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Symbolic Execution

int foo(int i, j) {
 if (i == 0) {
   i = i + j
 } else {
   i = i - j
 }
 return i

}
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i, j ← xi+xj , xj 
ret ← xi+xj 

i, j ← xi , xj 

i, j ← xi-xj , xj 
ret ← xi-xj 

xi = 0 xi ≠ 0

Solvingint foo(int i, j) {
 if (i == 0) {
   i = i + j
 } else {
   i = i - j
 }
 return i

}
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i, j ← xi+xj , xj 
ret ← xi+xj 

i, j ← xi , xj 

i, j ← xi-xj , xj 
ret ← xi-xj 

Constraint solving is the enabling technique

int foo(int i, j) {
 if (i == 0) {
   i = i + j
 } else {
   i = i - j
 }
 return i

}

xi = 0 xi ≠ 0

Solving
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Path explosion int foo(int a[], int j) {
   int c = 0;
 while (j-- > -1) {
   if (a[j] > 0)
     c++; 
   else
     c-- ;
}
return c;

}

Challenges of Symbolic Execution
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Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

Challenges of Symbolic Execution
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• Undecidable in general

• High complexity in 
computation
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• Query cache (partial) and simplification

• KLEE[OSDI’08], KLEE-Array[ISSTA’17]

• Query reduction

• SSE[ISSRE’12], Cloud9[PLDI’12]

• Query reuse

• Green[FSE’12], GreenTrie[ISSTA’15] 
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Our Observation

Symbolic 
Executor

Constraint 
Solver

PC Result

Existing work

Solver is used in a 
black-box manner
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ℱ1 ℱ2 ℱn−1 Resu lt
T1 Tn−1. . .

e.g. simplify, bit-blast, … e.g., SAT, SMT, ..



SMT Solving Strategy
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• Solving strategy has a great influence to solving performance
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x3 = 8.0

QF_BVFP formula, x is 
a double variable

28

• Solving strategy has a great influence to solving performance



SMT Solving Strategy

x3 = 8.0

QF_BVFP formula, x is 
a double variable

56 seconds by using Z3’s 
default strategy

29

• Solving strategy has a great influence to solving performance



SMT Solving Strategy

x3 = 8.0

QF_BVFP formula, x is 
a double variable

56 seconds by using Z3’s 
default strategy

22 seconds by using the 
following customized one

⟨simplify, SMT⟩
30
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• A program’s symbolic execution is a specific constraint solving 
problem

• We can use solving strategy to customize the solver for the 
program to solve the program’s path constraints efficiently
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Our Key Idea
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• Online synthesize a solving strategy for the program under 
symbolic execution

• The synthesized solving strategy can improve the efficiency of 
solving the program’s path conditions in symbolic execution
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follows [3, 10], where S # c represents the set of S’s formulas that
satisfy the predicate c .
( |S 0� # c |/ |S 0� |)⇥HTS (S 0� # c)+( |S 0� # ¬c |/ |S 0� |)⇥HTS (S 0� # ¬c) (10)

HTS (S� ) represents the entropy of S� with respect to the tactic
sequences in TS and is de�ned as follows, where R(S� , ts) is the
ratio of the solved formulas in S� using the tactic sequence ts .

�

’
ts2TS

R(S� , ts)⇥ log(R(S� , ts))+(1�R(S� , ts))⇥ log(1�R(S� , ts)) (11)

If HTS (S� ) is less, it means that it is more possible to divide S�
into di�erent groups, and each group’s formulas can be solved by a
tactic sequence inTS . Hence, in principle, if Cost(c, S 0� ,TS 0) is less,
it is more possible to solve all the formulas in S 0� when dividing the
formulas by c .

Then, the algorithm greedily select the best next tactic for the
two groups (i.e., S 0� # Cmin and S 0� # ¬Cmin ) from dividing S 0� by
Cmin . Here, the best tactic tm is the one using the tactic sequences
starting from which has the least solving cost when solving the
formulas in S 0� # Cmin or S 0� # ¬Cmin (Lines 10&11), where TS # t
represents the sequence subset of TS whose element starts with
t , i.e., {hti t̂s | hti t̂s 2 TS}. Then, we recursively generate the
decision tree by generating the best strategy for the two groups
under the tactic sequences starting with the best tactics (Lines
12&13). Finally, we compose the two groups’ strategies by the ITE
composition and return the synthesized strategy.

