this paper is organized as follows. Section 2
gives a brief introduction to solving strategy and illustrates our
synthesis method by an example. Section 3 gives the formalization
of the tactic-based solving procedure. Section 4 presents the syn-
thesis method in detail. Section 5 gives the experimental results.
The related work is discussed and compared in Section 6, and the
conclusion is drawn in Section 7.

2 ILLUSTRATION
2.1 Solving Strategy
Due to the background of symbolic execution, we only consider the
SMT formulas in quantifier-free first-order logic [17]. In principle,
most solving tactics transform a formula into another. Let Γ be the
set of the SMT formulas in different theories and SAT formulas,
and Θ be the set of solving results, i.e., {SAT, UNSAT}.

Definition 2.1. (Tactic) A tactic T is a function Γ → Γ ∪ Θ that
gives the resulted formula or solving result of an input formula.

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

S ::= T(p̄) | S # S | ITE(C,S,S)
C ::= P | P ⊕ c
p ::= (n, true) | (n, false)

Figure 1: Syntax of Solving Strategy

For example, simplify in Z3 is a tactic for simplifying and rewrit-
ing the formula into the normal form. If we apply simplify to
x > (2 − 1), we will get ¬(x ≤ 1), which is in the normal form for
arithmetic relations. Suppose that x is a bit-vector variable with
length 3. Then, for ¬(x ≤ 1), if we apply the tactic bit-blast
that encodes a bit-vector formula into an SAT formula, we will get
the following SAT formula, where x2 and x1 are the two boolean
variables representing the third and second bits of x , respectively.

¬x2 ∧ x1 (1)

It means that the sign bit x2 should be zero (i.e., x is positive) and
the second bit (i.e., the highest bit) should be one, which implies
that x is at least 2. Besides the tactics of transformations, there
are some tactics that are in charge of solving, including sat, smt,
nlsat, etc. These tactics are in charge of the last step in the solving
procedure. Applying themwill give a solving result inΘ or time out.
Tactics also have some parameters that can be used to configure the
transformation or solving. A tactic with different configurations
may produce different results or have different performances.

To specify the best tactics for solving a formula, we need some
necessary information about the formula, which can be obtained
by the probe mechanism defined as follows. Let I be the integer set
and B be the boolean value set, i.e., {true, false}, a probe is defined
as follows.

Definition 2.2. (Probe) A probe P is a function Γ → I ∪ B that
gives a feature value of an input formula.

For example, is-qfbv and num-consts are two probes in Z3 that
give whether the formula is a quantifier-free bit-vector formula
and the number of the constants in the formula, respectively. If the
bit-vector formula is x > 1, is-qfbv returns true, and num-consts
returns 1.

Modern SMT solvers provide a domain-specific language (DSL) to
construct solving strategies in terms of tactics and probes. The lan-
guage contains composition operators, including sequence, branch,
loop, etc. Let T be the set of tactics, P be the probe set,N be the name
set, and C be the set of constants. Figure 1 gives the language of
the solving strategies considered in this paper, where T ∈ T, c ∈ C,
P ∈ P, n ∈ N, ⊕ represents a commonly used numeric relation
operator, and p̄ represents a list of p.

T(p̄) is a tactic with parameters. We do not consider the param-
eters with integer values. T represents a tactic with the default
parameter values. We only consider two kinds of compositions,
i.e., sequential and branch compositions. The condition in branch
composition can be the probe whose value is boolean or a numeric
relation P ⊕ c . For example, the following provides a strategy for
bit-vector formulas.

simplify # ITE(num-consts < 3, bit-blast # sat, smt) (2)

Given a bit-vector formula φ, the strategy first applies simplify
to φ and gets φ1. Then, depending on the number of the constants

in φ1, the strategy uses a bit-blasting style of solving in case φ1’s
number is less than three or directly applies smt for solving φ1.

2.2 Framework
We want to synthesize an optimal solving strategy online for the
target program to improve the efficiency of symbolic execution.
Figure 2 shows the critical steps of our framework for symbolic ex-
ecution. The framework divides the symbolic execution procedure
into two stages. The first stage generates a solving strategy, which
will then be used in the second stage to solve the SMT formulas.

Our key idea is to use the SMT formulas solved in the first
stage to synthesize a solving strategy. The synthesis contains three
key steps: tactic sequence generation, tactic parameter tuning, and
strategy generation.
• Tactic sequence generation. This step’s inputs are the
SMT formulas collected in the first stage of symbolic execu-
tion. We randomly select a subset from these SMT formulas
to represent the program’s path constraints and based on
which a solving strategy is synthesized. These selected for-
mulas are divided into training, validation and testing sets.
Then, we predicate a tactic sequence for each SMT formula
in the training set. This sequence is supposed to solve the
SMT formula in a shorter time. We formalize the tactic based
solving procedure of an SMT formula as a Markov Decision
Process (MDP) (Section 3) and use an offline trained deep
reinforcement learning (DRL) [28] model to predicate a tactic
sequence for an SMT formula (Section 4.2).
• Tactic parameter tuning. The tactics in the sequences gen-
erated by the first step use only default parameter values.
Tactic parameters also influence the performance of solv-
ing. After getting a set of better tactic sequences in the first
step, we tune the tactics’ parameters in this step. The basic
idea is to randomly generate the parameter values and keep
the better tactic sequences. Here, a better tactic sequence
is the one that can solve more formulas in the training set
and solve faster. This step introduces overhead because of
solving the formulas. To reduce the overhead, we employ the
pre-trained deep neural networks (DNNs) [13] to predicate
whether the solving will time out (Section 4.3).
• Strategy generation. The third step composes the tactic
sequences produced in the last step into a solving strategy.
The key idea is to select the best tactic at each step of solving
an SMT formula. We employ the idea of decision tree [10]
to generate the solving strategy. For each step, we greed-
ily select the tactic that needs a smaller solving cost. More
specifically, by employing different probes, we select differ-
ent tactics for different formulas (Section 4.4). In this way,
we want to achieve a global optimal solving performance for
the SMT formulas in the validation set.

After the first stage, we get a synthesized strategy, which is
supposed to make the solver more efficient in the second stage of
the program’s symbolic execution.

2.3 Motivation Example
Figure 3 shows a motivation program. The program has two double
floating-point inputs of a and b. If b is greater than zero, there are

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

Symbolic
Executor

Stage 1 Stage 2

SMT
formulas

Symbolic
Executor

Solving
Strategy

Tactic Sequence
Generator

Strategy Synthesizer (Decision Tree)

Tactic Parameter
Tuner

Tactic
Sequences

Optimal Tactic
Sequences

ResultsProgram

Program

Strategy
Generation

Program

Figure 2: The two-stage procedure of symbolic execution.

