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ABSTRACT

Parsing code exists extensively in software. Symbolic execution of

complex parsing programs is challenging. The inputs generated

by the symbolic execution using the byte-level symbolization are

usually rejected by the parsing program, which dooms the effec-

tiveness and efficiency of symbolic execution. Complex parsing

programs usually adopt token-based input grammar checking. A

token sequence represents one case of the input grammar. Based

on this observation, we propose grammar-agnostic symbolic ex-

ecution that can automatically generate token sequences to test

complex parsing programs effectively and efficiently. Our method’s

key idea is to symbolize tokens instead of input bytes to improve

the efficiency of symbolic execution. Technically, we propose a

novel two-stage algorithm: the first stage collects the byte-level

constraints of token values; the second stage employs token sym-

bolization and the constraints collected in the first stage to generate

the program inputs that are more possible to pass the parsing code.

We have implemented our method on a Java Pathfinder (JPF)

based concolic execution engine. The results of the extensive ex-

periments on real-world Java parsing programs demonstrate the

effectiveness and efficiency in testing complex parsing programs.

Our method detects 6 unknown bugs in the benchmark programs

and achieves orders of magnitude speedup to find the same bugs.

CCS CONCEPTS

• Software and its engineering→ Software verification and

validation.
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1 INTRODUCTION

Parsing [1] is usually the first step in software. Many programs need

to parse the input files or strings in the initial stage of execution.

Suppose the inputs are not valid with respect to some specific

formats. In that case, the program may exit and throw an exception

or output an error message, which indicates the invalidness of the

inputs. There is usually an input grammar [16] that specifies the

requirements of valid inputs. Automatic testing of these complex

parsing programs without the input grammars is challenging [10].

Symbolic execution [11, 19] provides a general framework for

exploring the program’s path space. In symbolic execution, the

program is executed in a symbolic manner. Symbolic execution

maintains a path condition (i.e., a quantifier-free first-order logic
formula [20], denoted as PC) for each program path. When execut-

ing a branch statement, symbolic execution explores both branches

of the statement after checking each branch’s feasibility by solv-

ing the branch’s path condition. If a branch’s PC is unsatisfiable

[20], the exploration does not continue, i.e., the path to this branch

is unreachable; otherwise, the execution of the statements inside

the branch continues, and the path’s PC is updated by adding the

branch’s condition. In this way, the path space of the program is

systematically explored. Symbolic execution provides a base tech-

nique for efficiently testing programs in an automatic manner. We

can solve the PC of each program path to generate a program in-

put. There are already many successful symbolic execution based

automatic testing tools, such as KLEE [4], Pex [32], and SPF [28],

to name a few.

From the view of programmers, there are grammars in their

minds for checking the validity of inputs. However, these gram-

mars may not be available to the third party. We notice that these

https://doi.org/10.1145/3460319.3464845
https://doi.org/10.1145/3460319.3464845
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grammars are often embedded in token-based implementation. Usu-

ally, the complex parsing program’s execution can be divided into

three stages: tokenization, grammar checking and application logic.
In the first stage, the input is tokenized into a sequence of tokens,

and each token represents a sub-sequence of the characters or

bytes in the input. After the first stage, grammar checking checks

whether the tokenized input, i.e., the sequence of tokens, satisfies
the grammar rules. After this step, the input is considered a valid

input, which will then be processed by the application logic code.

For example, suppose that we have an evaluator program for the

binary expression of numbers. The program’s input grammar is

as follows, where ⟨NUM⟩ and ⟨OP⟩ represent a number and an

operator, respectively, and their tokens are T_NUM and T_OP.

⟨EXP⟩ → ⟨NUM⟩⟨OP⟩⟨NUM⟩

If the input is "11 + 22", in the first stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satisfies the

grammar. Then, the evaluation converts the two number strings to

two integers and calculates the result as 33. However, if the input

is "1a + 22", the input cannot pass the tokenization code because

"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,

i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based

parsing programs. If we symbolize the program inputs blindly,

e.g., symbolizing every byte of the inputs, it will be very hard

for the symbolic execution to analyze the code in the third stage

or even part of the second stage. The tokenizer or the grammar

checker may reject many inputs generated by symbolic execution.

This problem challenges the automatic testing of complex parsing

programs based on symbolic execution. There is existing work to

tackle this problem in symbolic execution [8, 10, 23]; however, the

existing work requires to provide the input grammar, which is often

unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing

programs. Different inputs may be tokenized to be the same token.

Besides, input grammar checking is often implemented by checking

the token sequence of the input instead of the character sequence.

Hence, different token sequences are more effective for testing the

complex parsing program. Suppose that we can symbolize the to-

kens during symbolic execution and generate new token sequences.

In that case, the grammar checking code will be tested more effi-

ciently, which also directly improves the effectiveness of testing the

application logic. Different token sequences generated with respect

to the grammar checking code abstract the different cases of the

valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-

bolic execution, i.e., a framework for effective symbolic execution

of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the

byte-level constraint in the tokenization stage but collects the token

constraints in the grammar checking stage. Then, our framework

can generate new token sequences using the token constraints.

Two technical problems challenge our framework: (1) how to gen-

erate the input of a token sequence? (2) how to analyze the code in

application logic in priority?

For the first problem, we propose to do the symbolic execution

of tokenization code first and collect the constraints describing

the possible values of tokens. Then, when generating the input

from a token sequence, our framework uses these constraints to

generate the program input. For the second problem, we propose

maintaining the constraints collected in application logic separately

and exploring the corresponding unexplored paths in priority under

the specific token sequence. In this way, our framework tests the

code in application logic in priority and automatically generates

the inputs for different input grammar cases.

In principle, our method can be viewed as an instance of composi-

tional symbolic execution [9][18], which usually uses function-level

summaries to reduce the program’s path space and improve sym-

bolic execution’s efficiency. The symbolic execution of tokenization

code extracts the summary of tokenization. Then, when doing the

symbolic execution of the parsing program, we only collect the

token constraints in the grammar checking code but ignore the

byte-level constraints in the tokenization code, and the token-level

path exploration is the system-level symbolic execution in compo-

sitional symbolic execution for complex parsing programs. When

generating the byte-level inputs, we use the tokenization summaries

and the token-level constraint to construct the byte-level constraint,

which also corresponds to the stitching of system-level constraints

and function-level summaries in compositional symbolic execution.

