
Grammar-Agnostic Symbolic Execution by
Token Symbolization

Joint work with Weiyu Pan, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

Zhenbang Chen
(zbchen@nudt.edu.cn)

ACM SIGSOFT International Symposium on Software Testing and Analysis

1

mailto:zbchen@nudt.edu.cn

Parsing

2

Parsing

3

Parsing
Code

Input

Software

Parsing

4

Parsing
Code

Input Internal
Representation

Software

Parsing

5

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Output

Parsing

6

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

Parsing Code

Parsing code exists extensively

7

Parsing Code

8

Parsing code exists extensively

Compilers

…

Parsing Code

9

Parsing code exists extensively

Web BrowsersCompilers

… …

Parsing Code

10

Parsing code exists extensively

Document
Processing

Web BrowsersCompilers

… … …

Challenges in Testing
Complex Parsing Code

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

11

Challenges in Testing
Complex Parsing Code

Complex Parsing Code

An input grammar usually exists

12

Challenges in Testing
Complex Parsing Code

13

Lexical
Analysis

Complex Parsing Code

Input Token
Sequence

An input grammar usually exists

Challenges in Testing
Complex Parsing Code

14

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

An input grammar usually exists

Challenges in Testing
Complex Parsing Code

15

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

An input grammar usually exists

Error Error

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzging[ASE’19], LFuzzer[ISSTA’20], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

16

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzging[ASE’19], LFuzzer[ISSTA’20], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

17

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzging[ASE’19], LFuzzer[ISSTA’20], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

18

Not efficient

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzing[ASE’19], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

19

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzing[ASE’19], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

20

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzing[ASE’19], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

21

Need Input Grammar

Existing Work
• Random testing

• Coverage-oriented fuzzing

• AFL, JQF, …

• Grammar-directed fuzzing

• Black-box fuzzing[ASE’19], Zest[ISSTA’19], …

• Grammar-directed symbolic execution

• Godefroid et al. [PLDI’08], CESE[ASE’07], …

22

Need Input Grammar

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Symbolize each byte Many UNSAT path conditions

Symbolic Execution of Complex Parsing
Programs without Grammar

23

24

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Many inputs are rejectedSymbolize each byte

Symbolic Execution of Complex
Parsing Programs without Grammar

25

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Rejected
Hard to reach Symbolize each byte

Symbolic Execution of Complex
Parsing Programs without Grammar

26

Input Error
Analyze the application logic code is even harder

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Output

Symbolic Execution of Complex
Parsing Programs without Grammar

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

27

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

28

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

29

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

30

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

A token value represents
many byte-level values

31

Key Insight

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

Token provides an abstraction
for the input grammar

32

Key Idea

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Symbolize token values

Testing parsing code at the token level

33

Key Idea

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Collect token-level path
constraint

Testing parsing code at the token level

34

Technique Problems

35

Technique Problems

• Input generation for a
token sequence

• Analyze the application
code in priority

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

36

Technique Problems

• Input generation for a
token sequence

• Analyze the application
code in priority

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

grammars are often embedded in token-based implementation. Usu-
ally, the complex parsing program’s execution can be divided into
three stages: tokenization, grammar checking and application logic.
In the �rst stage, the input is tokenized into a sequence of tokens,
and each token represents a sub-sequence of the characters or
bytes in the input. After the �rst stage, grammar checking checks
whether the tokenized input, i.e., the sequence of tokens, satis�es
the grammar rules. After this step, the input is considered a valid
input, which will then be processed by the application logic code.
For example, suppose that we have an evaluator program for the
binary expression of numbers. The program’s input grammar is
as follows, where hNUMi and hOPi represent a number and an
operator, respectively, and their tokens are T_NUM and T_OP.

hEXPi ! hNUMihOPihNUMi
If the input is "11 + 22", in the �rst stage, "11", "+" and "22" are
tokenized to three tokens T_NUM, T_OP and T_NUM, respectively.
The token sequence composed by these three tokens satis�es the
grammar. Then, the evaluation converts the two number strings to
two integers and calculates the result as 33. However, if the input
is "1a + 22", the input cannot pass the tokenization code because
"1a" is not a number string; besides, if the input is "+ + 22", it can
be tokenized but the token sequence does not satisfy the grammar,
i.e., the input is also rejected.

It is challenging for symbolic execution to analyze token-based
parsing programs. If we symbolize the program inputs blindly,
e.g., symbolizing every byte of the inputs, it will be very hard
for the symbolic execution to analyze the code in the third stage
or even part of the second stage. The tokenizer or the grammar
checker may reject many inputs generated by symbolic execution.
This problem challenges the automatic testing of complex parsing
programs based on symbolic execution. There is existing work to
tackle this problem in symbolic execution [8, 10, 23]; however, the
existing work requires to provide the input grammar, which is often
unavailable and hard to infer [24].

We observe that token abstracts the inputs of complex parsing
programs. Di�erent inputs may be tokenized to be the same token.
Besides, input grammar checking is often implemented by checking
the token sequence of the input instead of the character sequence.
Hence, di�erent token sequences are more e�ective for testing the
complex parsing program. Suppose that we can symbolize the to-
kens during symbolic execution and generate new token sequences.
In that case, the grammar checking code will be tested more e�-
ciently, which also directly improves the e�ectiveness of testing the
application logic. Di�erent token sequences generated with respect
to the grammar checking code abstract the di�erent cases of the
valid input requirements or even the application logic.

Based on this observation, we propose grammar-agnostic sym-
bolic execution, i.e., a framework for e�ective symbolic execution
of complex parsing programs based on token symbolization without
the need of input grammars. Our framework does not collect the
byte-level constraint in the tokenization stage but collects the token
constraints in the grammar checking stage. Then, our framework
can generate new token sequences using the token constraints.
Two technical problems challenge our framework: (1) how to gen-
erate the input of a token sequence? (2) how to analyze the code in
application logic in priority?

For the �rst problem, we propose to do the symbolic execution
of tokenization code �rst and collect the constraints describing
the possible values of tokens. Then, when generating the input
from a token sequence, our framework uses these constraints to
generate the program input. For the second problem, we propose
maintaining the constraints collected in application logic separately
and exploring the corresponding unexplored paths in priority under
the speci�c token sequence. In this way, our framework tests the
code in application logic in priority and automatically generates
the inputs for di�erent input grammar cases.

In principle, our method can be viewed as an instance of composi-
tional symbolic execution [9][18], which usually uses function-level
summaries to reduce the program’s path space and improve sym-
bolic execution’s e�ciency. The symbolic execution of tokenization
code extracts the summary of tokenization. Then, when doing the
symbolic execution of the parsing program, we only collect the
token constraints in the grammar checking code but ignore the
byte-level constraints in the tokenization code, and the token-level
path exploration is the system-level symbolic execution in compo-
sitional symbolic execution for complex parsing programs. When
generating the byte-level inputs, we use the tokenization summaries
and the token-level constraint to construct the byte-level constraint,
which also corresponds to the stitching of system-level constraints
and function-level summaries in compositional symbolic execution.

As far as we know, our work is the �rst parsing-oriented sym-
bolic execution framework that does not need the input grammar. We
have implemented our method in a prototype for Java programs
based on Symbolic PathFinder (SPF) [27]. The results of the exten-
sive experiments on real-world benchmark programs indicate the
e�ectiveness and e�ciency of our approach.

