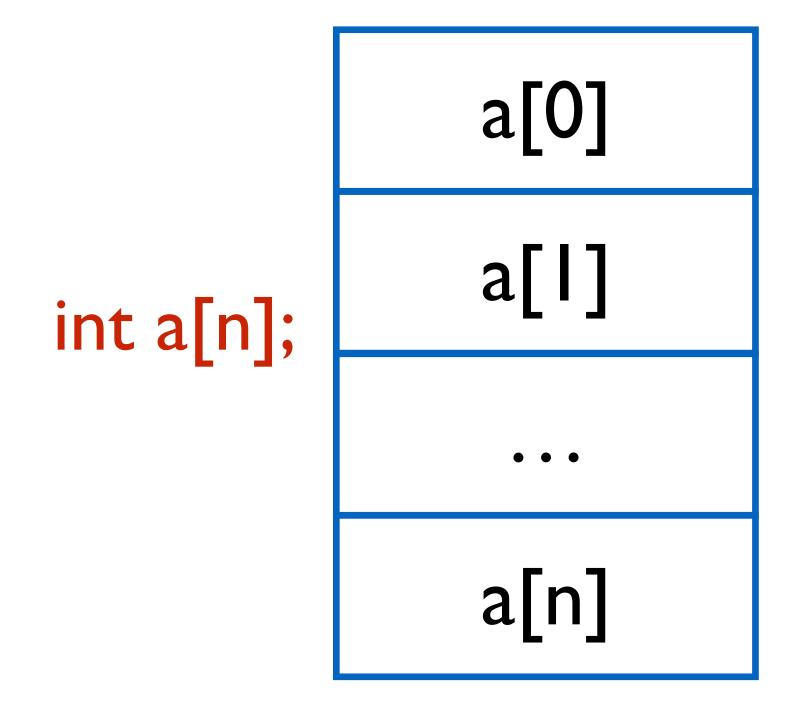


Type and Interval Aware Array Constraint Solving for Symbolic Execution

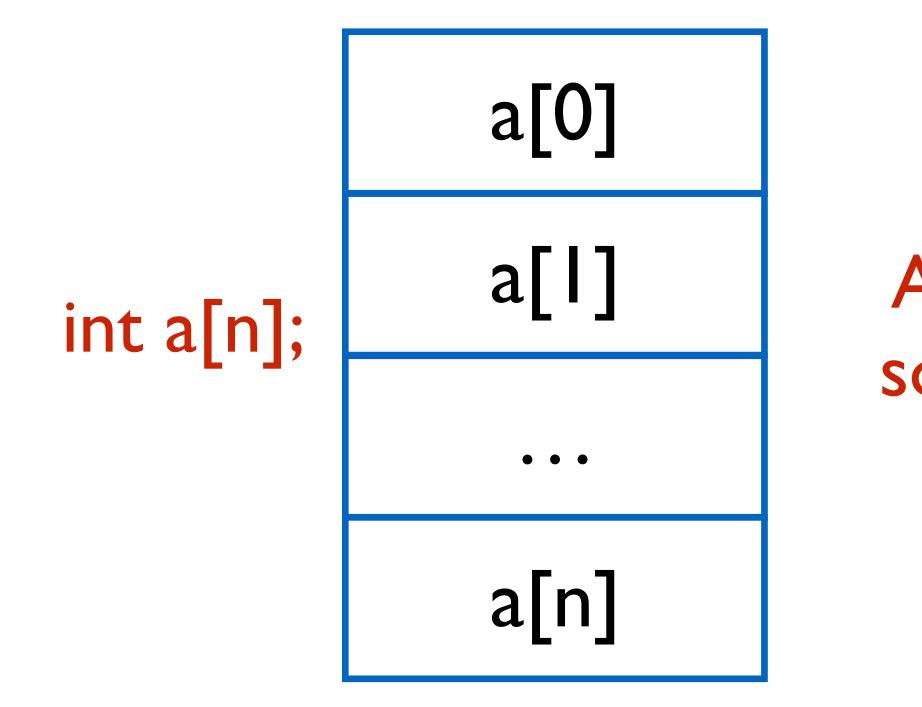
ACM SIGSOFT International Symposium on Software Testing and Analysis

- Ziqi Shuai and Zhenbang Chen {szq, zbchen}@<u>nudt.edu.cn</u>
- Joint work with Yufeng Zhang, Jun Sun and Ji Wang