The strategy generation needs to balance the e�ectiveness and
generation overhead. In principle, we can have a strategy that can
recommend the best tactic sequence for each SMT formula in the
validation set. However, the generation introduces more overhead,
and the strategy may also carry out more decisions. This balance
is controlled by a threshold of K of the validation set (Line 2). If
S� ’s size is less than K , the algorithm directly selects the best tactic
sequence.

5 EVALUATION
We have implemented our method on KLEE5 [5] (i.e, a state-of-the-
art symbolic execution engine for C programs) and an SPF-based
concolic execution engine [31] for Java programs. Both engines use
Z36 as the backend solver and bit-vector SMT theory for encoding
the path constraints. We train the DRL model and the DNN models
by Pytorch. The synthesis procedure is implemented in Python 3.6.

We have conducted extensive experiments to answer the follow-
ing two research questions:

• RQ1: e�ectiveness, How e�ective is our solving strategy
synthesis method? Here, e�ectiveness means solving more
queries (i.e., SMT formulas) and exploring more paths during
symbolic execution.

• RQ2: generalization ability, How general is our synthesis
method when applied to the symbolic execution of other
kinds of programs?

5.1 Experimental Setup
To evaluate the e�ectiveness of our method, we use Coreutils as
the benchmark. Coreutils is the mainstream benchmark for the
5KLEE’s version is 2.1-pre.
6Z3’s version is 4.6.2.

symbolic execution researches whose implementations are based
on KLEE. The used Coreutils’s version is 6.11. There are 89 programs
in total. We use 80 programs (87159 SLOCs in total). We �lter the
remaining 9 programs because the errors happened in the symbolic
execution or the time of symbolic execution is less than 1 minute.

We train the �rst step’s DRL model and the second step’s DNNs
used in the �rst stage as follows.

• For the DRL model, we randomly selected 14 programs from
the 80 Coreutils programs. Then, we carried out symbolic
execution for these 14 program and collected the SMT for-
mulas generated during symbolic execution. We randomly
selected 300 from the formulas of each program and created
a dataset consisting of 4200 formulas for training the DRL
model. We generated the dataset for training the DRL model
by greedily search the strategy space and record each tactic
applying step’s formula and cost.

• We trained four DNNs of predicating timeout for sat, smt,
qfnra-nlsat and qfnra, respectively. These four tactics are
the �nal solving steps. Besides the formulas from the ran-
domly selected 8 Coreutils programs, we also use the qf_bv,
qf_abv, qf_abvfp, qf_bvfp SMT-LIB2 benchmarks [26] for
generating the dataset. We randomly generated a set of tac-
tic sequences that end with any of these four tactics. We
applied the tactic sequences to the SMT formulas. We col-
lected the formulas before applying the last tactic and the
results after applying the tactic to generate the datasets for
the timeout predication DNNs. The timeout threshold is set
to 30 seconds.

We use the bag of words (BOW) model [35] and the one-hot en-
coding [14] as the embedding of the SMT formulas and the solving
strategies, respectively.

We analyze each Coreutils program in 1 hour. In both stages,
we use BFS as the search strategy. We set the end condition of the
�rst stage as reaching 100 seconds. RandomSelect in Algorithm 2
selects 20, 30, and 30 formulas from the formula set generated in the
�rst stage for training, validation, and testing datasets, respectively.
In Algorithm 3, N1 and N2 are set to 10 and 5, respectively. The
K in the strategy generation algorithm is set to 10. The baseline
method is vanilla KLEE using the BFS search strategy.

To evaluate the generalization ability, we use our method to
analyze Java programs. Note that we directly use the model trained
for Coreutils C programs during the �rst and second steps of the
strategy synthesis when analyzing Java programs. Table 1 shows
the Java programs in evaluation. All the programs are open-source
Java programs. Most programs are the parsing programs of di�erent
grammars, including Java, Json, XML, etc.

We create a driver for each program and provide an initial input
to the program’s main interface. The input can be a string or a
�le. We symbolize each byte in the input to do symbolic execution.
Each program is analyzed in 15 minutes. The parameters of strategy
synthesis are the same as those for analyzing Coreutils programs.
The �rst stage ends when exploring 100 paths. Both of the search
strategies of the �rst and the second stages are BFS. The baseline
method is the original concolic execution using BFS.