1 void test(double a, double b) {

2 if (b > 0.0) { // true branch

3 double c = a; double num = 1.0;

4 for (int i = 0; i < 2; i++) {

5 if (c == num){

6 break;

7 }

8 c = c * a;

9 num = num * 2.0;

10 }

11 } else { // false branch

12 double c = a; int i = 0;

13 while (c != 27.0 && i < 2) {

14 c = c * a;

15 i++;

16 }

17 }

18 }

Figure 3: A motivation example program

two paths; otherwise, there are four paths in the false branch. If we
use KLEE with Z3 as the SMT solver2, we need 1362 seconds3 to
explore all the paths in this program.

Suppose that the first stage of the program’s symbolic execution
explores the paths in the true branch. Then we use the following
four formulas for synthesizing the solving strategy, where b and a
are bit-vector floating-point variables with a length of 64.

(1) b > 0 ∧ a = 1.0
(2) b > 0 ∧ a , 1.0
(3) b > 0 ∧ a , 1.0 ∧ a2 = 2.0
(4) b > 0 ∧ a , 1.0 ∧ a2 , 2.0

Suppose we select formulas (2) and (4) as the training set for syn-
thesis. Then, the tactic sequences predicated are as follows, where
the DRL model suggests the same sequence to the two formulas.

simplify # bit-blast # smt

After the second step, we will get the following two tactic sequences
with parameters, where we use para1 : true to denote the param-
eter whose name and value are para1 and true, respectively, and

2We use the version with FP support, and Z3’s version is 4.6.2.
3The CPU is 2.5GHz.

the other parameters of each tactic use the default values.

simplify(elim_and : true,hoist_mul : true,
local_ctx : true,push_ite_bv : true)#
bit-blast # smt

simplify(elim_and : true,hoist_mul : true)#
bit-blast # smt

Finally, based on these two tactic sequences, we generate the fol-
lowing solving strategy, where the generation algorithm selects the
first one as the optimal one.

simplify(elim_and : true,hoist_mul : true,
local_ctx : true,push_ite_bv : true)#
bit-blast # smt

(3)

Then, we will use this solving strategy to explore the false branch’s
paths. In total, we need 764 seconds to explore all the paths, in
which strategy synthesis needs 3 seconds.

3 MDP FOR SMT SOLVING
We present the formalization for the tactic based SMT solving
procedure of an SMT formula in terms of aMarkov Decision Process
(MDP) [9]. Different choices of solving strategies may produce
different results or performances. Hence, we use the MDP with cost
to formalize the different tactic choices in the solving procedure.

Definition 3.1. A Markov Decision Process (MDP) with cost is
a tupleM = (S,A, β0,T ,Sf ,R,C), where S is the set of states,
A is the set of actions, β0 is the initial distribution of S such that∑
s ∈S β0(s) = 1, T : S × A → D is the transition function that

gives a distribution function β : S → [0, 1] for a state and an
action and β satisfies

∑
s ∈S β(s) = 1, Sf is the set of final states,

R : S × S → R is the reward function, and C : S × A → R is the
cost function.

MDP provides a general formal framework to specify a proba-
bilistic system. Usually, given an MDP, we want to know the best
choices to maximize the reward, i.e., select the best action at a state.
We use policy to formalize these choices.

Definition 3.2. A policy π for an MPDM with cost is a function
π : S → DA , which gives the action distribution for a state, and∑
a∈A DA (a) = 1.

A policy gives the distribution of actions for each state. Hence,
given an MDP policy, we can transfer the states of the MDP as
follows.

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Definition 3.3. A rollout ζ ∼ π is a following tuple sequence in
which each tuple is in S × A × S × R × R,

⟨(s0,a0, s1, r0, c0), ..., (sn−1,an−1, sn , rn−1, cn−1)⟩

and the sequence is randomly constructed as follows.
• Sample an initial state s0 with respect to β0.
• Sample an action ai with respect to π (si), and sample a
transition with respect to T(si ,ai) which leads to state si+1.
The reward ri is R(si , si+1) and the cost ci is C(si ,ai).
• Keep doing the second step until sn is in Sf .

A policy gives a distribution of rollouts. The optimal policy is
the one adopting which the expected reward is maximized, and the
expected cost is the minimized 4. Hence, given an MDPM with
cost, the optimal policy π∗ is defined as follows.

π∗ = arg max
π
Eζ ∼π

[n−1∑
i=0
(ri − ci)

]
(4)

The solving procedure of an SMT formula φ is a special form of
MDP with cost. The states are the SMT formulas and solving results.
The actions are the tactics. There are the following specialties: first,
only one initial state exists; second, the transition of a state with
an action is deterministic; third, the rewards of internal states are
zero, and the state’s reward representing a successful solving is 1.
Formally, the MDP with cost for solving an SMT formula is defined
as follows.

Definition 3.4. An MDP with cost for solving an SMT formula φ
by an SMT solver is a tuple (Q,Tp , βφ ,Tφ , {SUCC, FAIL},Rφ ,Cφ),
where
• Q is the set containing the possible constraints during solv-
ing and two special states SUCC and FAIL.
• Tp is the set of parameterized tactics.
• βφ is the initial distribution such that βφ (φ) = 1.
• Tφ : Q \ {SUCC, FAIL} × Tp → D gives a deterministic
transition for a constraint and a tactic, i.e., Tφ (s,T(p̄))(s ′) = 1
given T(p̄)(s) = s ′, where T(p̄) ∈ Tp .
• SUCC is the final state representing the success of solving
(i.e., the solver returns SAT or UNSAT), and FAIL is the final
state of a failed solving, i.e., the solver times out.
• Rφ gives 1 to (s, SUCC) ∈ Q × Q and 0 to the others.
• Cφ : Q \ {SUCC, FAIL} ×Tp → R gives the cost of applying
a tactic to the current constraint. The cost can be the solving
time or the CPU cycles for solving.

Figure 4 shows a part of the MDP for solving the bit-vector
floating-point formula x3 = (5.0 + 3.0), where the number under
each transition line represents the cost of applying the tactic in
terms of CPU cycles. For example, the cost of applying smt to x3 =
8.0 is 16278808. The formulas after applying fp2bv and bit-blast
are too large, and the detailed information is omitted for the sake
of space.

In principle, adopting different tactics may lead to different costs
(or failure). Then, a successful policy πφ for a formula φ is the one
whose distribution satisfies the following condition.

Prζ ∼πφ {sn = SUCC} > 0 (5)

4We do not consider a discount because there are only finite steps in our SMT solving
scenario.

x3 = (3.0 + 5.0) x3 = 8.0

!"##

⋯
%&'

()*+,
%-&).-(/

+-' − +.1%'

⋯%1'

12
16278808

8
15660

6676

204732690

%-&).-(/

⋯
Figure 4: MDP for solving x3 = (5.0 + 3.0).