As far as we know, our work is the first parsing-oriented sym-
bolic execution framework that does not need the input grammar. We

have implemented our method in a prototype for Java programs

based on Symbolic PathFinder (SPF) [27]. The results of the exten-

sive experiments on real-world benchmark programs indicate the

effectiveness and efficiency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic

execution that symbolizes tokens to generate valid program

inputs more efficiently.

• We propose a two-stage algorithm that collects the token

constraints in the first stage and then generates valid inputs

to quickly cover the grammar checking code and application

logic code in the second stage.

• We have implemented our method in a prototype based on

JPF and carried out extensive experiments on real-world

open-source Java parsing programs (121531 lines of code in

total).

• Our method detects 6 unknown bugs and improves both

statement coverage and branch coverage. Compared with

byte-level symbolization and fuzzing methods, our method

achieves orders of magnitude speedups to find the same

bugs.

The remainder of this paper is organized as follows. Section 2

briefly introduces dynamic symbolic execution and gives a motiva-

tion example. Section 3 depicts our framework in details. Section 4

gives the implementation and evaluation. Section 5 discusses the

limitations of our approach. Section 6 reviews the related work and

compares them with our method. Section 7 concludes the paper.
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1 public void entry(String a) throws ParseException{

2 // inputReader 's type is Reader

3 inputReader = new StringReader(a);

4 parseExpr ();

5 // application logic starts

6 if (a.charAt(a.length () - 1) == 'z') {

7 assert(false); //bug

8 }

9 }

10

11 void parseExpr () throws ParseException {

12 int token = getNextToken ();

13 if (token == T_NUM){

14 parseOp ();

15 return;

16 } else if (token == T_ID){

17 if (getNextToken () == T_EOF) return;

18 }

19 throw new ParseException ();

20 }

21

22 void parseOp () throws ParseException {

23 int token = getNextToken ();

24 if (token == T_OP){

25 parseExpr ();

26 } else if (token == T_EOF){

27 return;

28 }

29 throw new ParseException ();

30 }

31

32 int getNextToken () throws ParseException {

33 int res = inputReader.read();

34 if (res == -1) return T_EOF;

35 char c = (char) res;

36 if (c >= '*' && c <= '+'){

37 return T_OP;

38 } else if (c >= 'a' && c <= 'z'){

39 return T_ID;

40 } else if (c >= '0' && c <= '9'){

41 char next_c = (char) inputReader.read();

42 if (next_c >= '0' && next_c <= '9'){

43 return T_NUM;

44 }

45 }

46 throw new ParseException ();

47 }

Figure 1: An example parsing program.

2 ILLUSTRATION

2.1 Dynamic Symbolic Execution

We use dynamic symbolic execution (DSE) [11, 30] to analyze com-

plex parsing programs. DSE (or concolic execution) combines tra-

ditional symbolic execution and concrete execution to analyze a

program. Given a program P, the initial input I and the input’s

symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-

bolic execution along p and records the unexplored off-the-path

branches along p. An off-the-path branch corresponds to the nega-

tion of a branch along p. For example, if p’s path condition is

PC(p) = ∧ni=1Ci and Ci is the symbolic condition of the branch

bi , the path condition of bj ’s off-the-path branch (denoted as ¬bj )

is PC(¬bj ) = (∧
j−1
i=1Ci ) ∧ ¬Cj , where 1 ≤ j ≤ n. When the concrete

⟨Expr⟩ ::= ⟨ID⟩ | ⟨Number⟩ | ⟨Number⟩ ⟨Op⟩ ⟨Expr⟩
⟨ID⟩ ::= 'a' | 'b' | ... | 'y' | 'z'

⟨Number⟩ ::= '00' | '01' | ... | '98' | '99'
⟨Op⟩ ::= '*' | '+'

Figure 2: Grammar in the example program, where ⟨ID⟩
must be a one-character identity and ⟨Number⟩ must be a

two-digital number.

execution terminates, DSE selects an off-the-path branch b and

solves the path condition of b to generate a new input to do the

concolic execution of P again. The off-the-path branch selection

is determined by the search heuristic, such as depth-first search

(DFS) and breadth-first search (BFS), which controls the style of

path exploration. This procedure continues until timeout or there

is no unexplored off-the-path branches.

2.2 Motivation Example

This subsection uses a motivation example to illustrate our method.

Figure 1 shows a Java parsing program extracted from real-world

programs. The program implements the parser for the grammar in

Figure 2. ⟨Expr⟩ is the entry non-terminal. This grammar accepts

an expression that can be a single-character name (⟨ID⟩), a two-
digit number (⟨Number⟩) or a composite expression whose left is

a number and right is an expression. In Figure 1, entry function

accepts an input string a and initializes the inputReader object.

Then, parseExpr is used to parse the input string. If the parsing is

successful, entry checks whether the last character is 'z'. The true
branch contains a bug (Line 7). parseExpr implements a recursive

descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the

first iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] ≥ '∗' ∧ a[0] > '+' ∧ a[0] < 'a'∧ (36&38)
a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧ (40&42)
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧ (36)
a[3] ≥ '∗' ∧ a[3] > '+' ∧ a[3] < 'a'∧ (36&38)
a[3] ≥ '0' ∧ a[3] ≤ '9' ∧ a[4] ≥ '0' ∧ a[4] ≤ '9'∧ (40&42)
a[4] , 'z' (6)

There are 17 off-the-path branches along the first path. If we use DFS

to select the next off-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , 'z', the path condition

for generating the new input would be PC1 except the last condition

is changed to a[4] = 'z', which is as follows (denoted as PC2).

a[0] ≥ '∗' ∧ a[0] > '+' ∧ a[0] < 'a'∧
a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧
a[3] ≥ '∗' ∧ a[3] > '+' ∧ a[3] < 'a'∧
a[3] ≥ '0' ∧ a[3] ≤ '9' ∧ a[4] ≥ '0' ∧ a[4] ≤ '9'∧

a[4] = ’z’
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However, PC2 is unsatisfiable because of a[4]’s three constraints.
Then, we select the next off-the-path branch that is generated at

Line 42 and the path condition (denoted as PC3) is as follows.

a[0] ≥ '∗' ∧ a[0] > '+' ∧ a[0] < 'a'∧
a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧
a[3] ≥ '∗' ∧ a[3] > '+' ∧ a[3] < 'a'∧

a[3] ≥ '0' ∧ a[3] ≤ '9' ∧ a[4] ≥ '0' ∧ a[4] > ’9’

PC3 is satisfiable. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-

acter is not a number character. In this way, we need 6 iterations to

cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it

still needs 6 iterations to cover Line 17 and Line 39. In summary, the

DSE with byte-level symbolization generates many invalid inputs

that will be rejected by the parsing program and do not contribute

to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist

no 5-length strings that satisfy the grammar [1] and whose last

character is 'z'. However, there do exist valid input strings that

can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a

two-stage procedure. In the first stage, we just do the DSE of the

tokenization code, which collects the constraint of each token value,

i.e., the symbolic summary [9] of tokenization code. Our framework

starts with a one-size input and gradually increases the input size

to collect the token values and their constraints. After the first

stage, each collected token has a concrete value (usually an integer

value) and its corresponding byte-level constraint. For the example

program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored

by the DSE of getNextToken are two normally terminated paths.