All the experiments were carried out on a Server with 64G mem-
ory and 16 2.5GHz cores. The operating system is Ubuntu 14.04. To
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ML Models Training

• DRL model for generating tactic sequences

• 14 randomly selected Coreutils programs

• 300 SMT formulas randomly from each

• 4200 in total
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ML Model Training

• DNN models for predicating timeout

• SAT, SMT, QFNRA-NLSAT, QFNRA

• 8 randomly selected Coreutils programs

• QF_BV, QF_ABV, QF_ABVFP, QF_BVFP SMT-LIB2 benchmarks

• Timeout threshold: 30 seconds  
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• Benchmark for KLEE

• 80 Coreutils programs

• Benchmark for Java concolic engine

• 34 open-source Java programs

• 327506 SLOCs in total
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.

Improve the explored paths for 63 programs, 66.11% on average
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.
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Note that the programs represented by the same X-axis value
in the two �gures may not be the same program. However, the
set of the �rst �ve programs in Figure 5a, i.e. the ones whose path
numbers are decreases, is the same as that of Figure 5b. The �rst
program in Figure 5b is shred whose symbolic execution is solving
intensive. Our method decreases the number of formulas by 53.6%.
The reason is that the SMT formulas collected in the �rst stage are
not representative.We collected the SMT formulas generated by one
hour’s symbolic execution of shred. Solving the formulas by the
synthesized solving strategy is much slower (about 4x) than solving
using the default strategy of Z3. However, solving the formulas
generated in shred’s �rst stage by the synthesized strategy is better
than that using Z3’s default strategy.

Answer toRQ1: our method is e�ective to improve symbolic ex-
ecution’s ability of path exploration. On average, our method in-
creases the numbers of paths and queries by 66.11% and 58.76%,
respectively.

5.2.2 Generalization Ability. We applied our method to Java con-
colic execution to analyze Java programs for validating the gener-
alization ability. Table 2 shows the detailed experimental results.

Figure 6a shows the results of the relative increase of paths. Our
method improves the paths for 24 (70%) programs. On average,
the increasing rate is 102.6% (�23.36%⇠262.77%). Figure 6b shows
the results of the relative increase of total queries. Our method
improves the total queries for 24 (70%) programs. On average, the
increasing rate is 100.24% (�20.29%⇠284.35%). These results indi-
cate that our method has a good generalization ability and can
improve Java symbolic executor’s ability. The average synthesis
time is 48s (32s⇠80s).

Figure 7 shows the trend of the solving queries in the Java bench-
mark programs. The X-axis shows the analysis time in seconds.
The Y-axis shows the total number of the solved queries in all the
programs. As shown by the �gure, our method outperforms the
baseline method by consistently solving more queries. Suppose we
set the task to be solving the queries that the baseline method gen-
erates. In that case, our method uses 435s to solve 607379 queries
(i.e., the total number of the queries solved by the baseline method),
which indicates a 2.07x speedup. Besides, as shown in the �gure,
the baseline method performs better than our method at the begin-
ning, i.e., before 100 seconds, because our method is synthesizing
the solving strategy after exploring 100 paths. After synthesis, our
method performs better consistently. In addition, there is one pro-
gram (i.e., actson) on which our method �nishes the exploration of
the whole path spaces in 7 minutes; whereas, the baseline method
does not in 15 minutes.

Answer to RQ2: our method has a good generalization ability.
On average, our method increases the number of queries for Java
programs by 100.24% and achieves a 2.07x speedup for solving
the same amount of queries.
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Figure 6: Results of Java programs.
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Figure 7: Trend of the solved queries in Java programs.
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.
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Note that the programs represented by the same X-axis value
in the two �gures may not be the same program. However, the
set of the �rst �ve programs in Figure 5a, i.e. the ones whose path
numbers are decreases, is the same as that of Figure 5b. The �rst
program in Figure 5b is shred whose symbolic execution is solving
intensive. Our method decreases the number of formulas by 53.6%.
The reason is that the SMT formulas collected in the �rst stage are
not representative.We collected the SMT formulas generated by one
hour’s symbolic execution of shred. Solving the formulas by the
synthesized solving strategy is much slower (about 4x) than solving
using the default strategy of Z3. However, solving the formulas
generated in shred’s �rst stage by the synthesized strategy is better
than that using Z3’s default strategy.