Our main contributions are as follows.

• We propose the framework of grammar-agnostic symbolic
execution that symbolizes tokens to generate valid program
inputs more e�ciently.

• We propose a two-stage algorithm that collects the token
constraints in the �rst stage and then generates valid inputs
to quickly cover the grammar checking code and application
logic code in the second stage.

• We have implemented our method in a prototype based on
JPF and carried out extensive experiments on real-world
open-source Java parsing programs (121531 lines of code in
total).

• Our method detects 6 unknown bugs and improves both
statement coverage and branch coverage. Compared with
byte-level symbolization and fuzzing methods, our method
achieves orders of magnitude speedups to �nd the same
bugs.

The remainder of this paper is organized as follows. Section 2
brie�y introduces dynamic symbolic execution and gives a motiva-
tion example. Section 3 depicts our framework in details. Section 4
gives the implementation and evaluation. Section 5 discusses the
limitations of our approach. Section 6 reviews the related work and
compares them with our method. Section 7 concludes the paper.

37

Technique Problems

• Input generation for a
token sequence

• Analyze the application
code in priority

Summarize the tokenization
code first

38

Technique Problems

• Input generation for a
token sequence

• Analyze the application
code in priority

Record byte-level path
constraint in application logic

Summarize the tokenization
code first

39

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

New Input

First Stage

Second Stage

40

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Token Value
Constraint Map

First Stage

41

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

Do not collect byte-level PC

First Stage

Second Stage

42

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

Collect Token PC

First Stage

Second Stage

43

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

Collect Byte-level PC

First Stage

Second Stage

44

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

First Stage

Second Stage

45

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Applicati
on Logic

Token Value
Constraint Map

Token PC

Application
Logic PC

First Stage

Second Stage

46

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

First Stage

Second Stage

47

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token Value
Constraint Map

Token PC

Application Logic PC

New Input

First Stage

Second Stage

48

Motivation ExampleGrammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

49

Motivation ExampleGrammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

11+12 31+a 49+z 11*a …

50

Motivation ExampleGrammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

11+12 31+a 49+z

11+1a

11*a

0*11

…

a-11 a+11 …

51

Motivation Example

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

52

Motivation Example

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

53

Motivation Example
Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

54

Motivation Example

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳

𝚃_𝙾𝙿

55

Pure DSE

56

Motivation Example

• Pure DSE

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

57

Input: First Path’s Path Condition

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Motivation Example

• Pure DSE

First Path’s Path Condition

Negation in DFS style

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

58

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Motivation Example

• Pure DSE

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

First Path’s Path Condition

59

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Motivation Example

• Pure DSE

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

First Path’s Path Condition

Unsatisfiable
60

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Motivation Example

• Pure DSE

First Path’s Path Condition

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

61

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Motivation Example

• Pure DSE

First Path’s Path Condition

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

62

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

New Input:

Motivation Example

• Pure DSE

First Path’s Path Condition

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

New input will be rejected
63

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

New Input:

Motivation Example

• Pure DSEGrammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Six iterations to cover all the parsing code

64

Motivation Example

• Pure DSE

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Impossible to trigger the
bug with 5-length strings

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

65

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Grammar-Agnostic DSE

66

Motivation Example

• Grammar-agnostic DSE

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

First Stage

67

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′ � ∧
t[1] ≥′� 0′� ∧ t[1] ≤′� 9′ �

Motivation Example

• Grammar-agnostic DSE Second Stage

First Path’s Path Condition

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

68

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Token PC Application
Logic PC

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

• Grammar-agnostic DSE Second Stage

First Path’s Path Condition

69

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Token PC Application
Logic PC

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

70

Token PC Application
Logic PC

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

71

Token PC Application
Logic PC

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙽𝚄𝙼⟩

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

72

Token PC Application
Logic PC

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙽𝚄𝙼⟩

t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

73

Token PC Application
Logic PC

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙽𝚄𝙼⟩

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

74

Token PC Application
Logic PC

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙽𝚄𝙼⟩

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

Motivation Example

75

Token PC Application
Logic PC

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙽𝚄𝙼⟩

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

However, PC2 is unsatis�able because of a[4]’s three constraints.
Then, we select the next o�-the-path branch that is generated at
Line 42 and the path condition (denoted as PC3) is as follows.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] > ’9’

PC3 is satis�able. Suppose that solving PC3 generates "12+1z",
which will be rejected by the parsing program, because the last char-
acter is not a number character. In this way, we need 6 iterations to
cover Line 17 and Line 39 under DFS. If the DSE employs BFS, it
still needs 6 iterations to cover Line 17 and Line 39. In summary, the
DSE with byte-level symbolization generates many invalid inputs
that will be rejected by the parsing program and do not contribute
to the testing of the program.

Besides, it is impossible for DSE to detect the bug at Line 7
under the initial input "12+13". The reason is that there exist
no 5-length strings that satisfy the grammar [1] and whose last
character is �z�. However, there do exist valid input strings that
can trigger the bug, e.g., "12+z".

2.2.2 Grammar-Agnostic DSE. Our grammar-agnostic DSE is a
two-stage procedure. In the �rst stage, we just do the DSE of the
tokenization code, which collects the constraint of each token value,
i.e., the symbolic summary [9] of tokenization code. Our framework
starts with a one-size input and gradually increases the input size
to collect the token values and their constraints. After the �rst
stage, each collected token has a concrete value (usually an integer
value) and its corresponding byte-level constraint. For the example
program in Figure 1, our framework does the DSE of getNextToken.
In the beginning, the input string’s length is one. The paths explored
by the DSE of getNextToken are two normally terminated paths.
The others are all paths with a parsing exception. The two normally
terminated paths correspond to the token values T_OP and T_ID,
respectively. Their path constraints are as follows, where TC[t]
represents the path constraint of token value t , where t[j] represents
the ith character’s symbolic value in the string represented by t .

TC[T_ID] = t[0] � �a� ^ t[0] �z�
TC[T_OP] = t[0] � �⇤� ^ t[0] �+�

The parsing exception paths are ignored. Hence, we have collected
the constraints of two token values. Then, we increase the input
size to two and do the DSE of getNextToken again. We will collect
three normally terminated paths, in which there is a new token
value T_NUM, and the constraints for T_ID and T_OP are the same
as those generated by one-size input. The constraint of T_NUM is as
follows.

TC[T_NUM] = t[0] � �0� ^ t[0] �9� ^ t[1] � �0� ^ t[1] �9�

So, after the two times of DSE for getNextToken, we get all the
token values and the constraints. Then, if we increase the input size
to three, there will be no new token value generated and no new
constraint for each already generated token value. This �rst stage
terminates. In practice, we set a threshold to terminate the �rst
stage (Section 2.2.1). The result of the �rst stage is a map TC that
records the explored token values and their input constraints. TC

actually gives a symbolic summary of the method getNextToken,
i.e., the relation between the inputs and the return values.