Arrays are ubiquitous in programs

Arrays are ubiquitous in programs



Array sorting

```
for(int i = 0; i < N-1; i++){
    int min = i;
    for(int j = i+1; j < N ; j++) {
        if (a[j] < a[min]) min = j;
        }
        int tmp = a[i];
        a[i] = a[min];
        a[min] = tmp;
}</pre>
```

The symbolic execution of array code is challenging

Arrays are ubiquitous in programs

The symbolic execution of array code is challenging

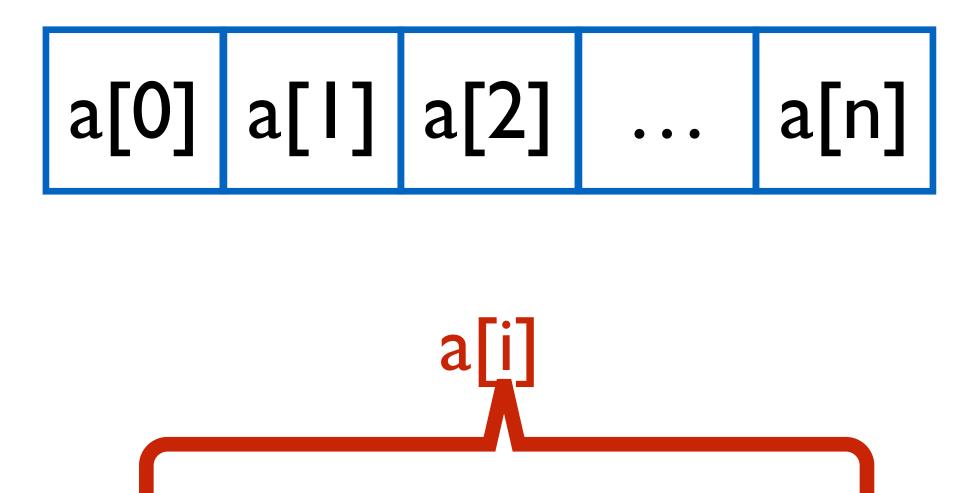
Arrays are ubiquitous in programs

The symbolic execution of array code is challenging

Arrays are ubiquitous in programs

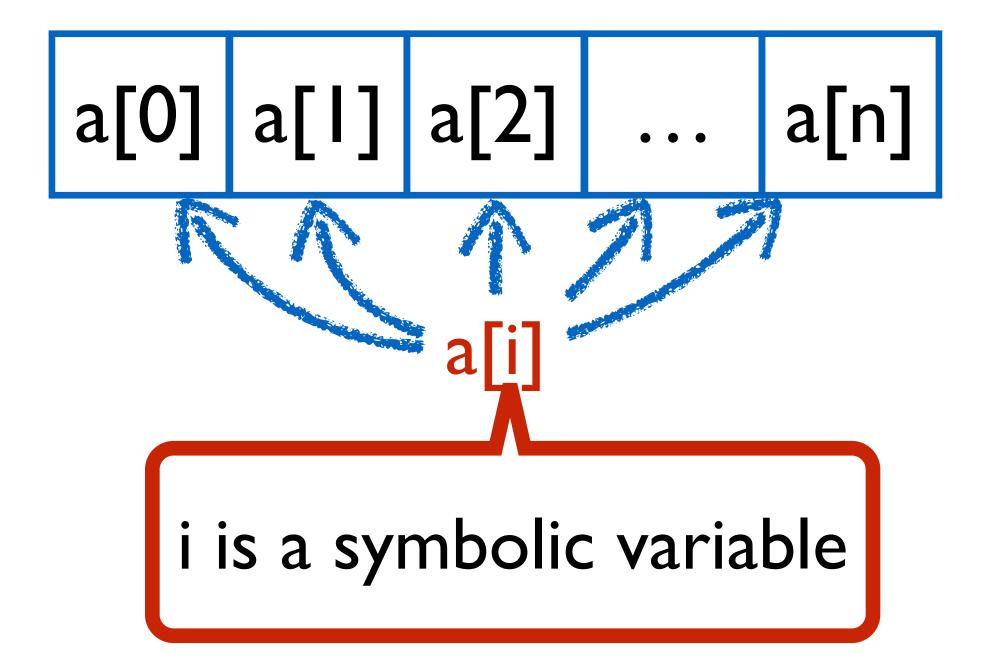
a[i]