The others are all paths with a parsing exception. The two normally

terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] ≥ 'a' ∧ t[0] ≤ 'z'
TC[T_OP] = t[0] ≥ '∗' ∧ t[0] ≤ '+'

The parsing exception paths are ignored. Hence, we have collected

the constraints of two token values. Then, we increase the input

size to two and do the DSE of getNextToken again. We will collect

three normally terminated paths, in which there is a new token

value T_NUM, and the constraints for T_ID and T_OP are the same

as those generated by one-size input. The constraint of T_NUM is as

follows.

TC[T_NUM] = t[0] ≥ '0' ∧ t[0] ≤ '9' ∧ t[1] ≥ '0' ∧ t[1] ≤ '9'

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size

to three, there will be no new token value generated and no new

constraint for each already generated token value. This first stage

terminates. In practice, we set a threshold to terminate the first

stage (Section 2.2.1). The result of the first stage is a map TC that

records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the first stage, our framework starts the second stage, in

which we symbolize both the token generated and each byte in the

input. Our framework maintains two path conditions: one for the

symbolized tokens (denoted as PCT ) and the other for the branches
in application logic code (denoted as PCA). More specifically, the

framework maintains two sets OBT and OBA of the off-the-path

branches for the grammar checking code and the application logic

code, respectively. Notably, the framework does not collect the

constraints of the branches in the tokenization code. Similar to

the system-level symbolic execution in compositional symbolic

execution, the path exploration at the token-level is more effective

for testing the parsing program.

Then, after exploring a path, the framework first selects an off-

the-path branch ba from the application logic’s off-the-path branch

setOBA and generates an input by solving the constraint composed

by PC(ba ) and the current token constraint PCT , i.e., PCT ∧PC(ba ).
The solving of this new path condition contains three steps: first,

we solve PCT to get a sequence of token values; second, based on

these values and the token constraint map TC generated in the

first stage, we generate the byte-level constraint for PCT (denoted

as PCCT ), and PCCT reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the

function-level constraints in compositional symbolic execution;

finally, we solve PCCT ∧ PC(ba ) to generate the new input. If there

is no more branches inOBA, the framework selects an off-the-path

branch bt from the grammar checking’s off-the-path branch set

OBT and solves the token constraint PC(bt ) as before (i.e., PC(ba )
is true) to generate a new input. This procedure iterates until there

are no branches in the grammar checking’s off-the-path branch set

OBT or timeout.

For the example program, suppose that the initial input of the

second stage is also "12+13". In the second stage, after the first

execution, our framework collects the following path condition,

where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ∧ T[1] = T_OP ∧ T[2] = T_NUM︸                                                      ︷︷                                                      ︸
PCT

∧a[4] , ′z′︸      ︷︷      ︸
PCA

There are three off-the-path branches in the grammar checking’s

off-the-path branch setOBT and one in the application logic code’s

off-the-path branch set OBA. We select the branch in OBA whose

path condition is a[4] = ′z′. Hence, the new path constraint is as

follows.

T[0] = T_NUM ∧ T[1] = T_OP ∧ T[2] = T_NUM︸                                                      ︷︷                                                      ︸
PCT

∧a[4] = ′z′︸      ︷︷      ︸
PC(ba )

To solve PCT ∧PC(ba ), we solve PCT to get a token value sequence,

based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above

PCT generates the token sequence ⟨T_NUM, T_OP, T_NUM⟩. Hence,
PCCT is as follows.

a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧ TC[T_NUM]
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧ TC[T_OP]
a[3] ≥ '0' ∧ a[3] ≤ '9' ∧ a[4] ≥ '0' ∧ a[4] ≤ '9' TC[T_NUM]
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However, PCCT ∧ PC(ba ) is unsatisfiable, which means any inputs

generating the current token sequence, i.e., ⟨T_NUM, T_OP, T_NUM⟩,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE finishes the path exploration of the application logic

under the current token sequence. Then, we select an off-the-path

branch bt from the grammar checking’s off-the-path branch set

OBT . Suppose that we also employ DFS and the path condition of

bt , i.e., PC(bt ), is as follows.

T[0] = T_NUM ∧ T[1] = T_OP ∧ T[2] , T_NUM

Besides PC(bt ), we also add the following range constraint PCR for

all the token variables (omitted for the last step), where the values

are the key values of TC.

3∧
i=1

T[i] ∈ {T_ID, T_NUM, T_OP}

Solving PC(bt )∧PCR explores a new path at the token level, which

can be considered as exploring a new system-level path in com-

positional symbolic execution to improve the efficiency of the

symbolic execution. Suppose that solving PC(bt ) ∧ PCR generates

the solution in which T[2] is T_ID. The new token sequence is

⟨T_NUM, T_OP, T_ID⟩. Then, the byte-level constraint PCc (bt ) is as
follows.

a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧ TC[T_NUM]
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧ TC[T_OP]
a[3] ≥ 'a' ∧ a[3] ≤ 'z' TC[T_ID]

Suppose that solving PCc (bt ) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ∧ T[1] = T_OP ∧ T[2] , T_NUM ∧ T[2] = T_ID︸                                                                          ︷︷                                                                          ︸
PCT

∧

a[3] , ′z′︸      ︷︷      ︸
PCA

Then, same as before, we select the branch in the application logic’s

off-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ∧ T[1] = T_OP ∧ T[2] , T_NUM ∧ T[2] = T_ID︸                                                                          ︷︷                                                                          ︸
PCT

∧

a[3] = ′z′︸      ︷︷      ︸
PC(ba )

This constraint corresponds to the following byte-level constraint,

which is satisfiable.

a[0] ≥ '0' ∧ a[0] ≤ '9' ∧ a[1] ≥ '0' ∧ a[1] ≤ '9'∧ TC[T_NUM]
a[2] ≥ '∗' ∧ a[2] ≤ '+'∧ TC[T_OP]
a[3] ≥ 'a' ∧ a[3] ≤ 'z'∧ TC[T_ID]
a[3] = 'z' PC(ba )

Suppose that the solving generates "11+z", which is accepted by

the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover

Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at

the 3rd execution.