It means that it is possible to solveφ by employing the policy πφ . For
example, if we only consider the MDP in Figure 4, ⟨simplify, smt⟩
is a successful policy (i.e., π (s0)(simplify) = 1 and π (s1)(smt) = 1)
with the successful solving’s probability 1. We use Πφ to denote all
the successful policies that are deterministic on each state, i.e., only
one action can be taken on each state. So, each policy πφ in Πφ
satisfies Prζ ∼πφ {sn = SUCC} = 1. Then, the optimal policy π∗φ for
φ is defined as follows.

π∗φ = arg max
π ∈Πφ

Eζ ∼π

[
1 −

n−1∑
i=0

ci

]
(6)

For example, Πφ of the MDP in Figure 4 has two policies, and the
optimal policy is ⟨simplify, smt⟩, which needs the least cost to
solve the formula.

It is natural to employ deep reinforcement learning (DRL) [28]
to train a model from existing SMT benchmarks for SMT solving.
Then, we can use the model to guide an SMT formula’s solving pro-
cedure step by step. However, there are two technical challenges: (1)
integrating the DRL model into the existing solvers also introduces
much overhead, which may doom the model’s advantage; (2) the
generality problem of the model, which may perform poorly on
new formulas. Hence, in this paper, we propose to use a DRL model
trained offline to predicate a set of the tactic sequences using default
parameter values for the representative SMT formulas of a program
(Section 4.2). Then, we synthesize a composed solving strategy on-
line (Section 4.4) to avoid the re-engineering of the solver and the
overhead of employing the model during solving. Besides, we tune
the parameters online for each program to tackle the generalization
problem (Section 4.3).

4 SYMBOLIC EXECUTIONWITH STRATEGY
SYNTHESIS

This section presents the details of our framework. The first sub-
section depicts the two-stage symbolic execution framework. Then,
the three key steps are explained in the following three sub-sections.

4.1 Symbolic Execution Framework
Algorithm 1 gives the symbolic execution framework in which a
solving strategy is synthesized online. The inputs are the program
under symbolic execution, the two search strategies S1 and S2 that
will be used during the two stages of the symbolic execution, and the
set of the probes used in strategy synthesis. Our framework adopts
a state-based symbolic execution [16] and employs a worklist-based
implementation. In the beginning, there is only initial state si in the
worklist (Line 2).We useG to record the SMT formulas generated by

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

Algorithm 1: Symbolic ExecutionWith Strategy Synthesis
SE(P, S1, S2, Probs)
Data: P is a program, S1 and S2 are the search strategies in

the first and second stages, respectively, and Probs is
a set of probes for strategy synthesis.

1 begin
2 worklist , staдe ← {si }, 0
3 G,S ← ∅, DS

4 whileworklist , ∅ do
5 if staдe = 0 then
6 s ← Select(worklist , S1)

7 end
8 else
9 s ← Select(worklist , S2)

10 end
11 Q ← Execute(s,S)
12 G ← G ∪ Q

13 if First stage ends then
14 S ← Synthesize(G, Probs)
15 staдe ← 1
16 end
17 end
18 end

symbolic execution.S is the solving strategy used by the underlying
solver. In the beginning, S is the default solving strategy (denoted
as DS).

When exploring the state space in the first stage, the symbolic
executor uses the search strategy S1 to select a state from the work-
list to explore the state space and collect the SMT formulas (Line 6);
otherwise, S2 is employed (Line 9). The details of each statement’s
symbolic execution are traditional [16] and omitted for the sake of
space. The symbolic execution of a statement employs the solving
strategy S for SMT solving and returns the set of generated SMT
formulas during symbolic execution (Line 11). The end of the first
stage is also parametric, e.g., the number of the explored paths
reaches a threshold, or the time of the first stage’s symbolic execu-
tion is up. If the first stage ends, we synthesize a solving strategy
(Algorithm 2) and replace the default solving strategy for the later
symbolic execution (Lines 14&15).

Algorithm 2 gives the strategy synthesis procedure. The inputs
are the set of SMT formulas collected during the first stage of
Algorithm 1 and the probes for strategy generation. The output is
the synthesized solving strategy. The algorithm mainly contains
the three steps introduced in Section 2.2. First, we randomly select
three subsets St , Sv and Stest from the input set of formulas. St
is used to generate tactic sequences and probe-based conditions.
Sv is used to generate a composed solving strategy, and Stest is
used to compare the synthesized strategy and the default strategy.
Then, we predicate a tactic sequence for each formula in St by an
offline trained DRL model (ChooseTS at Line 5), whose details of
the design and training will be given in Section 4.2. After getting
the tactic sequences in TSo , we tune the parameters of the tactics
in each sequence and get a better sequence subset TSs (ParTuning

Algorithm 2: Strategy Synthesis
Synthesize(G, Probs)
Data: G is a set of SMT formulas, and Probs is a set of

probes.
1 begin
2 (St , Sv , Stest) ← RandomSelect(G)
3 TSo ← ∅

4 for each φ ∈ St do
5 TSo ← TSo ∪ {ChooseTS(φ)}
6 end
7 TSs ← ParTuning(St ,TSo)
8 Vp ← ∅

9 for each φ ∈ St do
10 Vp ← Vp ⊎

⊎
ts ∈TSs

CPV(φ, ts, Probs)

11 end
12 C ← GenPredicates(Vp , Probs)
13 S ← GenStrategy(Sv ,TSs ,C)
14 if Solve(Stest ,S) > Solve(Stest ,DS) then
15 S ← DS

16 end
17 return S
18 end

at Line 7, Algorithm 3). Finally, we will use the tactic sequences
in TSs to generate a composite solving strategy S that performs
better on the validation set Sv .

The key idea of generating the composite solving strategy is to
separate the validation formulas into different groups and select a
best candidate solving strategy for each group. The predicates for
separating validation formulas are constructed by probes and the
probe values collected by solving the formulas of the training set
St . CPV(φ, ts, Probs) at Line 10 contains the probe values during
the procedure of using ts to solve φ. CPV(φ, ts, Probs) is ∅ when ts
is empty sequence; otherwise, CPV(φ, ⟨t0⟩ t̂s, Probs) is defined as
follows.

{P 7→ {P(φ)} | P ∈ Probs} ∪ CPV(t0(φ), ts, Probs) (7)

Besides, we useM1 ⊎M2 to denote the merging of two maps whose
values are sets, which is defined as follows, where k ∈̂M represents
that k is defined in mapM .

M1 ⊎M2[k] :=

M1[k] ∪M2[k] k ∈̂M1 ∧ k ∈̂M2
M1[k] k ∈̂M1
M2[k] k ∈̂M2

(8)

Based on the collected values of the probes, we select the represen-
tative values to construct the predicate set C (Line 12). Then, we
construct the composite solving strategy based on the predicates
in C and the candidate tactic sequences in TSs with respect to the
validation set Sv (Line 13, Algorithm 4). Finally, we compare the
synthesized strategy with the default strategy DS with respect
to the testing set Stest (Line 14), where Solve(V ,S) represents the
cost of solving the SMT formulas in V by employing the solving
strategy S. We use the default strategy if the synthesized strategy
is not better.