The symbolic execution of array code is challenging

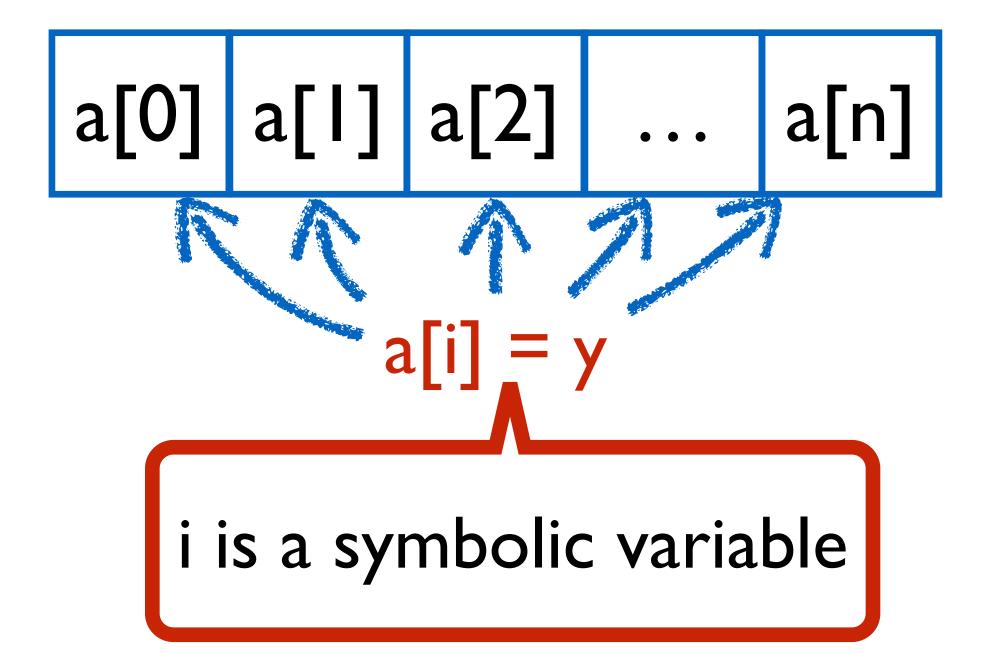


i is a symbolic variable

The symbolic execution of array code is challenging

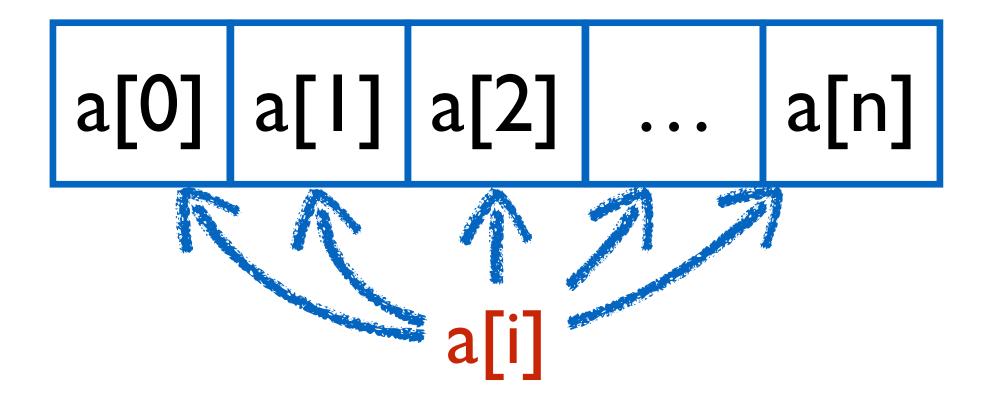


The symbolic execution of array code is challenging



Arrays are ubiquitous in programs

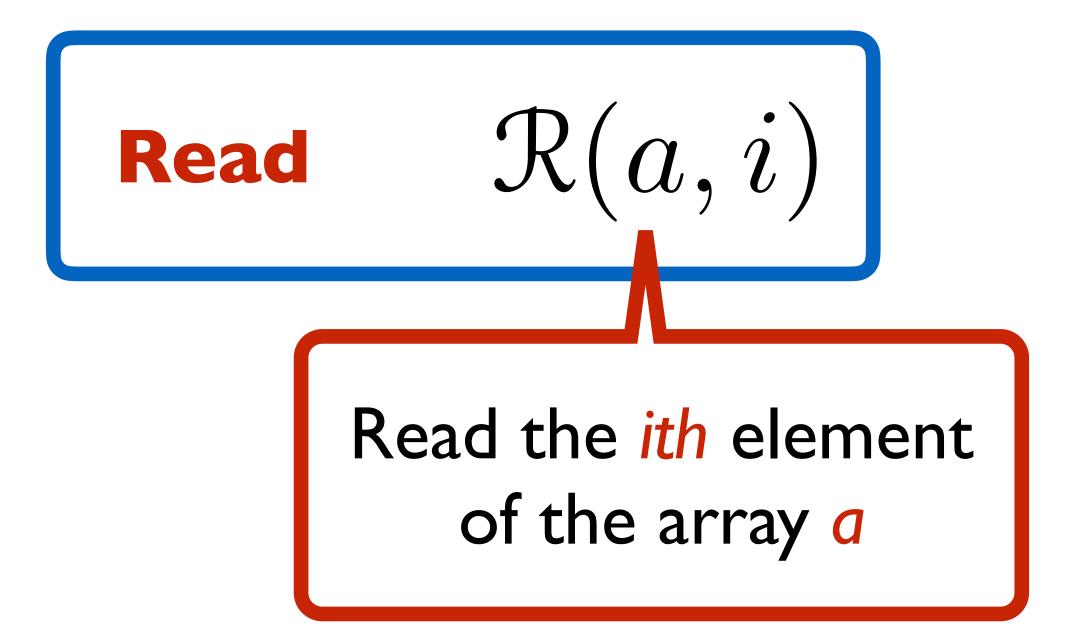
The symbolic execution of array code is challenging