After the �rst stage, our framework starts the second stage, in
which we symbolize both the token generated and each byte in the
input. Our framework maintains two path conditions: one for the
symbolized tokens (denoted as PCT) and the other for the branches
in application logic code (denoted as PCA). More speci�cally, the
framework maintains two sets OBT and OBA of the o�-the-path
branches for the grammar checking code and the application logic
code, respectively. Notably, the framework does not collect the
constraints of the branches in the tokenization code. Similar to
the system-level symbolic execution in compositional symbolic
execution, the path exploration at the token-level is more e�ective
for testing the parsing program.

Then, after exploring a path, the framework �rst selects an o�-
the-path branch ba from the application logic’s o�-the-path branch
setOBA and generates an input by solving the constraint composed
by PC(ba) and the current token constraint PCT , i.e., PCT ^PC(ba).
The solving of this new path condition contains three steps: �rst,
we solve PCT to get a sequence of token values; second, based on
these values and the token constraint map TC generated in the
�rst stage, we generate the byte-level constraint for PCT (denoted
as PCCT), and PC

C
T reuses the summary of the tokenization code

in a similar way of stitching the system-level constraint and the
function-level constraints in compositional symbolic execution;
�nally, we solve PCCT ^ PC(ba) to generate the new input. If there
is no more branches inOBA, the framework selects an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT and solves the token constraint PC(bt) as before (i.e., PC(ba)
is true) to generate a new input. This procedure iterates until there
are no branches in the grammar checking’s o�-the-path branch set
OBT or timeout.

For the example program, suppose that the initial input of the
second stage is also "12+13". In the second stage, after the �rst
execution, our framework collects the following path condition,
where T[i] represents the ith token’s symbolic value.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] , 0z0| {z }
PCA

There are three o�-the-path branches in the grammar checking’s
o�-the-path branch setOBT and one in the application logic code’s
o�-the-path branch set OBA. We select the branch in OBA whose
path condition is a[4] = 0z0. Hence, the new path constraint is as
follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] = T_NUM| {z }
PCT

^a[4] = 0z0| {z }
PC(ba)

To solve PCT ^PC(ba), we solve PCT to get a token value sequence,
based on which and TC we generate a byte-level constraint PCCT
by mapping the token values to their constraints. Solving the above
PCT generates the token sequence hT_NUM, T_OP, T_NUMi. Hence,
PC

C
T is as follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9� TC[T_NUM]

t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

Unsatisfiable

Motivation Example

• Grammar-agnostic DSE Second Stage

First Path’s Path Condition

76

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

• Grammar-agnostic DSE Second Stage

First Path’s Path Condition

77

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

• Grammar-agnostic DSE Second Stage

First Path’s Path Condition

78

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

Input:

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙸𝙳⟩

Motivation Example

79

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧
t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙸𝙳⟩

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

80

𝚃_𝙽𝚄𝙼
𝚃_𝙸𝙳
𝚃_𝙾𝙿

t[0] ≥′� a′� ∧ t[0] ≤′� z′�

t[0] ≥′� *′� ∧ t[0] ≤′� +′�

t[0] ≥′� 0′� ∧ t[0] ≤′� 9′� ∧
t[1] ≥′� 0′� ∧ t[1] ≤′� 9′�

⟨𝚃_𝙽𝚄𝙼, 𝚃_𝙾𝙿, 𝚃_𝙸𝙳⟩

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

New Input:

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

• Grammar-agnostic DSE Second Stage

Second Path’s Path Condition

81

Input:

Application
Logic PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

• Grammar-agnostic DSE Second Stage

Second Path’s Path Condition

82

Input:

Application
Logic PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Motivation Example

• Grammar-agnostic DSE Second Stage

Second Path’s Path Condition

83

Input:

Application
Logic PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Token PC

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

However, PCCT ^ PC(ba) is unsatis�able, which means any inputs
generating the current token sequence, i.e., hT_NUM, T_OP, T_NUMi,
can not trigger the bug. Now, there is no branch in OBA, which
means DSE �nishes the path exploration of the application logic
under the current token sequence. Then, we select an o�-the-path
branch bt from the grammar checking’s o�-the-path branch set
OBT . Suppose that we also employ DFS and the path condition of
bt , i.e., PC(bt), is as follows.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM

Besides PC(bt), we also add the following range constraint PCR for
all the token variables (omitted for the last step), where the values
are the key values of TC.

3€
i=1

T[i] 2 {T_ID, T_NUM, T_OP}

Solving PC(bt)^PCR explores a new path at the token level, which
can be considered as exploring a new system-level path in com-
positional symbolic execution to improve the e�ciency of the
symbolic execution. Suppose that solving PC(bt) ^ PCR generates
the solution in which T[2] is T_ID. The new token sequence is
hT_NUM, T_OP, T_IDi. Then, the byte-level constraint PCc (bt) is as
follows.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z� TC[T_ID]

Suppose that solving PCc (bt) generates the input string "11+a". The
concolic execution of the example program under "11+a" covers
Lines 17&39 and collects the following path constraints

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] , 0z0| {z }
PCA

Then, same as before, we select the branch in the application logic’s
o�-the-path branch set OBA and generate the following constraint.

T[0] = T_NUM ^ T[1] = T_OP ^ T[2] , T_NUM ^ T[2] = T_ID| {z }
PCT

^

a[3] = 0z0| {z }
PC(ba)

This constraint corresponds to the following byte-level constraint,
which is satis�able.

a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ TC[T_NUM]
a[2] � �⇤� ^ a[2] �+�^ TC[T_OP]
a[3] � �a� ^ a[3] �z�^ TC[T_ID]
a[3] = �z� PC(ba)

Suppose that the solving generates "11+z", which is accepted by
the grammar and triggers the bug at Line 7.

In summary, by employing grammar-agnostic DSE, we can cover
Lines 17&39 at the 2nd execution and trigger the bug at Line 7 at
the 3rd execution.

3 METHOD
This section presents the details of grammar-agnostic DSE. The
framework will be introduced �rst. Then, the collection and solving
of token constraints will be presented in the following two sub-
sections. Finally, we discuss our approach.

3.1 Framework
Algorithm 1 shows the details of the grammar-agnostic DSE frame-
work. The inputs are a parsing program P and an initial input I0.
The algorithm �rst employs GenTokenSummary (Algorithm 2) to
extract the summary of the tokenization method, i.e., collecting
the token value constraints (Line 2), whereMt is the tokenization
method in P. Then, the algorithm maintains two worklistsWt and
Wa to store the o�-the-path branches for grammar checking code
and the application logic code, respectively.

The main loop is a worklist based procedure. The algorithm �rst
carries out the concolic execution of P under the current input I
(Line 6). This execution returns two path constraints: PCT and PCA,
i.e., the token path constraint and the byte-level path constraint
collected in the application logic code. Then, we save the open
o�-the-path branches of each path constraint to the correspond-
ing worklist (Lines 7&8). openBranches(PC) is de�ned as follows,

where PC =
n€
i=1

Ci and bi is the branch of each Ci .

{¬bi 7! (
i�1€
j=1

Cj) ^ ¬Ci | 1 i n ^ ¬bi is not explored} (1)

Algorithm 1: Grammar-Agnostic Dynamic Symbolic Exe-
cution
GADSE(P, I0)
Data: P is a program, I0 is the initial input.