Answer toRQ1: our method is e�ective to improve symbolic ex-
ecution’s ability of path exploration. On average, our method in-
creases the numbers of paths and queries by 66.11% and 58.76%,
respectively.

5.2.2 Generalization Ability. We applied our method to Java con-
colic execution to analyze Java programs for validating the gener-
alization ability. Table 2 shows the detailed experimental results.

Figure 6a shows the results of the relative increase of paths. Our
method improves the paths for 24 (70%) programs. On average,
the increasing rate is 102.6% (�23.36%⇠262.77%). Figure 6b shows
the results of the relative increase of total queries. Our method
improves the total queries for 24 (70%) programs. On average, the
increasing rate is 100.24% (�20.29%⇠284.35%). These results indi-
cate that our method has a good generalization ability and can
improve Java symbolic executor’s ability. The average synthesis
time is 48s (32s⇠80s).

Figure 7 shows the trend of the solving queries in the Java bench-
mark programs. The X-axis shows the analysis time in seconds.
The Y-axis shows the total number of the solved queries in all the
programs. As shown by the �gure, our method outperforms the
baseline method by consistently solving more queries. Suppose we
set the task to be solving the queries that the baseline method gen-
erates. In that case, our method uses 435s to solve 607379 queries
(i.e., the total number of the queries solved by the baseline method),
which indicates a 2.07x speedup. Besides, as shown in the �gure,
the baseline method performs better than our method at the begin-
ning, i.e., before 100 seconds, because our method is synthesizing
the solving strategy after exploring 100 paths. After synthesis, our
method performs better consistently. In addition, there is one pro-
gram (i.e., actson) on which our method �nishes the exploration of
the whole path spaces in 7 minutes; whereas, the baseline method
does not in 15 minutes.

Answer to RQ2: our method has a good generalization ability.
On average, our method increases the number of queries for Java
programs by 100.24% and achieves a 2.07x speedup for solving
the same amount of queries.

1 5 11 15 20 25 30 34
�25%

0%

30%

60%

90%

120%

150%

180%

210%

240%

270%

O
p
t
v
s
.B

a
s
e
l
i
n
e
(%
)

(a) Path results

1 5 11 15 20 25 30 34
�25%

0%

30%

60%

90%

120%

150%

180%

210%

240%

270%

300%

O
p
t
v
s
.B

a
s
e
l
i
n
e
(%
)

(b) Query results

Figure 6: Results of Java programs.

 0

 200000

 400000

 600000

 800000

 1x106

 1.2x106

 1.4x106

 0  100  200  300  400  500  600  700  800  900

Q
ue

rie
s

Time(s)

Strategy Synthesis
Baseline

Figure 7: Trend of the solved queries in Java programs.
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.
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Note that the programs represented by the same X-axis value
in the two �gures may not be the same program. However, the
set of the �rst �ve programs in Figure 5a, i.e. the ones whose path
numbers are decreases, is the same as that of Figure 5b. The �rst
program in Figure 5b is shred whose symbolic execution is solving
intensive. Our method decreases the number of formulas by 53.6%.
The reason is that the SMT formulas collected in the �rst stage are
not representative.We collected the SMT formulas generated by one
hour’s symbolic execution of shred. Solving the formulas by the
synthesized solving strategy is much slower (about 4x) than solving
using the default strategy of Z3. However, solving the formulas
generated in shred’s �rst stage by the synthesized strategy is better
than that using Z3’s default strategy.

Answer toRQ1: our method is e�ective to improve symbolic ex-
ecution’s ability of path exploration. On average, our method in-
creases the numbers of paths and queries by 66.11% and 58.76%,
respectively.

5.2.2 Generalization Ability. We applied our method to Java con-
colic execution to analyze Java programs for validating the gener-
alization ability. Table 2 shows the detailed experimental results.

Figure 6a shows the results of the relative increase of paths. Our
method improves the paths for 24 (70%) programs. On average,
the increasing rate is 102.6% (�23.36%⇠262.77%). Figure 6b shows
the results of the relative increase of total queries. Our method
improves the total queries for 24 (70%) programs. On average, the
increasing rate is 100.24% (�20.29%⇠284.35%). These results indi-
cate that our method has a good generalization ability and can
improve Java symbolic executor’s ability. The average synthesis
time is 48s (32s⇠80s).