3 METHOD

This section presents the details of grammar-agnostic DSE. The

framework will be introduced first. Then, the collection and solving

of token constraints will be presented in the following two sub-

sections. Finally, we discuss our approach.

3.1 Framework

Algorithm 1 shows the details of the grammar-agnostic DSE frame-

work. The inputs are a parsing program P and an initial input I0.
The algorithm first employs GenTokenSummary (Algorithm 2) to

extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization

method in P. Then, the algorithm maintains two worklistsWt and

Wa to store the off-the-path branches for grammar checking code

and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm first

carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint

collected in the application logic code. Then, we save the open

off-the-path branches of each path constraint to the correspond-

ing worklist (Lines 7&8). openBranches(PC) is defined as follows,

where PC =
n∧
i=1

Ci and bi is the branch of each Ci .

{¬bi 7→ (
i−1∧
j=1

Cj ) ∧ ¬Ci | 1 ≤ i ≤ n ∧ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-

cution

GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin

2 TC ← GenTokenSummary(P,Mt )

3 Wt ,Wa ← ∅, ∅

4 I ← I0
5 while true do
6 (PCT , PCA) ← concolic_execute(P, I )
7 Wt ←Wt ∪ openBranches(PCT )
8 Wa ←Wa ∪ openBranches(PCA)
9 whileWa , ∅ do

10 PCca ← Selecta (Wa )

11 I ← TokenSolve(TC, PCT , PCca )
12 (PCT , PCA) ← concolic_execute(P, I )
13 Wa ←Wa ∪ openBranches(PCA)
14 end

15 ifWt = ∅ then

16 return

17 end

18 PCct ← Selectt (Wt ) //token-level path exploration

19 I ← TokenSolve(TC, PCct , true)
20 end

21 end
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Algorithm 2: Tokenization Code Summary Generation

GenTokenSummary(P,Mt )

Data: P is a program,Mt is the tokenization method.

1 begin

2 W ← ∅

3 M ← ∅

4 for i ∈ [1..K] do
5 I ← RandomInput(i)
6 while true do
7 (t , PC) ← token_concolic_execution(P,Mt , I )

8 M[t] ← t ∈̂M ? (M[t] ∨ PC) : PC

9 W ←W ∪ openBranches(PC)
10 ifW = ∅ then

11 break

12 end

13 PCn ← Selectc (W)
14 I ← SMTSolve(PCn )
15 end

16 end

17 returnM

18 end

Then, we select an off-the-path branch fromWa (Line 10), where

Selecta represents the search heuristic used for path exploration in

the application logic code. The selected branchwill be removed from

Wa . Next, the algorithm solves the selected branch’s path condition

and the current token path constraint by TokenSolve (Algorithm
3). The new input is used for the next concolic execution of P, and

the algorithm only saves the off-the-path branches collected in the

application logic code toWa (Line 13) because of the same token

path constraint.

After the path exploration of the application logic under the

current token path constraint PCt , the algorithm selects an off-the-

path branch fromWt (Line 18). It generates a new input from a

new token sequence (Line 19), where Selectt denotes the search
heuristic of the token-based exploration for grammar checking code.

This procedure continues until there is no off-the-path branch in

Wt or timeout (omitted in both loops for the sake of brevity).

3.2 Tokenization Code Summary Generation

Algorithm 2 shows the details of the first stage for extracting the

summary of the tokenization method by collecting token value

constraints. The inputs are the program P and its tokenization

method. The output is a map that gives the byte-level constraints

for each token value.

The algorithm analyzes P’s tokenization code under different

input sizes. The algorithm starts from one size input and gener-

ates a random input of the current input size (Line 5). Then, the

algorithm uses the input as the initial one for doing DSE. The con-

colic execution of P for collecting token value constraints (denoted

as token_concolic_execution) terminates when the tokenization

methodMt returns and collects the returned concrete value t and
the current path condition PC . The algorithm then records t and
PC (Line 7). If the token value already exists in M (denoted as

Algorithm 3: Token Constraint Solving

TokenSolve(TC, PCT , PCA)
Data: TC is the token constraint map, PCT is the token

constraint, and PCA is the constraint in application

logic.

1 begin

2 Vt ← TokenVars(PCT )
3 S ← SMTSolve(PCT )
4 Φ← true

5 for each ti ∈ Vt do
6 valuet ← S[ti ]

7 Φ← Φ ∧ α(TC[valuet ])

8 end

9 I ← SMTSolve(Φ ∧ PCA)
10 return I

11 end

t ∈̂M), e.g., generated by the before inputs, the algorithm makes a

disjunction between the existing constraint and the current path

constraint, which denotes the multiple cases of the same token

value. The DSE for collecting the constraints continues until the

path exploration under specifically sized input is finished or time-

out (omitted for brevity). SMTSolver(PC) represents employing the

underlying SMT solver to solve a path constraint PC for generating

an input. Finally,M is returned as a summary of input and token

output relation for the tokenization method.

In compositional symbolic execution [9][18], the completeness

of the function-level summaries directly influences the efficiency

of symbolic execution; however, extracting more detailed function-

level summaries may introduce more overhead. Similarly, in Algo-

rithm 2, if K is larger, the collection of the token values and the

constraints is more complete; however, the first stage’s overhead

would be larger. There is a trade-off between the first stage’s over-

head and the whole framework’s effectiveness, and K controls this

trade-off. Consider the example program in Section 2. If K is 1, we

only get the token values T_ID and T_OP, but we cannot get T_NUM
that requires the input of size two.

3.3 Token Constraint Solving

Algorithm 3 shows the details of solving token constraints together

with the constraint in application logic code. The inputs are the

token constraint map TC generated at the first stage, the token

path condition PCT and the path condition PCA in the application

logic code. The output is the generated input.