1 begin
2 TC GenTokenSummary(P,Mt)
3 Wt ,Wa ;, ;
4 I I0
5 while true do
6 (PCT , PCA) concolic_execute(P, I)
7 Wt Wt [openBranches(PCT)
8 Wa Wa [openBranches(PCA)
9 whileWa , ; do

10 PC
c
a Selecta (Wa)

11 I TokenSolve(TC, PCT , PCca)
12 (PCT , PCA) concolic_execute(P, I)
13 Wa Wa [openBranches(PCA)
14 end
15 if Wt = ; then
16 return
17 end
18 PC

c
t Selectt (Wt) //token-level path exploration

19 I TokenSolve(TC, PCct , true)
20 end
21 end

Grammar-Agnostic DSE

84

Cover all the parsing code at the 2nd
iteration. Trigger the bug at the 3rd iteration

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

1 public void entry(String a) throws ParseException{
2 // inputReader �s type is Reader
3 inputReader = new StringReader(a);
4 parseExpr ();
5 // application logic starts
6 if (a.charAt(a.length () - 1) == �z�) {
7 assert(false); //bug
8 }
9 }
10

11 void parseExpr () throws ParseException {
12 int token = getNextToken ();
13 if (token == T_NUM){
14 parseOp ();
15 return;
16 } else if (token == T_ID){
17 if (getNextToken () == T_EOF) return;
18 }
19 throw new ParseException ();
20 }
21

22 void parseOp () throws ParseException {
23 int token = getNextToken ();
24 if (token == T_OP){
25 parseExpr ();
26 } else if (token == T_EOF){
27 return;
28 }
29 throw new ParseException ();
30 }
31

32 int getNextToken () throws ParseException {
33 int res = inputReader.read();
34 if (res == -1) return T_EOF;
35 char c = (char) res;
36 if (c >= �*� && c <= �+�){
37 return T_OP;
38 } else if (c >= �a� && c <= �z�){
39 return T_ID;
40 } else if (c >= �0� && c <= �9�){
41 char next_c = (char) inputReader.read();
42 if (next_c >= �0� && next_c <= �9�){
43 return T_NUM;
44 }
45 }
46 throw new ParseException ();
47 }

Figure 1: An example parsing program.

2 ILLUSTRATION
2.1 Dynamic Symbolic Execution
We use dynamic symbolic execution (DSE) [11, 30] to analyze com-
plex parsing programs. DSE (or concolic execution) combines tra-
ditional symbolic execution and concrete execution to analyze a
program. Given a program P, the initial input I and the input’s
symbolization strategy, DSE executes P with I concretely, which
generates a path p. At the same time, DSE also carries out sym-
bolic execution along p and records the unexplored o�-the-path
branches along p. An o�-the-path branch corresponds to the nega-
tion of a branch along p. For example, if p’s path condition is
PC(p) = ^ni=1Ci and Ci is the symbolic condition of the branch
bi , the path condition of bj ’s o�-the-path branch (denoted as ¬bj)
is PC(¬bj) = (^j�1

i=1Ci) ^ ¬Cj , where 1 j n. When the concrete

hExpri ::= hIDi | hNumberi | hNumberi hOpi hExpri
hIDi ::= �a� | �b� | ... | �y� | �z�

hNumberi ::= �00� | �01� | ... | �98� | �99�
hOpi ::= �*� | �+�

Figure 2: Grammar in the example program, where hIDi
must be a one-character identity and hNumberi must be a
two-digital number.

execution terminates, DSE selects an o�-the-path branch b and
solves the path condition of b to generate a new input to do the
concolic execution of P again. The o�-the-path branch selection
is determined by the search heuristic, such as depth-�rst search
(DFS) and breadth-�rst search (BFS), which controls the style of
path exploration. This procedure continues until timeout or there
is no unexplored o�-the-path branches.

2.2 Motivation Example
This subsection uses a motivation example to illustrate our method.
Figure 1 shows a Java parsing program extracted from real-world
programs. The program implements the parser for the grammar in
Figure 2. hExpri is the entry non-terminal. This grammar accepts
an expression that can be a single-character name (hIDi), a two-
digit number (hNumberi) or a composite expression whose left is
a number and right is an expression. In Figure 1, entry function
accepts an input string a and initializes the inputReader object.
Then, parseExpr is used to parse the input string. If the parsing is
successful, entry checks whether the last character is �z�. The true
branch contains a bug (Line 7). parseExpr implements a recursive
descent parser [1]. getNextToken reads the next character c and
checks c to return a token. There are four token values in total.

2.2.1 Original DSE. Suppose that the initial input string is "12+13"
and we symbolize each character. Then, the path condition of the
�rst iteration (denoted as PC1) is as follows, where a[i] represents
the ith character’s symbolic value, and the right-side numbers are the
line numbers of the branch conditions that generate the constraints.

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^ (36&38)
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^ (40&42)
a[2] � �⇤� ^ a[2] �+�^ (36)
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^ (36&38)
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^ (40&42)
a[4] , �z� (6)

There are 17 o�-the-path branches along the �rst path. If we use DFS
to select the next o�-the-path branch, i.e., the one corresponding to
the last branch whose condition is a[4] , �z�, the path condition
for generating the new input would be PC1 except the last condition
is changed to a[4] = �z�, which is as follows (denoted as PC2).

a[0] � �⇤� ^ a[0] > �+� ^ a[0] < �a�^
a[0] � �0� ^ a[0] �9� ^ a[1] � �0� ^ a[1] �9�^
a[2] � �⇤� ^ a[2] �+�^
a[3] � �⇤� ^ a[3] > �+� ^ a[3] < �a�^
a[3] � �0� ^ a[3] �9� ^ a[4] � �0� ^ a[4] �9�^
a[4] = ’z’

• Implementation

• Java Programs

• JPF-based DSE engine

Evaluation

85

• Implementation

• Java Programs

• JPF-based DSE engine

Evaluation

• Research questions

• Effectiveness

• Bug detection and coverage

• Efficiency

86

Evaluation

• Benchmark

• 19 open-source Java parsing programs

• 11 types of grammars

• 5~128 token types

87

Evaluation

• Baseline

• Byte-level symbolization

• JQF: coverage-guided fuzzing [ISSTA’19]

• Grammar: grammar-guided black-box fuzzing [ASE’19]

• Setup

• 1 hour analysis time

88

Results of Bug Finding
Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

Table 2: The results of unknown detected bugs. The number is the time for �nding the bug in seconds. >1h means that the
method fails to �nd the bug within 1 hour. Yes in the columnG������ represents thatG������ �nds the bug, and Nomeans
that G������ fails to �nd the bug.

Name Project Type G���� C��� JQF G������
Bug 1 J2latex NumberFormatException 143s >1h 185s No
Bug 2 CMMParser NullPointerException 36s >1h >1h Yes
Bug 3 CMMParser NumberFormatException 41s >1h >1h Yes
Bug 4 Jsijcc NullPointerException 456s >1h >1h No
Bug 5 Jsijcc ClassCastException 163s 77s >1h No
Bug 6 Jsijcc ClassCastException 44s >1h >1h Yes

Table 3: Experimental Results of Code Coverage (#S: the number of statements, #B: the number of branches, #P: the number
of paths).