Figure 7 shows the trend of the solving queries in the Java bench-
mark programs. The X-axis shows the analysis time in seconds.
The Y-axis shows the total number of the solved queries in all the
programs. As shown by the �gure, our method outperforms the
baseline method by consistently solving more queries. Suppose we
set the task to be solving the queries that the baseline method gen-
erates. In that case, our method uses 435s to solve 607379 queries
(i.e., the total number of the queries solved by the baseline method),
which indicates a 2.07x speedup. Besides, as shown in the �gure,
the baseline method performs better than our method at the begin-
ning, i.e., before 100 seconds, because our method is synthesizing
the solving strategy after exploring 100 paths. After synthesis, our
method performs better consistently. In addition, there is one pro-
gram (i.e., actson) on which our method �nishes the exploration of
the whole path spaces in 7 minutes; whereas, the baseline method
does not in 15 minutes.

Answer to RQ2: our method has a good generalization ability.
On average, our method increases the number of queries for Java
programs by 100.24% and achieves a 2.07x speedup for solving
the same amount of queries.
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Figure 6: Results of Java programs.
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Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016
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Table 1: The Java benchmark programs.

Subject SLOC Brief Description
txtmark 4255 A Markdown parser
barcode 3793 A library for QR code recognition
javaparser 22286 A Java code parser
html5parser 14266 A complete HTML5 parser
jsqlparser 30250 A SQL statement parser
actson 623 A Json parser
nanoxml 1429 An XML parser
rhino 20042 A Speech-to-Intent engine
htmlparser 22231 A Java HTML parser
toba 6029 A Java bytecode to C compiler
jericho 9542 A Java HTML parser
minimal-json 1859 A Json parser
xml 3367 An XML parser
pobs 3024 A Java object parser
Antlr 27118 A parser generator
fastjson-dev 19329 Alibaba Json parser
jmp123 3273 A MP3 decoder
nanojson 2185 Nano Json parser
foxykeep 3865 A Java code generator
jsoniter 13005 A Json parser
univocity 18263 A Java code parser
fastcsv 807 A CSV parser
argo 2687 A Jdom parser
htmlcleaner 8328 A Java HTML parser
jsoup 12512 A Java HTML parser
url-detector 1705 A URL parser
jcsv 1039 A CSV parser
commons-csv 1452 A CSV parser
super-csv 3734 A CSV parser
markdown4j 3740 A markdown parser
simple-csv 1583 A simple CSV parser

jaad 35984 An AAC decoder and MP4
demultiplexer library

jtidy 18937 A HTML cleaner
commonmark 4964 A markdown parser
Total 327506 34 open source Java programs

alleviate experimental errors and randomness, we carried out each
task three times. We use the average value of the two closed values
in the three values generated by the three runs.

5.2 Experimental Results
5.2.1 E�ectiveness. We use the numbers of the paths explored by
KLEE and the queries (i.e., SMT formulas) solved during symbolic
execution as the main factors to evaluate the e�ectiveness. Figure
5 shows the results, and the �rst x-value whose y-value is larger
than zero is 18. The X-axis displays the programs ordered by the
values. The value of relative increase is calculated as follows, where
Nopt represents the number of paths or queries after employing our
method, and Nbaseline represents the number of original symbolic
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Figure 5: Results of Coreutils.

execution.
Nopt � Nbaseline

Nbaseline
(12)

As shown by Figure 5a, our method can improve the number of
explored paths for 63 (78%) programs. On the other hand, there are
5 (6%) programs on which we decrease the number of paths , �5.33%
(�9.37%⇠�0.4%) on average. Our method can, on average, improves
the number of explored paths by 66.11% (�9.37%⇠136.41%). These
results indicate that our method can improve the e�ectiveness of
symbolic execution.

Besides, as shown in Figure 5b (the �rst x-value whose y-value is
larger than zero is 16), the queries solved during symbolic execution
are also increased. Our method can increase the queries for 65 (81%)
programs. The relative increase of queries is on average 58.76%
(�57.66%⇠151.15%). These results also demonstrate the e�ective-
ness of our method. Besides, the results also indicate that there is
a correlation between the numbers of queries and paths, which is
natural for symbolic execution, i.e. more queries often mean more
paths. The average synthesis time is 64s (50s⇠120s) which indicates
that the synthesis is e�cient.

Improve the explore paths for 63 programs, 66.11% on average
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