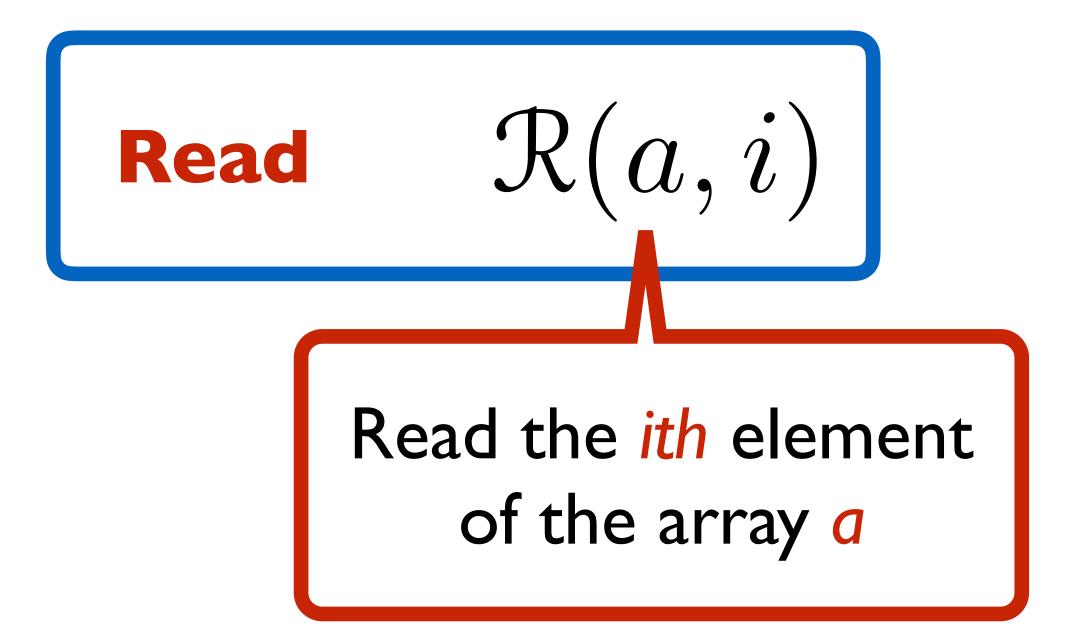
Array SMT Theory

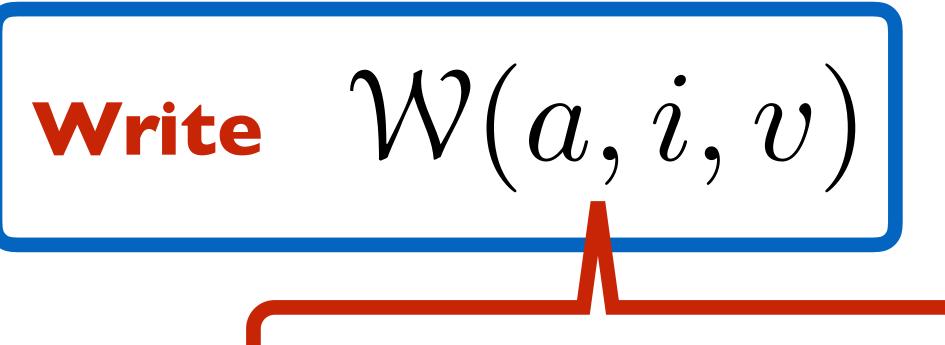
 $\Re(a,i)$

Write $\mathcal{W}(a,i,v)$



Write $\mathcal{W}(a,i,v)$





Write value v to the *ith* element of the array a

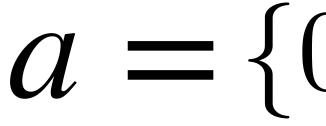
Read $\mathcal{R}(a,i)$ Write $\mathcal{W}(a,i,v)$

$\Re(a,i) > 10 \land i \ge 0 \land i \le 3$

Read $\mathcal{R}(a,i)$ Write $\mathcal{W}(a,i,v)$

$\Re(a,i) > 10 \land i \ge 0 \land i \le 3$

 $a = \{0, 0, 0, 11\}$



Read $\mathcal{R}(a,i)$ Write $\mathcal{W}(a,i,v)$

$\Re(a,i) > 10 \land i \ge 0 \land i \le 3$

$a = \{0, 0, 0, 11\}$

Satisfiable

Axiom I $i = j \Rightarrow \Re(a, i)$ Axiom 2 $\Re(\mathcal{W}(a, j, v), i)$

$$i, i) = \mathcal{R}(a, j)$$

$$i) = \begin{cases} v & i = j \\ \mathcal{R}(a, i) & \text{otherwise} \end{cases}$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

Use these two axioms to eliminate the array terms in the array constraint

$$\begin{aligned} &,i) = \mathcal{R}(a,j) \\ &i) = \left\{ \begin{array}{ll} v & i = j \\ \mathcal{R}(a,i) & \text{otherwise} \end{array} \right. \end{aligned}$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

a = -

 $\Re(a,i) > 1$

$$(i) = \Re(a, j)$$

$$(i) = \begin{cases} v & i = j \\ \Re(a, i) & \text{otherwise} \end{cases}$$

$$\{0, 0, 0, 11\}$$
$$0 \land i \ge 0 \land i \le 3$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

 $a = -\frac{1}{\Re(a,i)} > 1$ $u > 10 \land i \ge 0 \land i \le 3 \land (\bigwedge_{n \in \{0,1\}})$

$$(i) = \Re(a, j)$$

$$(i) = \begin{cases} v & i = j \\ \Re(a, i) & \text{otherwise} \end{cases}$$

$$\{0, 0, 0, 11\}$$

$$0 \land i \ge 0 \land i \le 3$$

$$i = n \Rightarrow u = 0) \land i = 3 \Rightarrow u = 11$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

 $a = \mathcal{R}(a, i) > 1$ $u > 10 \land i \ge 0 \land i \le 3 \land (\bigwedge_{n \in \{0, 1\}})$

$$\begin{aligned} &,i) = \mathcal{R}(a,j) \\ &i) = \left\{ \begin{array}{ll} v & i = j \\ \mathcal{R}(a,i) & \text{otherwise} \end{array} \right. \end{aligned}$$

$$\{0, 0, 0, 11\}$$

$$0 \land i \ge 0 \land i \le 3$$

$$i = n \Rightarrow u = 0) \land i = 3 \Rightarrow u = 11$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