Program Strategy C��� G���� JQF G������
#S #B #P #S #B #P #S #B #P #S #B #P

Clojure
BFS 1272 943 16838 1247 939 22628 1217 890 1210504 1182 833 2115DFS 1119 794 7879 1278 952 17426

FirstOrder
BFS 538 214 18534 565 220 15586 549 220 2629163 497 179 8571DFS 545 208 1710 565 220 11722

JsonParser
BFS 434 230 27211 497 264 30359 429 223 1989811 455 229 373DFS 408 192 8684 497 264 30471

J2Latex
BFS 1755 948 230 2433 1500 14343 2677 1704 1381899 2334 1435 54005DFS 1710 925 660 2616 1724 13924

SiXpath
BFS 1588 954 10193 1702 1055 4139 1048 484 2380125 1879 1125 675DFS 1569 896 1941 1734 1073 6802

Aejcc
BFS 313 113 22302 335 125 22318 314 119 2731671 193 53 7DFS 323 119 12266 335 125 18387

Jsijcc
BFS 2553 1302 2435 3172 1755 17426 2738 1538 424095 3674 2080 72887DFS 1999 880 10 3036 1701 15792

FastJSON
BFS 1239 475 12296 1642 635 3325 1602 561 2026154 1567 512 373DFS 1144 436 7375 1821 704 3146

Bling
BFS 408 151 25591 413 157 28922 422 160 2326562 311 100 12DFS 385 140 15960 413 157 27356

Calculator
BFS 335 121 321 354 130 134 321 122 125495 194 59 1DFS 335 121 321 354 130 149

HtmlParser
BFS 565 342 12166 579 351 32044 506 269 123352 360 151 68DFS 504 262 6710 553 316 31347

UriParser
BFS 702 350 12808 707 340 2615 802 368 40956 795 345 1372DFS 619 258 1917 707 340 2531

Jsonmwn
BFS 779 443 22745 842 444 29355 871 517 1694878 665 298 373DFS 699 344 369 845 445 29274

OaJava
BFS 2138 1041 13461 3862 1908 32315 3562 1954 1424084 3839 1890 54005DFS 2241 945 395 3287 1596 17347

JavaParser
BFS 2213 1190 6821 3464 2033 16337 3285 2032 988016 3932 2329 54005DFS 2123 1014 883 3146 1882 16265

CMMParser
BFS 793 469 751 1239 839 9352 912 520 34739 1252 801 2802DFS 995 598 704 1273 859 4608

Curta
BFS 1313 616 26150 1262 579 27868 1244 591 1875713 1048 424 3287DFS 1182 548 5920 1290 596 13260

SqlParser
BFS 472 224 9390 491 230 6082 490 242 1825278 373 166 45229DFS 477 228 888 491 230 6082

JsonRaupachz
BFS 410 189 19782 423 194 27946 420 197 1756342 413 190 373DFS 424 194 3843 423 194 24676

Similar to DFS, Figures 5&6 show the results under BFS. G����
achieves better results for statement coverage and branch coverage
in 17 and 16 programs under BFS, respectively. On average, G����

achieves 27.29% (-3.88%⇠ 80.64%) relative increasing of statements,
and 32.80% (-6.01%⇠83.29%) relative increasing of branches. These

Find 6 unknown bugs, and each needs less than 8 minutes

89

Results of Coverage
ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

DFS

DFS

BFS

BFS

Statement
 Coverage

Branch
Coverage

31.18%
(-0.24%∼59.18%)

27.29%
(-3.88%∼ 80.64%)

48.41%
(0.0%∼93.3%)

32.80%
(-6.01%∼83.29%)

90

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

Table 1: The benchmark Java programs.

Subject SLOC Brief Description
Clojure 3269 A Clojure parser
FirstOrder 2103 A parser for �rst-order logic
JsonParser 4428 JavaCC-built JSON Parser
J2Latex 9723 A compiler from Java to Latex
SiXpath 6313 An XPath parser
Aejcc 3269 Arithmetic Expression interpreter
Jsijcc 6313 Javascript interpreter
FastJSON 19307 Alibaba JSON parser
Bling 3269 parser for arithmetic expressions
Calculator 3420 arithmetic expression evaluator
HtmlParser 2737 A HTML parser
UriParser 2720 An URI parser
Jsonmwn 3371 A JSON parser
OaJava 15907 A Java code parser
JavaParser 22372 Java 1-15 Parser
CMMParser 3420 A parser for a subset of C
Curta 4428 A expression evaluator
SqlParser 1791 A SQL parser
JsonRaupachz 3371 A JSON parser
Total 121531 19 open source Java programs

out each test generation task for 1 hour and collect the trend of
coverage, except the grammar-guided method, which only needs
a little time to generate the inputs with respect to the grammar.
For some programs, G�����’s prototype does not support the
input grammars. We create the generator for the input grammars
according to G�����’s document [13]. Because G������ is a
black-box grammar-based fuzzer and does not analyze the program,
we do not compare with G������ when evaluating the e�ciency.
For each grammar in the benchmark programs, G������’s input
generation uses less than 20 minutes.

All the experiments were carried out on a server with 64 GB
memory and 16 3.1GHz cores. The operating system is Ubuntu
14.04.

4.2 Experimental Results
Answer to RQ1. To answer the the �rst question, we evaluate
G���� by comparing with C���, JQF and G����� in two as-
pects: unknown bug detection and code coverage. Next, we give
the experimental results.
Unknown bugs.G���� detects 6 unknown bugs in the benchmark
programs. Table 2 shows the results of bug detection. We only show
whetherG������ can �nd the bug becauseG������ is a black-
box grammar fuzzing tool and does not need to analyze the program.
All the bugs are caused by runtime exceptions1.

• Bug 1: G���� detected a bug in J2latex that causes the
runtime exception NumberFormatException at the unary
function in the project’s C1 class.G���� generates the input
that contains "0L", which is interpreted by the translator as

1All the buggy programs and the inputs that generated by G���� to trigger the bugs
are available at https://github.com/gadse-bug/bugs .

an octal number and use Integer.parseInt to parse the
string.

• Bugs 2&3: G���� detected two bugs in CMMParser that
cause NullPointerException and NumberFormatException ex-
ceptions. The �rst one is in the polynomial function of
the CMMParser class. The reason is that the input statement
string passes the grammar checking, but the statement uses
an unde�ned variable, resulting in NullPointerException.
The second one is in the term function of the CMMParser
class, and the reason is that the generated input causes the
parser to convert a string to a �oating-point object. However,
the string is the concatenation of "-" and the null pointer,
i.e., "-null", which results in the exception. An unde�ned
variable also causes the null pointer.

• Bugs 4&5&6:G���� detected three bugs in JSInterpreter.
All the bugs are in the evaluator class EvaluationVisitor
of the program. The �rst one causes NullPointerException
in the visit function of an assignment expression. G����
generates an input in which there is an assignment that
assigns an unde�ned variable. The second one causes the
ClassCastException in the visit function of additive ex-
pression. The fault is a programming mistake. The last one
also causes the ClassCastException. The bug is in the
getDouble method in JavascriptType class. The reason
is that the generated input makes the interpreter convert a
double value from a non-numerical object.

C��� and JQF can �nd only one bug in one hour. G������ can
�nd only three bugs. There is one bug (i.e., Bug 4) that is only
found by G����. C��� and JQF generate many invalid inputs,
and G������ can generate valid inputs but does not do well in
exploring the path space of application logic. All the bugs can be
triggered by the inputs that are valid with respect to the input
grammars, which indicate that passing the grammar checking is
very important for testing complex parsing programs. Besides, only
passing the grammar checking is not enough, and the exploration of
the paths in application logic code is also important. These results
indicate that G���� is e�ective in bug detection.