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Algorithm 3: Parameter Tuning
ParTuning(Q,TS)
Data: Q is the set of training SMT formulas, TS is a set of

tactic sequences.
1 begin
2 TSp ← ∅

3 for each ts ∈ TS do
4 TSp ← TSp ∪ {ParaGenerate(ts)}
5 end
6 TSp ← TSp ∪TS

7 for each ts ∈ TSp do
8 M[ts] ← |{φ | φ ∈ Q ∧ Predicate(φ, ts)}|
9 end

10 TSN1 ← Top(M,N1)

11 for each ts ∈ TSN1 do
12 M1[ts] ← Solve(Q, ts)
13 end
14 return Top(M1,N2)

15 end

4.2 Tactic Sequence Generation
We employ an offline trained DRL model to predicate a tactic se-
quence for an SMT formula. The ReLUDNN for Q-learning contains
five layers. To train the model, we generate the training data from
the existing SMT formulas. Each element in the training data is a
tuple (E(φ), E(Ts), t ,p) consisting of four parts: E(φ) is the embed-
ding of the current formula φ; E(Ts) is the embedding of the tactic
sequence applied until now to generate φ; t is the following tactic
to apply; and p is the probability of applying the tactic. We can
generate many training elements from an SMT formula. The gen-
eration greedily searches the tactic sequences with small solving
costs. During the search, we record each step’s choice as a training
element and calculate the probability w.r.t. the consumed resources
for applying the tactic. More resources imply a smaller probability.
This greedy search and the probability calculation make the model
predicate a tactic sequence that tends to have a smaller solving cost.

4.3 Tactic Parameter Tuning
Algorithm 3 shows the details of tuning the tactic parameters in the
candidate tactic sequences. The inputs are the set of the training
SMT formulas and the set of candidate tactic sequences predicated
by the DRLmodel. The basic idea is to randomly generate the values
for the parameters and keep the better tactic sequences. We use
ParaGenerate (Line 4) to generate a tactic sequence with random
parameter values for each candidate tactic sequence in TS . Then,
together with the ones in TS (Line 6), we evaluate the effectiveness
and efficiency of the tactic sequences in TSp . In principle, the eval-
uation needs to solve the formulas in Q by employing each tactic
sequence in Tp , which introduces a large overhead. To reduce this
overhead, we use a pre-trained deep neural network (DNN) model
to predicate whether the solving of a formula by a tactic sequence
will time out (Line 8), where Predicate predicates whether the for-
mula φ can be solved by employing the tactic sequence ts . Then,
we select the top N1 tactic sequences with respect to its value inM .

Algorithm 4: Strategy Generation
GenStrategy(Sv ,TS,C)
Data: Sv is the set of validation formulas, TS is a set of

tactic sequences, and C is a set of predicates.
1 begin
2 if |Sv | < K then
3 return arg min

ts ∈TS
Solve(Sv , ts)

4 end
5 tsc ← arg max

ts ∈{t |∀ts ∈TS•t ⪯ts } length(ts)

6 S ′v ← {tsc (φ) | φ ∈ Sv }

7 TS ′ ← {tst | tsc t̂st ∈ TS}

8 Cmin ← arg min
c ∈C

Cost(c, S ′v ,TS
′)

9 Fs ← {t1 | ⟨t1, ..., tn⟩ ∈ TS ′}

10 t1
m ← arg min

t ∈Fs

∑
q∈S ′v ↓Cmin

min{Solve({q}, ts) | ts∈TS ′↓t}

11 t2
m ← arg min

t ∈Fs

∑
q∈S ′v ↓¬Cmin

min{Solve({q}, ts) | ts∈TS ′↓t}

12 S1 ← GenStrategy(S ′v ↓ Cmin ,TS
′ ↓ t1

m ,C)

13 S2 ← GenStrategy(S ′v ↓ ¬Cmin ,TS
′ ↓ t2

m ,C)

14 return tsc # ITE(Cmin ,S1,S2)

15 end

For the top N1 tactic sequences in TSN1 , we select the top N2 ones
by using the solver to solve the formulas in Q (Lines 10-14).

Given an SMT formula φ and a tactic sequence ts , the timeout
predication is carried out as follows, where ts1 is a non-empty
sequence.

Predicate(φ, ts) :=

Predicate(t (φ), ts1) ts=⟨t ⟩ t̂ s1∧t (s)∈Γ
true ts=⟨t ⟩ t̂ s1∧t (s)∈Θ

NNPredciatet (φ) ts=⟨t ⟩
(9)

Here, if a formula can be solved before the final tactic, the predica-
tion result is true; otherwise, we apply the tactics before the final
one to the formula and predicate the result by the DNN for the
formula before the last step (NNPredciatet (φ)). To improve the ef-
fectiveness, we trained a DNN specifically for each tactic in charge
of final solving, e.g., sat and smt. The ReLU DNN for smt contains
nine layers, and the other ReLU DNNs contain seven layers.

4.4 Strategy Generation
Algorithm 4 shows the details of generating the composite solving
strategy. The inputs are the set Sv of validation formulas, the set
TS of candidate tactic sequences, and the predicates for grouping
the validation formulas. The algorithm uses the idea of decision
tree [10] to generate a composite solving strategy, which selects
the best candidate in TS for a subset of Sv . At the beginning, we
get the longest common prefix tsc of all the tactic sequences (if
it exists), where t ⪯ ts represents that t is a prefix of ts . Then,
there is a difference between the tactic sequences after tsc , and
the algorithm selects the tactic greedily with respect to the cost of
solving the formulas in Sv after applying tsc (S ′v at Line 6). The
best predicate is the one using which to separate the formulas will
have a least solving cost, and Cost(c, S ′v ,TS

′) (Line 8) is defined as

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

follows [3, 10], where S ↓ c represents the set of S’s formulas that
satisfy the predicate c .
(|S ′v ↓ c |/ |S

′
v |)×HTS (S

′
v ↓ c)+(|S

′
v ↓ ¬c |/ |S

′
v |)×HTS (S

′
v ↓ ¬c) (10)

HTS (Sv) represents the entropy of Sv with respect to the tactic
sequences in TS and is defined as follows, where R(Sv , ts) is the
ratio of the solved formulas in Sv using the tactic sequence ts .

−
∑

ts∈TS

R(Sv , ts)× log(R(Sv , ts))+(1−R(Sv , ts))× log(1−R(Sv , ts)) (11)

If HTS (Sv) is less, it means that it is more possible to divide Sv
into different groups, and each group’s formulas can be solved by a
tactic sequence inTS . Hence, in principle, if Cost(c, S ′v ,TS ′) is less,
it is more possible to solve all the formulas in S ′v when dividing the
formulas by c .