The key idea is to solve the token path constraint PCT to get

the token values first (Line 2). Then, based on the token sequence

and each token’s constraint in TS, the algorithm composes the

token constraint of each token value together to form the byte-

level constraint Φ to generate the input (Lines 5-8), which is in a

similar way of composing system-level constraints and function-

level summaries in compositional symbolic execution. Finally, Φ
and PCA will be solved to generate the new program input.

Notably, the conjunction at Line 7 needs to consider the byte

index. The token constraint in TC is just a template constraint for
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generating the token value. We need to replace the byte variables

in the template constraint with the byte variables in the token

sequence’s new input. For example, for the example program in

Section 2, suppose we need to generate the input for the token

sequence ⟨T_NUM, T_OP, T_NUM⟩. For the second token, its constraint
in TC is the following one.

t[0] ≥ '∗' ∧ t[0] ≤ '+'

Because there are already two bytes for the first token T_NUM, we
need to replace t[0] with a[2], and the real constraint added to Φ is

the following one.

a[2] ≥ '∗' ∧ a[2] ≤ '+'

Weuseα(TC[valuet ]) at Line 7 to represent the renamed constraint

of TC[valuet ].

3.4 Discussion

In principle, token symbolization is the key to our grammar-agnostic

DSE. Token provides a balanced abstraction for the symbolic exe-

cution of complex parsing programs. On the one hand, compared

with byte-level symbolization, token symbolization-based path con-

straints can be used to generate different token sequences, which

is more effective for testing grammar checking code. On the other

hand, tokenization is widely adopted in parsing programs (e.g., the
benchmark program in Section 4).

In the second stage of our framework, the path explorations of

the grammar checking code and the application logic code are in-

terleaved. We explore the paths of application logic code in priority

under the condition of a specific token sequence. After explor-

ing all the application logic paths under the token sequence, the

framework generates a new token sequence, which may cover new

application logic code. This interleaving divides the program’s path

space with respect to the input grammar.

Different aspects influence the effectiveness and efficiency of

grammar-agnostic DSE. First, the first stage’s completeness of col-

lecting token constraints has a direct impact. Some tokens may

need a larger-size input, which may introduce a huge overhead

for ensuring completeness, but this situation is rare in practice.

Second, the search strategies of different stages may also have an

influence. Third, the initial input’s size (or the length of initial token

sequences) also directly influences the DSE’s results. As demon-

strated by Section 2, our grammar-agnostic DSE can explore more

paths than byte-level symbolization because the path space of the

same token length is larger than that of the same input size. How-

ever, if some program behavior can only be triggered by a specific

length of tokens, our approach may fail. Gradually increasing the

length of the token sequence can help this situation.

Our method can be understood as an instance of compositional

symbolic execution [9][18] targeting parsing programs. Usually,

compositional symbolic execution extracts a summary (e.g., input-
output relation) of a method first. It then reuses the summary when

invoking the method during symbolic execution to avoid entering

the method multiple times. This reusing can effectively reduce the

program’s path space. Our method’s first stage collects the input

constraint for token values, which extracts a summary of the tok-

enization method. Similar to compositional symbolic execution’s

avoiding the multiple executions of a method, the second stage

also does not collect the byte-level constraints of the tokenization

method. The path exploration at the token level can also be un-

derstood as the system-level path exploration in compositional

symbolic execution. Besides, the solving method for token con-

straints stitches the token-level constraints and the tokenization

summary to form the byte-level constraint. However, we do not

summarize the functions in the grammar checking code or the ap-

plication logic code. We believe that the compositional symbolic

execution in these two parts can further improve the efficiency.

4 EVALUATION

We have implemented our method on the JPF-based DSE engine

[17, 27, 38] for Java programs. We have extended the engine to

maintain two symbolic execution trees for token-based path space

and the byte-level symbolization-based path space in application

logic, respectively. We employ JPF-nhandler [31] to handle the

invocations of Java Native Interface (JNI), which improves the

engine’s ability to analyze real-world Java programs. We have im-

proved JPF’s environment model libraries for collecting the path

constraints better. The engine records the inputs generated during

the DSE procedure for the coverage calculation. Besides the input

values, we also record the time of generating the inputs.

We conducted extensive experiments to answer the following

two research questions.

• RQ1: effectiveness, i.e., how effective is our method to test

a parsing program compared with byte-level symbolization

method and the state-of-the-art fuzzing methods? Here, ef-

fectiveness means the number of detected unknown bugs or

the statement/branch coverage.

• RQ2: efficiency, i.e., how efficient is our method compared

with the byte-level symbolization method and the fuzzing

methods? Here, we use the time to achieve the same code

coverage or find the same bugs to measure efficiency.

4.1 Experimental Setup

Benchmarks. Table 1 lists the benchmark programs used for eval-

uation. All the benchmark programs are open-source programs

that are parsers or have a parsing component. The input grammars

of most programs are complex, and the parsing code contains to-

kenization and grammar checking. The input grammars of these

programs are diverse. There are 11 types of grammars, and the

number of tokens ranges from 5 to 128 .

Baseline. We compare our method (denoted asGadse) with the

baseline DSE method employing byte-level symbolization (denoted

asChar) under two search heuristics, i.e., DFS and BFS. We use the

search strategy in both token constraint collection (Algorithm 2)

and the later DSE for grammar checking and application logic code.

The value of K (i.e., maximum size of the characters in a token) in

Algorithm 2 is set to 3. To evaluate our method further, we also

compare our method with two state-of-the-art fuzzing methods:

coverage-guided fuzzing [26] (denoted as JQF) and grammar-guided

black-box fuzzing [14] (denoted as Gramma).

Evaluationmetric.We first record the inputs generated byDSE-

based methods or fuzzing methods and then execute the program

under the inputs to calculate the statement coverage and branch

coverage. We use JaCoCo [15] for coverage calculation. We carry
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Table 1: The benchmark Java programs.