Code coverage. Table 3 shows the detailed coverage results. Fig-
ures 3&4 show the comparison results of new statements and
branches in DFS between C��� and G����, respectively. The
X-axis shows the benchmark programs ordered by the values in
Y-axis. The Y-axis shows the relative increasing of the covered state-
ments or branches, which is de�ned as follows, where NG���� and
NC��� denote the numbers of statements or branches explored by
G���� and C���, respectively.

NG���� � NC���
NC���

(2)

As shown by the �gures, under DFS, G���� can explore more
statements than C��� in 17 (89.47%) programs. On average, the
relative increasing of statements achieved by G���� is 31.18% (-
0.24%⇠59.18%). For branch coverage, G���� preforms better in the
same number of programs as statement coverage, and achieves the
relative increasing of branches as 48.41% (0.0%⇠93.3%) on average.
It indicates that G���� improves the e�ectiveness of DSE. Besides,
the improvements of statements and branches are co-related.

Results of Coverage
ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS
E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

GA
DS

E
vs
.C

HA
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

DFS

DFS

BFS

BFS

Statement
 Coverage

Branch
Coverage

31.18%
(-0.24%∼59.18%)

27.29%
(-3.88%∼ 80.64%)

48.41%
(0.0%∼93.3%)

32.80%
(-6.01%∼83.29%)

Better than
byte-level

symbolization
in both

statement and
branch

coverages

91

Results of Coverage

92

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 s
ta

te
m

en
ts

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 7: Trends of statement coverage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 b
ra

nc
he

s

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 8: Trends of branch coverage.

G���� is highly e�cient for automatic testing. Therefore, we have
the following conclusion for RQ2.

In addition, as shown by the �gures, compared with byte-level
symbolization, JQF achieves a better coverage. Besides, JQF per-
forms best in the beginning (i.e., before 20 minutes). The reason is
that fuzzing is fast and runs the program many times (on average
1420465) in 1 hour to improve the statement or branch coverage.
Moreover, these results and the bug �nding results also indicate
that the coverage improvement is not co-related to bug �nding.

Answer to RQ2: Our method �nds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to �nd the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity
The threats to the validity are mainly external. The benchmark
Java programs and the grammars are limited. We plan to apply our
method to more complex programs in the next step. We alleviate
the experimental errors by running each task three times and use
the average value as the result. For internal threats, which mainly
come from implementation errors, we designed some manually
written simple grammar parsing programs (such as the motivation
example) to test our prototype.

5 LIMITATIONS
Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not
employ token-based input grammar checking, i.e., URL pars-
ing, which usually employs regular expressions for parsing
and does not use tokenization.

• The separation of the parsing program into di�erent stages
needs manual help. Besides, we need the entry information
of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful
tokens in�uence the byte-level constraints of the tokens in
the �rst stage, which may cause path divergence.

• Our method is limited in handling the parsing program with
the context-free input grammars. Especially, we may gener-
ate the token sequence that does not satisfy the matching
requirements in context-free grammars, e.g., �(� and �)�
should be matched.

• If the application logic code is tightly weaved into the parsing
code, our method’s advantage may be doomed, especially
the ability to explore the paths of application logic code in
priority.

The �rst one is inevitable. For the second one, we can employ a
lightweight static analysis method to suggest the separation and
the tokenization code of the parsing program. The third one can be
supported by employing multiple tokens-based summary during
the �rst stage, which may introduce more overhead. The fourth
one is because our method does not need grammar. We suggest
developing a search heuristics to select the token constraints that
tend to generate valid token sequences. The last one needs more
abstractions for improving symbolic execution’s e�ciency further.

6 RELATEDWORK
Our work is related to many research areas, including symbolic
execution, fuzzing, grammar inference, etc. Next, we review the
related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-
�ciency of symbolic execution for parsing programs [10, 23]. Gode-
froid et al. [10] propose grammar-based white-box fuzzing, which
also suggests employing token symbolization during the symbolic
execution. The token constraint is then solved based on an input
grammar. CESE [23] also uses an input grammar to improve the
DSE of the grammar’s parsing program. CESE generates the initial
inputs based on the symbolic grammar generated from the input
grammar. These inputs are then used for the DSE of the parsing
program to explore the deeper paths. In contrast, our grammar-
agnostic DSE does not need to provide an input grammar. We use

Statement
 Coverage

Results of CoverageGrammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 s
ta

te
m

en
ts

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 7: Trends of statement coverage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 b
ra

nc
he

s

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 8: Trends of branch coverage.

G���� is highly e�cient for automatic testing. Therefore, we have
the following conclusion for RQ2.

In addition, as shown by the �gures, compared with byte-level
symbolization, JQF achieves a better coverage. Besides, JQF per-
forms best in the beginning (i.e., before 20 minutes). The reason is
that fuzzing is fast and runs the program many times (on average
1420465) in 1 hour to improve the statement or branch coverage.
Moreover, these results and the bug �nding results also indicate
that the coverage improvement is not co-related to bug �nding.

Answer to RQ2: Our method �nds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to �nd the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity
The threats to the validity are mainly external. The benchmark
Java programs and the grammars are limited. We plan to apply our
method to more complex programs in the next step. We alleviate
the experimental errors by running each task three times and use
the average value as the result. For internal threats, which mainly
come from implementation errors, we designed some manually
written simple grammar parsing programs (such as the motivation
example) to test our prototype.

5 LIMITATIONS
Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not
employ token-based input grammar checking, i.e., URL pars-
ing, which usually employs regular expressions for parsing
and does not use tokenization.

• The separation of the parsing program into di�erent stages
needs manual help. Besides, we need the entry information
of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful
tokens in�uence the byte-level constraints of the tokens in
the �rst stage, which may cause path divergence.

• Our method is limited in handling the parsing program with
the context-free input grammars. Especially, we may gener-
ate the token sequence that does not satisfy the matching
requirements in context-free grammars, e.g., �(� and �)�
should be matched.

• If the application logic code is tightly weaved into the parsing
code, our method’s advantage may be doomed, especially
the ability to explore the paths of application logic code in
priority.

The �rst one is inevitable. For the second one, we can employ a
lightweight static analysis method to suggest the separation and
the tokenization code of the parsing program. The third one can be
supported by employing multiple tokens-based summary during
the �rst stage, which may introduce more overhead. The fourth
one is because our method does not need grammar. We suggest
developing a search heuristics to select the token constraints that
tend to generate valid token sequences. The last one needs more
abstractions for improving symbolic execution’s e�ciency further.

6 RELATEDWORK
Our work is related to many research areas, including symbolic
execution, fuzzing, grammar inference, etc. Next, we review the
related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-
�ciency of symbolic execution for parsing programs [10, 23]. Gode-
froid et al. [10] propose grammar-based white-box fuzzing, which
also suggests employing token symbolization during the symbolic
execution. The token constraint is then solved based on an input
grammar. CESE [23] also uses an input grammar to improve the
DSE of the grammar’s parsing program. CESE generates the initial
inputs based on the symbolic grammar generated from the input
grammar. These inputs are then used for the DSE of the parsing
program to explore the deeper paths. In contrast, our grammar-
agnostic DSE does not need to provide an input grammar. We use

Statement
 Coverage

GADSE achieve best results in BFS mode
93

Results of Coverage

GADS(BFS)

CHAR(BFS) 6.67x

JQF 2.61x

94

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 s
ta

te
m

en
ts

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 7: Trends of statement coverage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 b
ra

nc
he

s

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 8: Trends of branch coverage.