Then, the algorithm greedily select the best next tactic for the
two groups (i.e., S ′v ↓ Cmin and S ′v ↓ ¬Cmin) from dividing S ′v by
Cmin . Here, the best tactic tm is the one using the tactic sequences
starting from which has the least solving cost when solving the
formulas in S ′v ↓ Cmin or S ′v ↓ ¬Cmin (Lines 10&11), where TS ↓ t
represents the sequence subset of TS whose element starts with
t , i.e., {⟨t⟩ t̂s | ⟨t⟩ t̂s ∈ TS}. Then, we recursively generate the
decision tree by generating the best strategy for the two groups
under the tactic sequences starting with the best tactics (Lines
12&13). Finally, we compose the two groups’ strategies by the ITE
composition and return the synthesized strategy.

The strategy generation needs to balance the effectiveness and
generation overhead. In principle, we can have a strategy that can
recommend the best tactic sequence for each SMT formula in the
validation set. However, the generation introduces more overhead,
and the strategy may also carry out more decisions. This balance
is controlled by a threshold of K of the validation set (Line 2). If
Sv ’s size is less than K , the algorithm directly selects the best tactic
sequence.

5 EVALUATION
We have implemented our method on KLEE5 [5] (i.e, a state-of-the-
art symbolic execution engine for C programs) and an SPF-based
concolic execution engine [31] for Java programs. Both engines use
Z36 as the backend solver and bit-vector SMT theory for encoding
the path constraints. We train the DRL model and the DNN models
by Pytorch. The synthesis procedure is implemented in Python 3.6.

We have conducted extensive experiments to answer the follow-
ing two research questions:
• RQ1: effectiveness, How effective is our solving strategy
synthesis method? Here, effectiveness means solving more
queries (i.e., SMT formulas) and exploring more paths during
symbolic execution.
• RQ2: generalization ability, How general is our synthesis
method when applied to the symbolic execution of other
kinds of programs?

5.1 Experimental Setup
To evaluate the effectiveness of our method, we use Coreutils as
the benchmark. Coreutils is the mainstream benchmark for the
5KLEE’s version is 2.1-pre.
6Z3’s version is 4.6.2.

symbolic execution researches whose implementations are based
on KLEE. The used Coreutils’s version is 6.11. There are 89 programs
in total. We use 80 programs (87159 SLOCs in total). We filter the
remaining 9 programs because the errors happened in the symbolic
execution or the time of symbolic execution is less than 1 minute.

We train the first step’s DRL model and the second step’s DNNs
used in the first stage as follows.

• For the DRL model, we randomly selected 14 programs from
the 80 Coreutils programs. Then, we carried out symbolic
execution for these 14 program and collected the SMT for-
mulas generated during symbolic execution. We randomly
selected 300 from the formulas of each program and created
a dataset consisting of 4200 formulas for training the DRL
model. We generated the dataset for training the DRL model
by greedily search the strategy space and record each tactic
applying step’s formula and cost.
• We trained four DNNs of predicating timeout for sat, smt,
qfnra-nlsat and qfnra, respectively. These four tactics are
the final solving steps. Besides the formulas from the ran-
domly selected 8 Coreutils programs, we also use the qf_bv,
qf_abv, qf_abvfp, qf_bvfp SMT-LIB2 benchmarks [26] for
generating the dataset. We randomly generated a set of tac-
tic sequences that end with any of these four tactics. We
applied the tactic sequences to the SMT formulas. We col-
lected the formulas before applying the last tactic and the
results after applying the tactic to generate the datasets for
the timeout predication DNNs. The timeout threshold is set
to 30 seconds.

We use the bag of words (BOW) model [35] and the one-hot en-
coding [14] as the embedding of the SMT formulas and the solving
strategies, respectively.

We analyze each Coreutils program in 1 hour. In both stages,
we use BFS as the search strategy. We set the end condition of the
first stage as reaching 100 seconds. RandomSelect in Algorithm 2
selects 20, 30, and 30 formulas from the formula set generated in the
first stage for training, validation, and testing datasets, respectively.
In Algorithm 3, N1 and N2 are set to 10 and 5, respectively. The
K in the strategy generation algorithm is set to 10. The baseline
method is vanilla KLEE using the BFS search strategy.

To evaluate the generalization ability, we use our method to
analyze Java programs. Note that we directly use the model trained
for Coreutils C programs during the first and second steps of the
strategy synthesis when analyzing Java programs. Table 1 shows
the Java programs in evaluation. All the programs are open-source
Java programs. Most programs are the parsing programs of different
grammars, including Java, Json, XML, etc.

We create a driver for each program and provide an initial input
to the program’s main interface. The input can be a string or a
file. We symbolize each byte in the input to do symbolic execution.
Each program is analyzed in 15 minutes. The parameters of strategy
synthesis are the same as those for analyzing Coreutils programs.
The first stage ends when exploring 100 paths. Both of the search
strategies of the first and the second stages are BFS. The baseline
method is the original concolic execution using BFS.

All the experiments were carried out on a Server with 64G mem-
ory and 16 2.5GHz cores. The operating system is Ubuntu 14.04. To

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 Effectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the effectiveness. Figure
5 shows the results, and the first x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic

1 10 18 30 45 60 75 80
−10%

0%

20%

40%

60%

80%

100%

120%

140%

Op
t
vs
.
Ba
se
li
ne
(%
)

(a) Path results

1 10 1620 30 45 60 75 80
−60%

−40%

−20%

0%

20%

40%

60%

80%

100%

120%

140%

160%

Op
t
vs
.
Ba
se
li
ne
(%
)

(b) Query results

Figure 5: Results of Coreutils.

execution.
Nopt − Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , −5.33%
(−9.37%∼−0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (−9.37%∼136.41%). These
results indicate that our method can improve the effectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the first x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(−57.66%∼151.15%). These results also demonstrate the effective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s∼120s) which indicates
that the synthesis is efficient.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

Note that the programs represented by the same X-axis value
in the two figures may not be the same program. However, the
set of the first five programs in Figure 5a, i.e. the ones whose path
numbers are decreases, is the same as that of Figure 5b. The first
program in Figure 5b is shred whose symbolic execution is solving
intensive. Our method decreases the number of formulas by 53.6%.
The reason is that the SMT formulas collected in the first stage are
not representative.We collected the SMT formulas generated by one
hour’s symbolic execution of shred. Solving the formulas by the
synthesized solving strategy is much slower (about 4x) than solving
using the default strategy of Z3. However, solving the formulas
generated in shred’s first stage by the synthesized strategy is better
than that using Z3’s default strategy.

Answer toRQ1: our method is effective to improve symbolic ex-
ecution’s ability of path exploration. On average, our method in-
creases the numbers of paths and queries by 66.11% and 58.76%,
respectively.

5.2.2 Generalization Ability. We applied our method to Java con-
colic execution to analyze Java programs for validating the gener-
alization ability. Table 2 shows the detailed experimental results.