 $a = \left\{ \mathcal{R}(a, i) > 1 \\ u > 10 \land i \ge 0 \land i \le 3 \land (\bigwedge_{n \in \{0, 1\}} \mathcal{A}(a, i)) \right\}$

$$\begin{aligned} &,i) = \mathcal{R}(a,j) \\ &i) = \left\{ \begin{array}{ll} v & i = j \\ \mathcal{R}(a,i) & \text{otherwise} \end{array} \right. \end{aligned}$$

$$\{0, 0, 0, 11\}$$

$$0 \land i \ge 0 \land i \le 3$$

$$i = n \Rightarrow u = 0) \land i = 3 \Rightarrow u = 11$$

Axiom I $i = j \Rightarrow \mathcal{R}(a, i)$ Axiom 2 $\mathcal{R}(\mathcal{W}(a, j, v), i)$

a = -

 $\Re(a,i) > 1$

$u > 10 \land i \ge 0 \land i \le 3 \land \left(\bigwedge_{n \in \{0, 1\}} \right)$

$$\begin{aligned} &,i) = \mathcal{R}(a,j) \\ &i) = \left\{ \begin{array}{ll} v & i = j \\ \mathcal{R}(a,i) & \text{otherwise} \end{array} \right. \end{aligned}$$

$$\{0, 0, 0, 11\}$$

$$0 \land i \ge 0 \land i \le 3$$

$$i = n \Rightarrow u = 0) \land i = 3 \Rightarrow u = 11$$

Memory modeling in SE

Byte-level memory reasoning in symbolic execution
QF_ABV SMT theory

• KLEE、S2E、...