G���� is highly e�cient for automatic testing. Therefore, we have
the following conclusion for RQ2.

In addition, as shown by the �gures, compared with byte-level
symbolization, JQF achieves a better coverage. Besides, JQF per-
forms best in the beginning (i.e., before 20 minutes). The reason is
that fuzzing is fast and runs the program many times (on average
1420465) in 1 hour to improve the statement or branch coverage.
Moreover, these results and the bug �nding results also indicate
that the coverage improvement is not co-related to bug �nding.

Answer to RQ2: Our method �nds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to �nd the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity
The threats to the validity are mainly external. The benchmark
Java programs and the grammars are limited. We plan to apply our
method to more complex programs in the next step. We alleviate
the experimental errors by running each task three times and use
the average value as the result. For internal threats, which mainly
come from implementation errors, we designed some manually
written simple grammar parsing programs (such as the motivation
example) to test our prototype.

5 LIMITATIONS
Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not
employ token-based input grammar checking, i.e., URL pars-
ing, which usually employs regular expressions for parsing
and does not use tokenization.

• The separation of the parsing program into di�erent stages
needs manual help. Besides, we need the entry information
of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful
tokens in�uence the byte-level constraints of the tokens in
the �rst stage, which may cause path divergence.

• Our method is limited in handling the parsing program with
the context-free input grammars. Especially, we may gener-
ate the token sequence that does not satisfy the matching
requirements in context-free grammars, e.g., �(� and �)�
should be matched.

• If the application logic code is tightly weaved into the parsing
code, our method’s advantage may be doomed, especially
the ability to explore the paths of application logic code in
priority.

The �rst one is inevitable. For the second one, we can employ a
lightweight static analysis method to suggest the separation and
the tokenization code of the parsing program. The third one can be
supported by employing multiple tokens-based summary during
the �rst stage, which may introduce more overhead. The fourth
one is because our method does not need grammar. We suggest
developing a search heuristics to select the token constraints that
tend to generate valid token sequences. The last one needs more
abstractions for improving symbolic execution’s e�ciency further.

6 RELATEDWORK
Our work is related to many research areas, including symbolic
execution, fuzzing, grammar inference, etc. Next, we review the
related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-
�ciency of symbolic execution for parsing programs [10, 23]. Gode-
froid et al. [10] propose grammar-based white-box fuzzing, which
also suggests employing token symbolization during the symbolic
execution. The token constraint is then solved based on an input
grammar. CESE [23] also uses an input grammar to improve the
DSE of the grammar’s parsing program. CESE generates the initial
inputs based on the symbolic grammar generated from the input
grammar. These inputs are then used for the DSE of the parsing
program to explore the deeper paths. In contrast, our grammar-
agnostic DSE does not need to provide an input grammar. We use

Statement
 Coverage

Results of Coverage

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 s
ta

te
m

en
ts

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 7: Trends of statement coverage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 b
ra

nc
he

s

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 8: Trends of branch coverage.

G���� is highly e�cient for automatic testing. Therefore, we have
the following conclusion for RQ2.

In addition, as shown by the �gures, compared with byte-level
symbolization, JQF achieves a better coverage. Besides, JQF per-
forms best in the beginning (i.e., before 20 minutes). The reason is
that fuzzing is fast and runs the program many times (on average
1420465) in 1 hour to improve the statement or branch coverage.
Moreover, these results and the bug �nding results also indicate
that the coverage improvement is not co-related to bug �nding.

Answer to RQ2: Our method �nds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to �nd the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity
The threats to the validity are mainly external. The benchmark
Java programs and the grammars are limited. We plan to apply our
method to more complex programs in the next step. We alleviate
the experimental errors by running each task three times and use
the average value as the result. For internal threats, which mainly
come from implementation errors, we designed some manually
written simple grammar parsing programs (such as the motivation
example) to test our prototype.

5 LIMITATIONS
Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not
employ token-based input grammar checking, i.e., URL pars-
ing, which usually employs regular expressions for parsing
and does not use tokenization.

• The separation of the parsing program into di�erent stages
needs manual help. Besides, we need the entry information
of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful
tokens in�uence the byte-level constraints of the tokens in
the �rst stage, which may cause path divergence.

• Our method is limited in handling the parsing program with
the context-free input grammars. Especially, we may gener-
ate the token sequence that does not satisfy the matching
requirements in context-free grammars, e.g., �(� and �)�
should be matched.

• If the application logic code is tightly weaved into the parsing
code, our method’s advantage may be doomed, especially
the ability to explore the paths of application logic code in
priority.

The �rst one is inevitable. For the second one, we can employ a
lightweight static analysis method to suggest the separation and
the tokenization code of the parsing program. The third one can be
supported by employing multiple tokens-based summary during
the �rst stage, which may introduce more overhead. The fourth
one is because our method does not need grammar. We suggest
developing a search heuristics to select the token constraints that
tend to generate valid token sequences. The last one needs more
abstractions for improving symbolic execution’s e�ciency further.

6 RELATEDWORK
Our work is related to many research areas, including symbolic
execution, fuzzing, grammar inference, etc. Next, we review the
related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-
�ciency of symbolic execution for parsing programs [10, 23]. Gode-
froid et al. [10] propose grammar-based white-box fuzzing, which
also suggests employing token symbolization during the symbolic
execution. The token constraint is then solved based on an input
grammar. CESE [23] also uses an input grammar to improve the
DSE of the grammar’s parsing program. CESE generates the initial
inputs based on the symbolic grammar generated from the input
grammar. These inputs are then used for the DSE of the parsing
program to explore the deeper paths. In contrast, our grammar-
agnostic DSE does not need to provide an input grammar. We use

Branch
Coverage

95

Results of Coverage

Grammar-Agnostic Symbolic Execution by Token Symbolization ISSTA ’21, July 11–17, 2021, Virtual, Denmark

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 s
ta

te
m

en
ts

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 7: Trends of statement coverage.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 10 20 30 40 50 60

N
um

be
r o

f n
ew

 b
ra

nc
he

s

Time(min)

CHAR BFS
CHAR DFS

GADSE BFS
GADSE DFS

JQF

Figure 8: Trends of branch coverage.

G���� is highly e�cient for automatic testing. Therefore, we have
the following conclusion for RQ2.

In addition, as shown by the �gures, compared with byte-level
symbolization, JQF achieves a better coverage. Besides, JQF per-
forms best in the beginning (i.e., before 20 minutes). The reason is
that fuzzing is fast and runs the program many times (on average
1420465) in 1 hour to improve the statement or branch coverage.
Moreover, these results and the bug �nding results also indicate
that the coverage improvement is not co-related to bug �nding.