Figure 6a shows the results of the relative increase of paths. Our
method improves the paths for 24 (70%) programs. On average,
the increasing rate is 102.6% (−23.36%∼262.77%). Figure 6b shows
the results of the relative increase of total queries. Our method
improves the total queries for 24 (70%) programs. On average, the
increasing rate is 100.24% (−20.29%∼284.35%). These results indi-
cate that our method has a good generalization ability and can
improve Java symbolic executor’s ability. The average synthesis
time is 48s (32s∼80s).

Figure 7 shows the trend of the solving queries in the Java bench-
mark programs. The X-axis shows the analysis time in seconds.
The Y-axis shows the total number of the solved queries in all the
programs. As shown by the figure, our method outperforms the
baseline method by consistently solving more queries. Suppose we
set the task to be solving the queries that the baseline method gen-
erates. In that case, our method uses 435s to solve 607379 queries
(i.e., the total number of the queries solved by the baseline method),
which indicates a 2.07x speedup. Besides, as shown in the figure,
the baseline method performs better than our method at the begin-
ning, i.e., before 100 seconds, because our method is synthesizing
the solving strategy after exploring 100 paths. After synthesis, our
method performs better consistently. In addition, there is one pro-
gram (i.e., actson) on which our method finishes the exploration of
the whole path spaces in 7 minutes; whereas, the baseline method
does not in 15 minutes.

Answer to RQ2: our method has a good generalization ability.
On average, our method increases the number of queries for Java
programs by 100.24% and achieves a 2.07x speedup for solving
the same amount of queries.

1 5 11 15 20 25 30 34
−25%

0%

30%

60%

90%

120%

150%

180%

210%

240%

270%

Op
t
vs
.
Ba
se
li
ne
(%
)

(a) Path results

1 5 11 15 20 25 30 34
−25%

0%

30%

60%

90%

120%

150%

180%

210%

240%

270%

300%

Op
t
vs
.
Ba
se
li
ne
(%
)

(b) Query results

Figure 6: Results of Java programs.

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 0 100 200 300 400 500 600 700 800 900

Q
ue

rie
s

Time(s)

Strategy Synthesis
Baseline

Figure 7: Trend of the solved queries in Java programs.

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 2: Detailed Results of Java programs. The columns #SAT and #UNSAT show the numbers of solved satisfiable and un-
satisfiable queries, respectively. The column #Total shows the total number, i.e., #SAT + #UNSAT. The columns of our method
(Strategy Synthesis) also show the relative increasing rate with respect to that of the baseline. The column #Time shows the
time for strategy synthesis in seconds. Note that the column #SAT show the numbers of the paths explored by the symbolic
executor.

Program Baseline Strategy Synthesis
#SAT #UNSAT #Total #SAT (Inc%) #UNSAT (Inc%) #Total (Inc%) Time(s)

commons-csv 20372 18310 38682 73903 (262.77%) 74772 (308.37%) 148675 (284.35%) 54
super-csv 33688 1088 34776 103252 (206.49%) 3440 (216.18%) 106692 (206.80%) 52
nanoxml 29829 9014 38843 87940 (194.81%) 28966 (221.34%) 116906 (200.97%) 46
argo 21285 3258 24543 60721 (185.28%) 9957 (205.62%) 70678 (187.98%) 52

fastcsv 29740 1595 31335 79260 (166.51%) 6123 (283.89%) 85383 (172.48%) 51
simple-csv 42237 673 42910 108027 (155.76%) 1590 (136.26%) 109617 (155.46%) 38
univocity 20841 11856 32697 46200 (121.68%) 28227 (138.08%) 74427 (127.63%) 48
jsoniter 30101 0 30101 61006 (102.67%) 10 (1000.00%) 61016 (102.70%) 47
markdown4j 22278 8552 30830 44252 (98.64%) 17427 (103.78%) 61679 (100.06%) 49

jcsv 22051 188 22239 35364 (60.37%) 321 (70.74%) 35685 (60.46%) 55
pobs 13138 11650 24788 20586 (56.69%) 18303 (57.11%) 38889 (56.89%) 63

commonmark 23780 1410 25190 34559 (45.33%) 1905 (35.11%) 36464 (44.76%) 40
jtidy 488 279 767 647 (32.58%) 429 (53.76%) 1076 (40.29%) 59
Antlr 12452 11130 23582 18753 (50.60%) 13949 (25.33%) 32702 (38.67%) 42
actson 3446 41452 44898 4094 (18.80%) 57344 (38.34%) 61438 (36.84%) 36
xml 17345 2856 20201 23102 (33.19%) 3768 (31.93%) 26870 (33.01%) 41

txtmark 12421 3389 15810 14619 (17.70%) 4001 (18.06%) 18620 (17.77%) 48
jericho 8106 3205 11311 8955 (10.47%) 3736 (16.57%) 12691 (12.20%) 51
foxykeep 1177 605 1782 1298 (10.28%) 661 (9.26%) 1959 (9.93%) 39
htmlparser 6623 3474 10097 7267 (9.72%) 3821 (9.99%) 11088 (9.81%) 52

minimal-json 19911 8038 27949 21668 (8.82%) 8796 (9.43%) 30464 (9.00%) 45
jmp123 16122 606 16728 16465 (2.13%) 619 (2.15%) 17084 (2.13%) 49

url-detector 4679 1689 6368 4767 (1.88%) 1725 (2.13%) 6492 (1.95%) 49
rhino 12395 3802 16197 13938 (12.45%) 2467 (-35.11%) 16405 (1.28%) 45
toba 2945 284 3229 2945 (0.00%) 284 (0.00%) 3229 (0.00%) 54

javaparser 2877 1105 3982 2876 (-0.03%) 1105 (0.00%) 3981 (-0.03%) 48
jsqlparser 1910 894 2804 1891 (-0.99%) 897 (0.34%) 2788 (-0.57%) 49

jaad 4196 167 4363 4131 (-1.55%) 167 (0.00%) 4298 (-1.49%) 56
nanojson 5949 792 6741 5826 (-2.07%) 780 (-1.52%) 6606 (-2.00%) 39

html5parser 1306 7 1313 1269 (-2.83%) 7 (0.00%) 1276 (-2.82%) 32
htmlcleaner 275 155 430 259 (-5.82%) 142 (-8.39%) 401 (-6.74%) 44

jsoup 466 87 553 431 (-7.51%) 82 (-5.75%) 513 (-7.23%) 48
fastjson-dev 7336 1315 8651 6528 (-11.01%) 1152 (-12.40%) 7680 (-11.22%) 48

barcode 1216 1238 2454 932 (-23.36%) 1024 (-17.29%) 1956 (-20.29%) 80

5.3 Threats to Validity
Our experimental results are mainly threatened by external validity.
The number and types of the benchmark programs may be limited.
We plan to evaluate our two prototypes on more benchmarks in
the next step. Besides, our method is also threatened by the gener-
alization ability of the machine learning models. Although we have
used the models to carry out the experiments on a different engine
and the programs of a different language, the models may perform
poorly on new benchmarks. We plan to use more SMT benchmarks
to offline train our models to improve their effectiveness and gen-
eralization ability further.