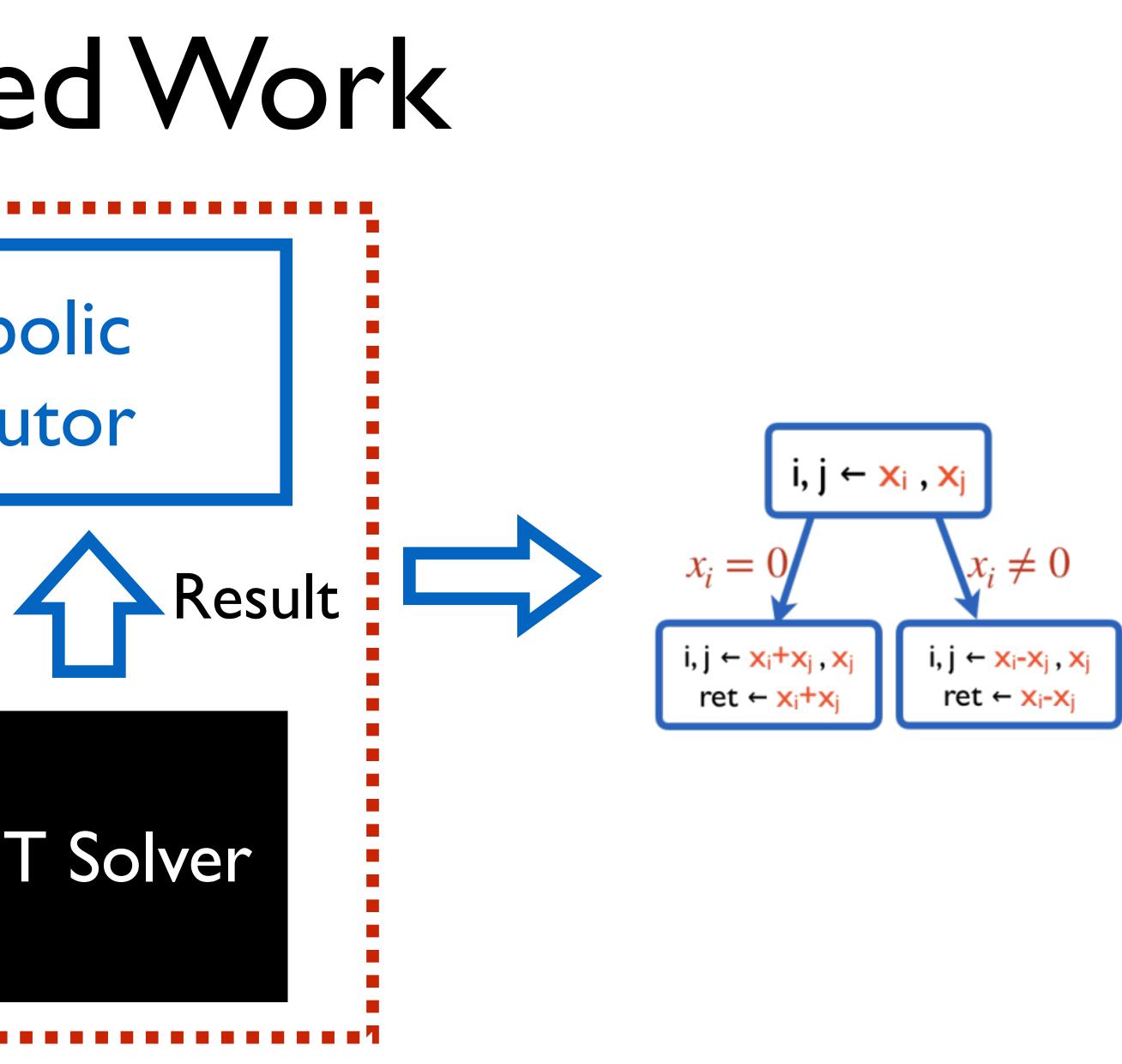
Memory modeling in SE

- Byte-level memory reasoning in symbolic execution
 - QF ABV SMT theory
 - KLEE, S2E, ...
- Every data is represented by a byte array
 - Many array variables in the path constraints