Subject SLOC Brief Description

Clojure 3269 A Clojure parser

FirstOrder 2103 A parser for first-order logic

JsonParser 4428 JavaCC-built JSON Parser

J2Latex 9723 A compiler from Java to Latex

SiXpath 6313 An XPath parser

Aejcc 3269 Arithmetic Expression interpreter

Jsijcc 6313 Javascript interpreter

FastJSON 19307 Alibaba JSON parser

Bling 3269 parser for arithmetic expressions

Calculator 3420 arithmetic expression evaluator

HtmlParser 2737 A HTML parser

UriParser 2720 An URI parser

Jsonmwn 3371 A JSON parser

OaJava 15907 A Java code parser

JavaParser 22372 Java 1-15 Parser

CMMParser 3420 A parser for a subset of C

Curta 4428 A expression evaluator

SqlParser 1791 A SQL parser

JsonRaupachz 3371 A JSON parser

Total 121531 19 open source Java programs

out each test generation task for 1 hour and collect the trend of

coverage, except the grammar-guided method, which only needs

a little time to generate the inputs with respect to the grammar.

For some programs, Gramma’s prototype does not support the

input grammars. We create the generator for the input grammars

according to Gramma’s document [13]. Because Grammar is a

black-box grammar-based fuzzer and does not analyze the program,

we do not compare with Grammar when evaluating the efficiency.

For each grammar in the benchmark programs, Grammar’s input

generation uses less than 20 minutes.

All the experiments were carried out on a server with 64 GB

memory and 16 3.1GHz cores. The operating system is Ubuntu

14.04.

4.2 Experimental Results

Answer to RQ1. To answer the the first question, we evaluate

Gadse by comparing with Char, JQF and Gramma in two as-

pects: unknown bug detection and code coverage. Next, we give

the experimental results.

Unknown bugs.Gadse detects 6 unknown bugs in the benchmark

programs. Table 2 shows the results of bug detection. We only show

whetherGrammar can find the bug becauseGrammar is a black-

box grammar fuzzing tool and does not need to analyze the program.

All the bugs are caused by runtime exceptions
1
.

• Bug 1: Gadse detected a bug in J2latex that causes the

runtime exception NumberFormatException at the unary
function in the project’s C1 class.Gadse generates the input

that contains "0L", which is interpreted by the translator as

1
All the buggy programs and the inputs that generated by Gadse to trigger the bugs

are available at https://github.com/gadse-bug/bugs .

an octal number and use Integer.parseInt to parse the

string.

• Bugs 2&3: Gadse detected two bugs in CMMParser that

cause NullPointerException and NumberFormatException ex-

ceptions. The first one is in the polynomial function of

the CMMParser class. The reason is that the input statement

string passes the grammar checking, but the statement uses

an undefined variable, resulting in NullPointerException.
The second one is in the term function of the CMMParser
class, and the reason is that the generated input causes the

parser to convert a string to a floating-point object. However,

the string is the concatenation of "-" and the null pointer,

i.e., "-null", which results in the exception. An undefined

variable also causes the null pointer.

• Bugs 4&5&6:Gadse detected three bugs in JSInterpreter.
All the bugs are in the evaluator class EvaluationVisitor
of the program. The first one causes NullPointerException
in the visit function of an assignment expression. Gadse

generates an input in which there is an assignment that

assigns an undefined variable. The second one causes the

ClassCastException in the visit function of additive ex-

pression. The fault is a programming mistake. The last one

also causes the ClassCastException. The bug is in the

getDouble method in JavascriptType class. The reason

is that the generated input makes the interpreter convert a

double value from a non-numerical object.

Char and JQF can find only one bug in one hour. Grammar can

find only three bugs. There is one bug (i.e., Bug 4) that is only

found by Gadse. Char and JQF generate many invalid inputs,

and Grammar can generate valid inputs but does not do well in

exploring the path space of application logic. All the bugs can be

triggered by the inputs that are valid with respect to the input

grammars, which indicate that passing the grammar checking is

very important for testing complex parsing programs. Besides, only

passing the grammar checking is not enough, and the exploration of

the paths in application logic code is also important. These results

indicate that Gadse is effective in bug detection.

Code coverage. Table 3 shows the detailed coverage results. Fig-

ures 3&4 show the comparison results of new statements and

branches in DFS between Char and Gadse, respectively. The

X-axis shows the benchmark programs ordered by the values in

Y-axis. The Y-axis shows the relative increasing of the covered state-

ments or branches, which is defined as follows, where NGadse and

NChar denote the numbers of statements or branches explored by

Gadse and Char, respectively.

NGadse − NChar

NChar

(2)

As shown by the figures, under DFS, Gadse can explore more

statements than Char in 17 (89.47%) programs. On average, the

relative increasing of statements achieved by Gadse is 31.18% (-

0.24%∼59.18%). For branch coverage, Gadse preforms better in the

same number of programs as statement coverage, and achieves the

relative increasing of branches as 48.41% (0.0%∼93.3%) on average.

It indicates that Gadse improves the effectiveness of DSE. Besides,

the improvements of statements and branches are co-related.

https://github.com/gadse-bug/bugs
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Table 2: The results of unknown detected bugs. The number is the time for finding the bug in seconds. >1h means that the

method fails to find the bug within 1 hour. Yes in the columnGrammar represents thatGrammar finds the bug, and Nomeans

that Grammar fails to find the bug.

Name Project Type Gadse Char JQF Grammar

Bug 1 J2latex NumberFormatException 143s >1h 185s No

Bug 2 CMMParser NullPointerException 36s >1h >1h Yes

Bug 3 CMMParser NumberFormatException 41s >1h >1h Yes

Bug 4 Jsijcc NullPointerException 456s >1h >1h No

Bug 5 Jsijcc ClassCastException 163s 77s >1h No

Bug 6 Jsijcc ClassCastException 44s >1h >1h Yes

Table 3: Experimental Results of Code Coverage (#S: the number of statements, #B: the number of branches, #P: the number

of paths).