6 RELATEDWORK
As far as we know, we are the first to synthesize a program-specific
solving strategy under the background of symbolic execution. Our
work is related to the following research topics: the optimization
of constraint solving in symbolic execution, optimizing solving
strategy of SMT solving, etc. Next, we review the related work and
compare our work with them.

Constraint solving is one of the main challenges of symbolic
execution. The advancements in SAT/SMT constraint solving often
improves the efficiency of symbolic execution. Now, existing work
of optimizing constraint solving under the background of symbolic
execution usually does the job before invoking the solver and uses
the solver in a black-box manner [5, 15, 30]. KLEE [5] optimizing

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Zhenbang Chen, Zehua Chen, Ziqi Shuai, Guofeng Zhang, Weiyu Pan, Yufeng Zhang, and Ji Wang

the constraint solving as follows: caching the counter-examples to
disprove the later constraints, rewriting the constraint into the sim-
pler one by folding constants and simplifying the expression, and
separating constraints into independent groups for better reusing.
Green [30] proposes to reuse the results of constraint solving across
different programs and analysis tasks and provides a canonical con-
straint representation for better reusing. Jia et al. [15] extends Green
to support logic implication relation, which improves the reusing
further. Speculative symbolic execution (SSE) [34] reduces the num-
ber of solver invocations by speculatively executing the program
and ignoring the path feasibility. If the speculation succeeds, many
times of constraint solving can be saved. KLEE-Array [21] proposes
transforming the array constraints into non-array constraints with
respect to the array content to simplify the array constraint solving
in symbolic execution. Compared with these approaches, our work
uses the solver in a white-box and customizes the solver for the
program by synthesizing a solving strategy online.

On the other hand, there is also work of using the solver in a
white-box manner. Multiplex symbolic execution (MuSE) [33] uses
the underlying solver in a white-box manner by collecting partial
solutions during solving. Then, MuSE generates multiple program
inputs by solving once. Liu et al. [18] study the results of employ-
ing stack-based or cache-based incremental solving supported by
state-of-the-art solvers to improve the efficiency of symbolic exe-
cution, and the results indicate that the stack-based one is more
effective. Besides, SSE [34] also uses UNSAT core [17] to improve
the efficiency of backtracking. Our work falls into the line of these
approaches and is complementary to them.

There exists a few existing work for optimizing solving strate-
gies for SMT solvers. In [22], the authors propose to mutate the
default solving strategy to search for the optimal strategy for a
set of SMT formulas. FastSMT [3] employs DNN to learn the opti-
mal solving strategy for SMT benchmarks and inspires our work.
However, our work targets the online synthesis of a solving strat-
egy for symbolic execution. There exits work of applying machine
learning techniques in other parts of constraint solving. NeuroSAT
[24] is a message-passing neural network trained for predicting the
satisfiability of SAT formulas. NeuroCore [23] also trains a neural
network to predicate whether a variable will appear in the unsat
core [17]. Song et al. [27] propose using a learning-based approach
to predicate the partition in solving integer linear programming
(ILP) problems, which achieves good performance result compared
with a commercial ILP solver. NLocalSAT [32] proposes using a
neural network to guide the initialization of assignments in sto-
chastic local search-based SAT solving. The application of these
approaches under symbolic execution is interesting and left to be
the future work.

7 CONCLUSION
Constraint solving challenges symbolic execution. In this paper, we
propose to online synthesize a solving strategy for the program
under symbolic execution. We propose a two-stage procedure for
symbolic execution, and the synthesis is carried out based on the
SMT formulas in the first stage. Our approach leverages offline
trained machine learning models during the synthesis to predicate
the tactic sequences and reduce the synthesis overhead. We have

implemented our approach on mainstream symbolic executors and
carried out extensive experiments on the symbolic execution of C
and Java programs. The experimental results indicate the effective-
ness and generalization ability of our approach.

The future work lies in the following aspects: 1) more extensive
experiments on other benchmark programs and symbolic execution
engines; 2) online adjustment of the deep learning models in our
method to improve the precision and effectiveness; 3) applying the
idea in different scenarios of constraint solving-based tasks.

ACKNOWLEDGEMENTS
This research was supported by National Key R&D Program of
China (No. 2017YFB1001802) and NSFC Program (No. 61632015,
62002107, 62032024 and 61690203).

REFERENCES
[1] Thanassis Avgerinos, Alexandre Rebert, Sang Kil Cha, and David Brumley. 2014.

Enhancing symbolic execution with veritesting. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014.
1083–1094. https://doi.org/10.1145/2568225.2568293

[2] Roberto Baldoni, Emilio Coppa, Daniele Cono D’Elia, Camil Demetrescu, and
Irene Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput.
Surv. 51, 3 (2018), 50:1–50:39. https://doi.org/10.1145/3182657

[3] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. [n.d.]. Learning to Solve
SMT Formulas. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (Eds.). 10338–10349.

[4] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Computer Aided Verification - 23rd International Conference, CAV 2011, Snowbird,
UT, USA, July 14-20, 2011. Proceedings (Lecture Notes in Computer Science), Ganesh
Gopalakrishnan and Shaz Qadeer (Eds.), Vol. 6806. Springer, 171–177. https:
//doi.org/10.1007/978-3-642-22110-1_14

[5] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. [n.d.]. KLEE: Unassisted
and Automatic Generation of High-Coverage Tests for Complex Systems Pro-
grams. In 8th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings,
Richard Draves and Robbert van Renesse (Eds.). USENIX Association, 209–224.

[6] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90. https://doi.org/10.1145/
2408776.2408795

[7] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT
Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings (Lecture Notes in Computer Science), C. R.
Ramakrishnan and Jakob Rehof (Eds.), Vol. 4963. Springer, 337–340. https:
//doi.org/10.1007/978-3-540-78800-3_24

[8] Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. The Strategy
Challenge in SMT Solving. In Automated Reasoning and Mathematics - Essays in
Memory of William W. McCune (Lecture Notes in Computer Science), Maria Paola
Bonacina and Mark E. Stickel (Eds.), Vol. 7788. Springer, 15–44. https://doi.org/
10.1007/978-3-642-36675-8_2

[9] Eugene A. Feinberg and Adam Shwartz. 2002. Handbook of Markov Decision
Processes: Methods and Applications (second ed.). Springer US.

[10] Michele Fratello and Roberto Tagliaferri. 2019. Decision Trees and Random
Forests. Elsevier, 374–383.

[11] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In Proceedings of the ACM SIGPLAN 2005 Conference on
Programming Language Design and Implementation, Chicago, IL, USA, June 12-15,
2005. 213–223. https://doi.org/10.1007/978-3-642-19237-1_4

[12] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2012. SAGE: whitebox
fuzzing for security testing. Commun. ACM 55, 3 (2012), 40–44. https://doi.org/
10.1145/2093548.2093564

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT
Press. http://www.deeplearningbook.org.