Answer to RQ2: Our method �nds the unknown bugs in less
than 8 minutes; whereas, byte-level symbolization-based DSE or
coverage-guided fuzzing fails to �nd the bugs in 6 hours. Com-
pared with byte-level symbolization, our method, on average,
achieves 6.67x and 30x speedups to achieve the same statement
and branch coverages, respectively.

4.3 Threats to Validity
The threats to the validity are mainly external. The benchmark
Java programs and the grammars are limited. We plan to apply our
method to more complex programs in the next step. We alleviate
the experimental errors by running each task three times and use
the average value as the result. For internal threats, which mainly
come from implementation errors, we designed some manually
written simple grammar parsing programs (such as the motivation
example) to test our prototype.

5 LIMITATIONS
Our grammar-agnostic DSE is limited in the following aspects:

• Our method is not applicable if the parsing program does not
employ token-based input grammar checking, i.e., URL pars-
ing, which usually employs regular expressions for parsing
and does not use tokenization.

• The separation of the parsing program into di�erent stages
needs manual help. Besides, we need the entry information
of the tokenization code.

• Our method is limited in its handling stateful tokens. Stateful
tokens in�uence the byte-level constraints of the tokens in
the �rst stage, which may cause path divergence.

• Our method is limited in handling the parsing program with
the context-free input grammars. Especially, we may gener-
ate the token sequence that does not satisfy the matching
requirements in context-free grammars, e.g., �(� and �)�
should be matched.

• If the application logic code is tightly weaved into the parsing
code, our method’s advantage may be doomed, especially
the ability to explore the paths of application logic code in
priority.

The �rst one is inevitable. For the second one, we can employ a
lightweight static analysis method to suggest the separation and
the tokenization code of the parsing program. The third one can be
supported by employing multiple tokens-based summary during
the �rst stage, which may introduce more overhead. The fourth
one is because our method does not need grammar. We suggest
developing a search heuristics to select the token constraints that
tend to generate valid token sequences. The last one needs more
abstractions for improving symbolic execution’s e�ciency further.

6 RELATEDWORK
Our work is related to many research areas, including symbolic
execution, fuzzing, grammar inference, etc. Next, we review the
related work and compare our method with them.

There exist work of leveraging input grammar to improve the ef-
�ciency of symbolic execution for parsing programs [10, 23]. Gode-
froid et al. [10] propose grammar-based white-box fuzzing, which
also suggests employing token symbolization during the symbolic
execution. The token constraint is then solved based on an input
grammar. CESE [23] also uses an input grammar to improve the
DSE of the grammar’s parsing program. CESE generates the initial
inputs based on the symbolic grammar generated from the input
grammar. These inputs are then used for the DSE of the parsing
program to explore the deeper paths. In contrast, our grammar-
agnostic DSE does not need to provide an input grammar. We use

Branch
Coverage

GADS(BFS)

CHAR(BFS) 30x

JQF 2.61x

96

Conclusion

97

Parsing

2

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

Conclusion

98

Parsing

2

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

Key Idea

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Symbolize token values

Testing parsing code at the token level

34

Conclusion

99

Parsing

2

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

Key Idea

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Symbolize token values

Testing parsing code at the token level

34

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token
Constraint Map

Token PC

Application Logic PC

New Input

First Stage

Second Stage

41

Conclusion

100

Parsing

2

Parsing
Code

Application
Logic Code

Input Internal
Representation

Software

Input Error

Output

Key Idea

Lexical
Analysis

Syntactic
Analysis

Complex Parsing Code

Input Token
Sequence

AST

Symbolize token values

Testing parsing code at the token level

34

Grammar-agnostic DSE

Token Value Constraint
Generation

Program
& Input

Lexical
Analysis

Syntactic
Analysis

Application
 Logic

Token
Constraint Map

Token PC

Application Logic PC

New Input

First Stage

Second Stage

41

Results of Coverage
ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Weiyu Pan, Zhenbang Chen, Guofeng Zhang, Yunlai Luo, Yufeng Zhang, and Ji Wang

1 4 8 12 16 19
0%

20%

40%

60%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 3: Relative increasing of statement coverage in DFS.

1 4 8 12 16 19
0%

20%

40%

60%

80%

100%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 4: Relative increasing of branch coverage in DFS.

1 2 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 5: Relative increasing of statement coverage in BFS.

results indicate that G���� is also e�ective under BFS. Besides, for
the benchmark programs, G���� is more e�ective under DFS.

G���� also outperforms the two fuzzing methods (i.e., JQF and
G������) in many benchmark programs. Compared with JQF,

1 3 4 8 12 16 19

0%

20%

40%

60%

80%

G
A
D
S
E
v
s
.
C
H
A
R
(%
)

Figure 6: Relative increasing of branch coverage in BFS.

G���� under DFS on average increases the numbers of statements
and branches by 5.36% (-11.85%⇠65.46%) and 6.27% (-18.32%⇠121.69%),
respectively. Compared with G������, these two results of state-
ments and branches are 17.94% (-17.36%⇠82.47%) and 37.36% (-
18.22%⇠135.84%), respectively.

Similar to DFS, under BFS, G���� also on average performs bet-
ter than JQF and G������. On average, G���� increases 7.77%
(-11.85%⇠62.40%) and 18.31% (-13.66%⇠82.47%) statements for JQF
and G������, respectively. The relative increasings of branches
are 7.76% (-14.12%⇠117.98%) and 36.96% (-15.62%⇠135.84%), respec-
tively.

Answer to RQ1: Our method �nds more unknown bugs in the
benchmark programs. Besides, our method increases the numbers
of covered statements and branches.

Answer to RQ2. To answer the second research question, we car-
ried out the experiments of running C��� and JQF much longer
for �nding the unknown bugs. The results indicate that both of
C��� and JQF fail to �nd the bugs in 6 hours, i.e. the same results
as those of 1 hour. G���� �nds each bug in less than 8 minutes.
These results indicate that G���� is e�cient for bug �nding.

Besides, we record the time of generating inputs and evaluate
our method’s e�ciency by the time to cover the same amount of
statements or branches. We synthesize the global trends of the
statement and branch coverages of all the benchmark programs.
Figures 7&8 show the trends of statement and branch coverages for
all the benchmark programs, respectively. The X-axis shows the
analysis time. The Y-axis displays the accumulated number of new
statements or branches. We do not consider G������ because it
is a black-box approach and requires the input grammar.

As shown by Figure 7,G���� under BFS achieves the best results
for statement coverage. G���� (BFS) covers 23409 statements (i.e.,
the amount of the statements covered by C��� (BFS) in one hour)
at 9s and achieves 6.67x speedup. For JQF, this speedup is 2.61x.
Similar to statement coverage, as shown by Figure 8, G���� (BFS)
also achieves the best result on branch coverage. Compared with
C��� (BFS) and JQF,G���� (BFS) achieves 30x and 2.61x speedup
to have the same coverage, respectively. These results indicate that

DFS

DFS

BFS

BFS

Statement
 Coverage

Branch
Coverage

31.18%
(-0.24%∼59.18%)

27.29%
(-3.88%∼ 80.64%)

48.41%
(0.0%∼93.3%)

32.80%
(-6.01%∼83.29%)

Better than
byte-level

symbolization
in both

statement and
branch

coverages

98

Thank you!
Q&A

ACM SIGSOFT International Symposium on Software Testing and Analysis

101