Program Strategy

Char Gadse JQF Grammar

#S #B #P #S #B #P #S #B #P #S #B #P

Clojure
BFS 1272 943 16838 1247 939 22628

1217 890 1210504 1182 833 2115

DFS 1119 794 7879 1278 952 17426

FirstOrder
BFS 538 214 18534 565 220 15586

549 220 2629163 497 179 8571

DFS 545 208 1710 565 220 11722

JsonParser
BFS 434 230 27211 497 264 30359

429 223 1989811 455 229 373

DFS 408 192 8684 497 264 30471

J2Latex
BFS 1755 948 230 2433 1500 14343

2677 1704 1381899 2334 1435 54005

DFS 1710 925 660 2616 1724 13924

SiXpath
BFS 1588 954 10193 1702 1055 4139

1048 484 2380125 1879 1125 675

DFS 1569 896 1941 1734 1073 6802

Aejcc
BFS 313 113 22302 335 125 22318

314 119 2731671 193 53 7

DFS 323 119 12266 335 125 18387

Jsijcc
BFS 2553 1302 2435 3172 1755 17426

2738 1538 424095 3674 2080 72887

DFS 1999 880 10 3036 1701 15792

FastJSON
BFS 1239 475 12296 1642 635 3325

1602 561 2026154 1567 512 373

DFS 1144 436 7375 1821 704 3146

Bling
BFS 408 151 25591 413 157 28922

422 160 2326562 311 100 12

DFS 385 140 15960 413 157 27356

Calculator
BFS 335 121 321 354 130 134

321 122 125495 194 59 1

DFS 335 121 321 354 130 149

HtmlParser
BFS 565 342 12166 579 351 32044

506 269 123352 360 151 68

DFS 504 262 6710 553 316 31347

UriParser
BFS 702 350 12808 707 340 2615

802 368 40956 795 345 1372

DFS 619 258 1917 707 340 2531

Jsonmwn
BFS 779 443 22745 842 444 29355

871 517 1694878 665 298 373

DFS 699 344 369 845 445 29274

OaJava
BFS 2138 1041 13461 3862 1908 32315

3562 1954 1424084 3839 1890 54005

DFS 2241 945 395 3287 1596 17347

JavaParser
BFS 2213 1190 6821 3464 2033 16337

3285 2032 988016 3932 2329 54005

DFS 2123 1014 883 3146 1882 16265

CMMParser
BFS 793 469 751 1239 839 9352

912 520 34739 1252 801 2802

DFS 995 598 704 1273 859 4608

Curta
BFS 1313 616 26150 1262 579 27868

1244 591 1875713 1048 424 3287

DFS 1182 548 5920 1290 596 13260

SqlParser
BFS 472 224 9390 491 230 6082

490 242 1825278 373 166 45229

DFS 477 228 888 491 230 6082

JsonRaupachz
BFS 410 189 19782 423 194 27946

420 197 1756342 413 190 373

DFS 424 194 3843 423 194 24676

Similar to DFS, Figures 5&6 show the results under BFS. Gadse

achieves better results for statement coverage and branch coverage

in 17 and 16 programs under BFS, respectively. On average, Gadse

achieves 27.29% (-3.88%∼ 80.64%) relative increasing of statements,

and 32.80% (-6.01%∼83.29%) relative increasing of branches. These
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Figure 3: Relative increasing of statement coverage in DFS.
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Figure 4: Relative increasing of branch coverage in DFS.
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Figure 5: Relative increasing of statement coverage in BFS.

results indicate that Gadse is also effective under BFS. Besides, for

the benchmark programs, Gadse is more effective under DFS.

Gadse also outperforms the two fuzzing methods (i.e., JQF and

Grammar) in many benchmark programs. Compared with JQF,
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Figure 6: Relative increasing of branch coverage in BFS.

Gadse under DFS on average increases the numbers of statements

and branches by 5.36% (-11.85%∼65.46%) and 6.27% (-18.32%∼121.69%),

respectively. Compared with Grammar, these two results of state-

ments and branches are 17.94% (-17.36%∼82.47%) and 37.36% (-

18.22%∼135.84%), respectively.

Similar to DFS, under BFS, Gadse also on average performs bet-

ter than JQF and Grammar. On average, Gadse increases 7.77%

(-11.85%∼62.40%) and 18.31% (-13.66%∼82.47%) statements for JQF

and Grammar, respectively. The relative increasings of branches

are 7.76% (-14.12%∼117.98%) and 36.96% (-15.62%∼135.84%), respec-

tively.

Answer to RQ1: Our method finds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-

ried out the experiments of running Char and JQF much longer

for finding the unknown bugs. The results indicate that both of

Char and JQF fail to find the bugs in 6 hours, i.e. the same results

as those of 1 hour. Gadse finds each bug in less than 8 minutes.

These results indicate that Gadse is efficient for bug finding.

Besides, we record the time of generating inputs and evaluate

our method’s efficiency by the time to cover the same amount of

statements or branches. We synthesize the global trends of the

statement and branch coverages of all the benchmark programs.

Figures 7&8 show the trends of statement and branch coverages for

all the benchmark programs, respectively. The X-axis shows the

analysis time. The Y-axis displays the accumulated number of new

statements or branches. We do not consider Grammar because it

is a black-box approach and requires the input grammar.

As shown by Figure 7,Gadse under BFS achieves the best results

for statement coverage. Gadse (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by Char (BFS) in one hour)

at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.

Similar to statement coverage, as shown by Figure 8, Gadse (BFS)

also achieves the best result on branch coverage. Compared with

Char (BFS) and JQF,Gadse (BFS) achieves 30x and 2.61x speedup

to have the same coverage, respectively. These results indicate that
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Figure 7: Trends of statement coverage.
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Figure 8: Trends of branch coverage.

Gadse is highly efficient for automatic testing. Therefore, we have

the following conclusion for RQ2.

In addition, as shown by the figures, compared with byte-level

symbolization, JQF achieves a better coverage. Besides, JQF per-

forms best in the beginning (i.e., before 20 minutes). The reason is

that fuzzing is fast and runs the program many times (on average

1420465) in 1 hour to improve the statement or branch coverage.

Moreover, these results and the bug finding results also indicate

that the coverage improvement is not co-related to bug finding.

Answer to RQ2: Our method finds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to find the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity

The threats to the validity are mainly external. The benchmark

Java programs and the grammars are limited. We plan to apply our

method to more complex programs in the next step. We alleviate

the experimental errors by running each task three times and use

the average value as the result. For internal threats, which mainly

come from implementation errors, we designed some manually

written simple grammar parsing programs (such as the motivation

example) to test our prototype.

5 LIMITATIONS

Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not

employ token-based input grammar checking, i.e., URL pars-

ing, which usually employs regular expressions for parsing

and does not use tokenization.

• The separation of the parsing program into different stages

needs manual help. Besides, we need the entry information

of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful

tokens influence the byte-level constraints of the tokens in

the first stage, which may cause path divergence.

• Our method is limited in handling the parsing program with

the context-free input grammars. Especially, we may gener-

ate the token sequence that does not satisfy the matching

requirements in context-free grammars, e.g., '(' and ')'
should be matched.