[14] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press.

[15] Xiangyang Jia, Carlo Ghezzi, and Shi Ying. 2015. Enhancing reuse of constraint
solutions to improve symbolic execution. In Proceedings of the 2015 International

https://doi.org/10.1145/2568225.2568293
https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1145/2408776.2408795
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-36675-8_2
https://doi.org/10.1007/978-3-642-19237-1_4
https://doi.org/10.1145/2093548.2093564
https://doi.org/10.1145/2093548.2093564
http://www.deeplearningbook.org

Synthesize Solving Strategy for Symbolic Execution ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore, MD, USA,
July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 177–187. https://doi.
org/10.1145/2771783.2771806

[16] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (1976), 385–394. https://doi.org/10.1145/360248.360252

[17] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures: An Algorithmic
Point of View. https://doi.org/10.1007/978-3-540-74105-3

[18] Tianhai Liu, Mateus Araújo, Marcelo d’Amorim, and Mana Taghdiri. 2014. A
Comparative Study of Incremental Constraint Solving Approaches in Symbolic
Execution. In Hardware and Software: Verification and Testing - 10th Interna-
tional Haifa Verification Conference, HVC 2014, Haifa, Israel, November 18-20, 2014.
Proceedings. 284–299. https://doi.org/10.1007/978-3-319-13338-6_21

[19] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016. 691–701. https://doi.org/10.1145/2884781.2884807

[20] Corina S. Pasareanu and Neha Rungta. 2010. Symbolic PathFinder: symbolic
execution of Java bytecode. In ASE 2010, 25th IEEE/ACM International Conference
on Automated Software Engineering, Antwerp, Belgium, September 20-24, 2010,
Charles Pecheur, Jamie Andrews, and Elisabetta Di Nitto (Eds.). ACM, 179–180.
https://doi.org/10.1145/1858996.1859035

[21] David Mitchel Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar.
2017. Accelerating array constraints in symbolic execution. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis,
Santa Barbara, CA, USA, July 10 - 14, 2017, Tevfik Bultan and Koushik Sen (Eds.).
ACM, 68–78. https://doi.org/10.1145/3092703.3092728

[22] Nicolás Gálvez Ramírez, Youssef Hamadi, Eric Monfroy, and Frédéric Saubion.
2016. Evolving SMT Strategies. In 28th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2016, San Jose, CA, USA, November 6-8, 2016.
IEEE Computer Society, 247–254. https://doi.org/10.1109/ICTAI.2016.0046

[23] Daniel Selsam and Nikolaj Bjørner. 2019. Guiding High-Performance SAT Solvers
with Unsat-Core Predictions. In Theory and Applications of Satisfiability Testing -
SAT 2019 - 22nd International Conference, SAT 2019, Lisbon, Portugal, July 9-12,
2019, Proceedings (Lecture Notes in Computer Science), Mikolás Janota and Inês
Lynce (Eds.), Vol. 11628. Springer, 336–353. https://doi.org/10.1007/978-3-030-
24258-9_24

[24] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura,
and David L. Dill. [n.d.]. Learning a SAT Solver from Single-Bit Supervision. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

[25] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In Proceedings of the 10th European Software Engineering Conference

held jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263–272.
https://doi.org/10.1145/1081706.1081750

[26] SMT-LIB2 Website. 2021. http://smtlib.cs.uiowa.edu/benchmarks.shtml.
[27] Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. 2020. A General Large

Neighborhood Search Framework for Solving Integer Linear Programs. In Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

[28] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). The MIT Press.

[29] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex–White Box Test Generation
for .NET. In Tests and Proofs, Bernhard Beckert and Reiner Hähnle (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 134–153. https://doi.org/10.1007/978-3-
540-79124-9_10

[30] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: reducing,
reusing and recycling constraints in program analysis. In 20th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-20), SIGSOFT/FSE’12,
Cary, NC, USA - November 11 - 16, 2012, Will Tracz, Martin P. Robillard, and Tevfik
Bultan (Eds.). ACM, 58. https://doi.org/10.1145/2393596.2393665

[31] Hengbiao Yu, Zhenbang Chen, Yufeng Zhang, Ji Wang, and Wei Dong. 2017.
RGSE: a regular property guided symbolic executor for Java. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, Paderborn, Germany, September 4-8, 2017. 954–958. https://doi.org/10.1145/
3106237.3122830

[32] Wenjie Zhang, Zeyu Sun, Qihao Zhu, Ge Li, Shaowei Cai, Yingfei Xiong, and
Lu Zhang. 2020. NLocalSAT: Boosting Local Search with Solution Prediction.
In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 1177–1183. https:
//doi.org/10.24963/ijcai.2020/164

[33] Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Tianqi Zhang, Kenli Li, and Ji Wang.
[n.d.]. Multiplex Symbolic Execution: Exploring Multiple Paths by Solving Once.
In 35th IEEE/ACM International Conference on Automated Software Engineering,
ASE 2020, Melbourne, Australia, September 21-25, 2020. IEEE, 846–857. https:
//doi.org/10.1145/3324884.3416645

[34] Yufeng Zhang, Zhenbang Chen, and Ji Wang. 2012. Speculative Symbolic Execu-
tion. In 23rd IEEE International Symposium on Software Reliability Engineering,
ISSRE 2012, Dallas, TX, USA, November 27-30, 2012. IEEE Computer Society, 101–
110. https://doi.org/10.1109/ISSRE.2012.8

[35] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. 2010. Understanding bag-of-words
model: a statistical framework. Int. J. Mach. Learn. Cybern. 1, 1-4 (2010), 43–52.
https://doi.org/10.1007/s13042-010-0001-0

https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/2771783.2771806
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-540-74105-3
https://doi.org/10.1007/978-3-319-13338-6_21
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/1858996.1859035
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1109/ICTAI.2016.0046
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1007/978-3-030-24258-9_24
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/3106237.3122830
https://doi.org/10.1145/3106237.3122830
https://doi.org/10.24963/ijcai.2020/164
https://doi.org/10.24963/ijcai.2020/164
https://doi.org/10.1145/3324884.3416645
https://doi.org/10.1145/3324884.3416645
https://doi.org/10.1109/ISSRE.2012.8
https://doi.org/10.1007/s13042-010-0001-0

	Abstract
	1 Introduction
	2 Illustration
	2.1 Solving Strategy
	2.2 Framework
	2.3 Motivation Example

	3 MDP for SMT Solving
	4 Symbolic Execution with Strategy Synthesis
	4.1 Symbolic Execution Framework
	4.2 Tactic Sequence Generation
	4.3 Tactic Parameter Tuning
	4.4 Strategy Generation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Experimental Results
	5.3 Threats to Validity

	6 Related Work
	7 Conclusion
	References