 - Large amount of axioms (O(n^2))

Problem

- - Byte-level array representation
 - Large number of axioms

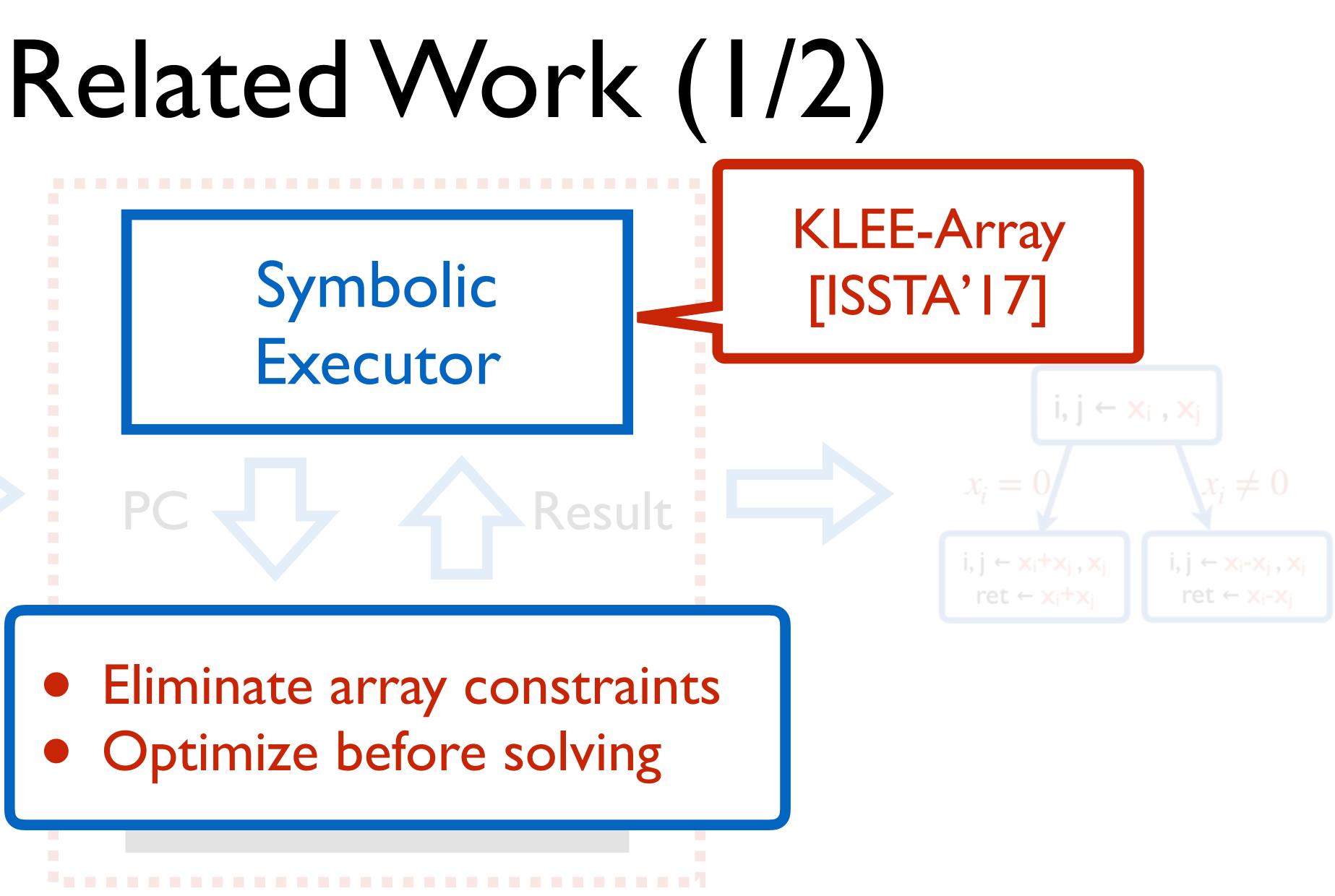
Scalability of array constraint solving in symbolic execution