• If the application logic code is tightly weaved into the parsing

code, our method’s advantage may be doomed, especially

the ability to explore the paths of application logic code in

priority.

The first one is inevitable. For the second one, we can employ a

lightweight static analysis method to suggest the separation and

the tokenization code of the parsing program. The third one can be

supported by employing multiple tokens-based summary during

the first stage, which may introduce more overhead. The fourth

one is because our method does not need grammar. We suggest

developing a search heuristics to select the token constraints that

tend to generate valid token sequences. The last one needs more

abstractions for improving symbolic execution’s efficiency further.

6 RELATEDWORK

Our work is related to many research areas, including symbolic

execution, fuzzing, grammar inference, etc. Next, we review the

related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-

ficiency of symbolic execution for parsing programs [10, 23]. Gode-

froid et al. [10] propose grammar-based white-box fuzzing, which

also suggests employing token symbolization during the symbolic

execution. The token constraint is then solved based on an input

grammar. CESE [23] also uses an input grammar to improve the

DSE of the grammar’s parsing program. CESE generates the initial

inputs based on the symbolic grammar generated from the input

grammar. These inputs are then used for the DSE of the parsing

program to explore the deeper paths. In contrast, our grammar-

agnostic DSE does not need to provide an input grammar. We use
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the token’s byte-level constraints collected in the first stage for

solving the token path constraints. David et al. [8] propose a lan-
guage for specifying input symbolization, which is critical for the

efficiency of symbolic execution. In principle, specifying how to

symbolize input usually considers the input grammar.

There exists the work of search heuristics for improving the

efficiency of symbolic execution. Different search heuristics are

proposed for different targets, such as code coverage [4, 36], reach-

ing a statement [22] and generating a specific program path [40].

Besides, there is also work of pruning program paths [7, 21, 37] to

improve efficiency, which prunes the redundant paths with respect

to the target, e.g., the paths that do not contribute code coverage or
will not trigger bugs. The existing work of search heuristic and path

pruning are complementary with our grammar-agnostic DSE. We

can employ different heuristics in the different stages of grammar-

agnostic DSE. On the other hand, our token symbolization and

constraint solving can be considered as exploring the path in appli-

cation logic code and the valid input-related paths in priority and

pruning invalid input paths.

Our method is also related to compositional symbolic execution

[2, 9, 18, 29]. To improve DSE’s scalability, Godefroid [9] proposes

SMART that uses DSE to generate the input-output relation sum-

maries for low-level functions first, and then directly uses the sum-

maries when invoking the functions during the DSE of higher-level

functions (i.e., caller functions). Anand et al. [2] improves SMART

by a demand-driven compositional symbolic execution method,

which tries to reduce the explored paths by a lazy summary method

based on the encoding using uninterpreted functions [20]. FOCAL

[18] advances demand-driven compositional symbolic execution

by employing a Craig interpolants [6] based function summary

refinement. FOCAL employs a backward analysis to generate a

system-level input for a failure target and composes the constraints

of the contexts in the target’s invoking chain from the entry func-

tion. Gillian [29] provides a language-independent compositional

symbolic execution framework, in which a bi-abductive symbolic

analysis [5] is employed to support compositional testing. Our

method is an instance of compositional symbolic execution target-

ing parsing programs. We only summarize the tokenization code,

which balances the generalization and the efficiency for analyzing

parsing programs. It is interesting to leverage the result in these

work to further improve the efficiency of our method, e.g., in the

analysis of the application logic code.

Fuzzing [39] is also related to our work. The existing grammar-

oriented fuzzing work can be divided into grammar-directed black-

box fuzzing [14], grammar-directed gray-box fuzzing [24, 25], gram-

mar and coverage directed gray-box fuzzing [26]. Havrikov and

Zeller [14] use an input grammar to generate program inputs and

propose the notion of token coverage to guide the generation pro-

cedure. Mathis et al. [24] propose parser-directed fuzzing, which

provides a lightweight approach for recording the character compar-

isons during parsing and generates the valid input to pass parsing

code. To handle the problem of the token comparison in grammar

checking, LFuzzer employs a two-stage procedure for fuzzing the

parser [25]. LFuzzer collects tokens and their corresponding in-

puts in the first stage and uses these tokens in the second stage

to help the fuzzer generate the inputs that can pass the validity

checking of the parser. Superion [34] provides a grammar-aware

coverage-based gray-box fuzzing method, in which the grammar is

used to minimize and mutate the inputs for improving the fuzzing’s

efficiency. Zest [26] combines coverage-oriented gray-box fuzzing

and grammar-based black-box fuzzing to mutate the inputs more

efficiently. Compared with these fuzzing approaches, our approach

is symbolic execution-based, which suffers from symbolic compu-

tation overhead and enjoys more efficient path exploration. The

empirical comparison between our approach and Zest (without

grammar generator) in Section 4 indicates that our approach is

more effective and efficient for bug finding and code coverage.

Our work is also related to input grammar inference. Glade [3]

provides an algorithm that synthesizes a context-free input gram-

mar form the input-output examples of the program. Then, the

inferred grammar can be used to improve fuzzing. REINAM [35]

improves Glade by tackling the problem of over-generalization.

REINAM generates a probabilistic context-free input grammar. Sky-

fire [33] proposes to learn a probabilistic context-sensitive grammar

(PCSG) to represent the distribution of valid inputs. Then the PCSG

is used to generate seeds for efficient fuzzing. Different from these

approaches, Mimid [12] learns a readable context-free input gram-

mar in a white-box manner. The input characters are tracked for

their access to aid the grammar inference. How to infer the grammar

based on symbolic execution (which provides more information) is

interesting and left to be the future work.

7 CONCLUSION

Symbolic execution of complex parsing programs is challenging.

This paper presents grammar-agnostic symbolic execution, i.e., a
framework that uses token symbolization to improve symbolic

execution’s efficiency. Our framework does not need to provide

input grammar. We automatically collect the input constraints of

token values, based on which valid inputs can be generated to

test complex parsing programs efficiently. We have implemented

our framework for Java programs based on JPF. The extensive

experiments indicate that our approach is effective and efficient for

testing complex parsing programs.

The next step lies in several directions: 1) improve the prototype

to carry out more extensive experiments; 2) investigate the method

for generating the inputs of complex grammars; 3) study more

advanced symbolic abstraction for testing parsing programs.
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