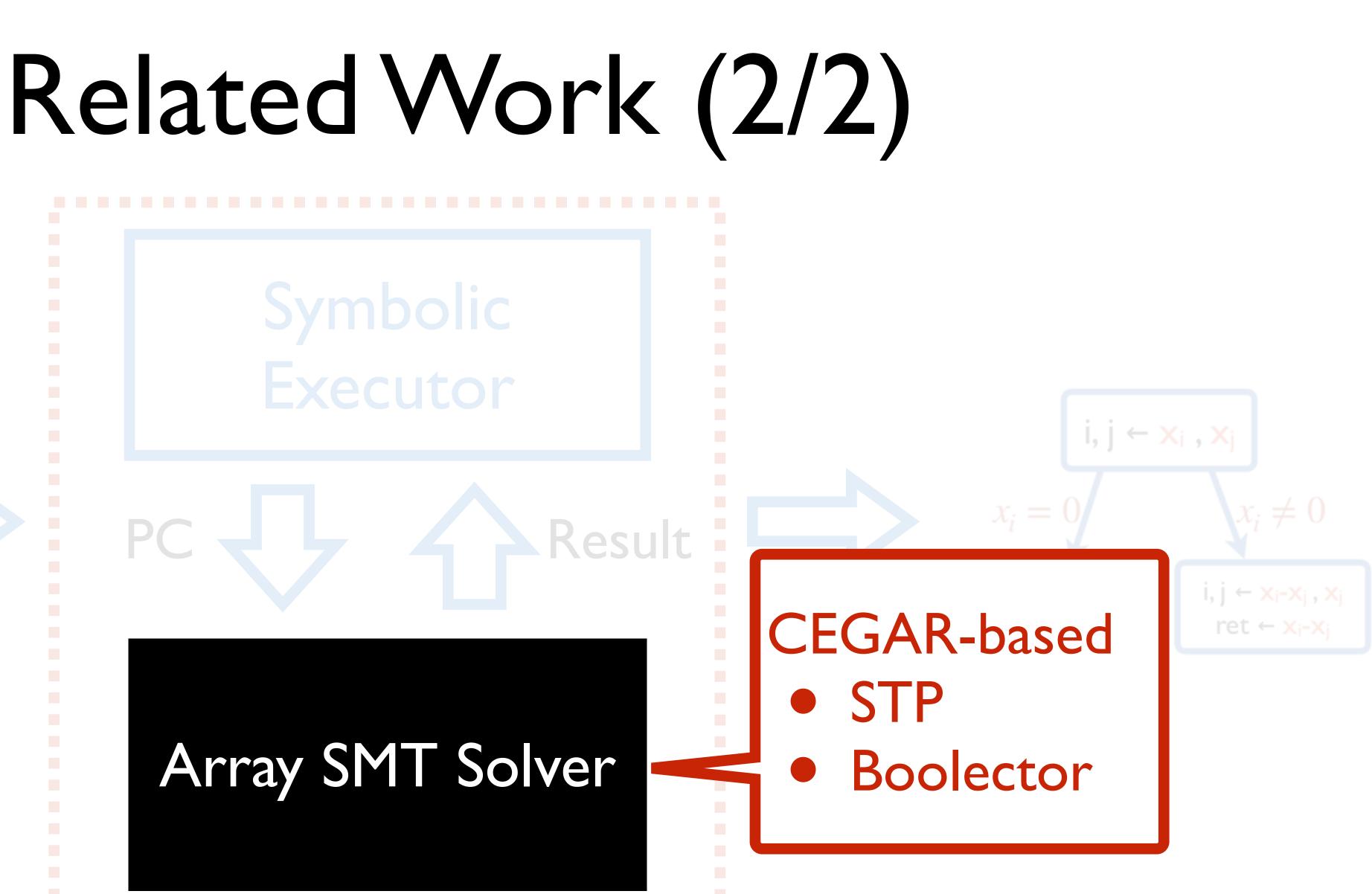
int foo(int i, j) { if (i == 0) { i = i + ji = i - j return i

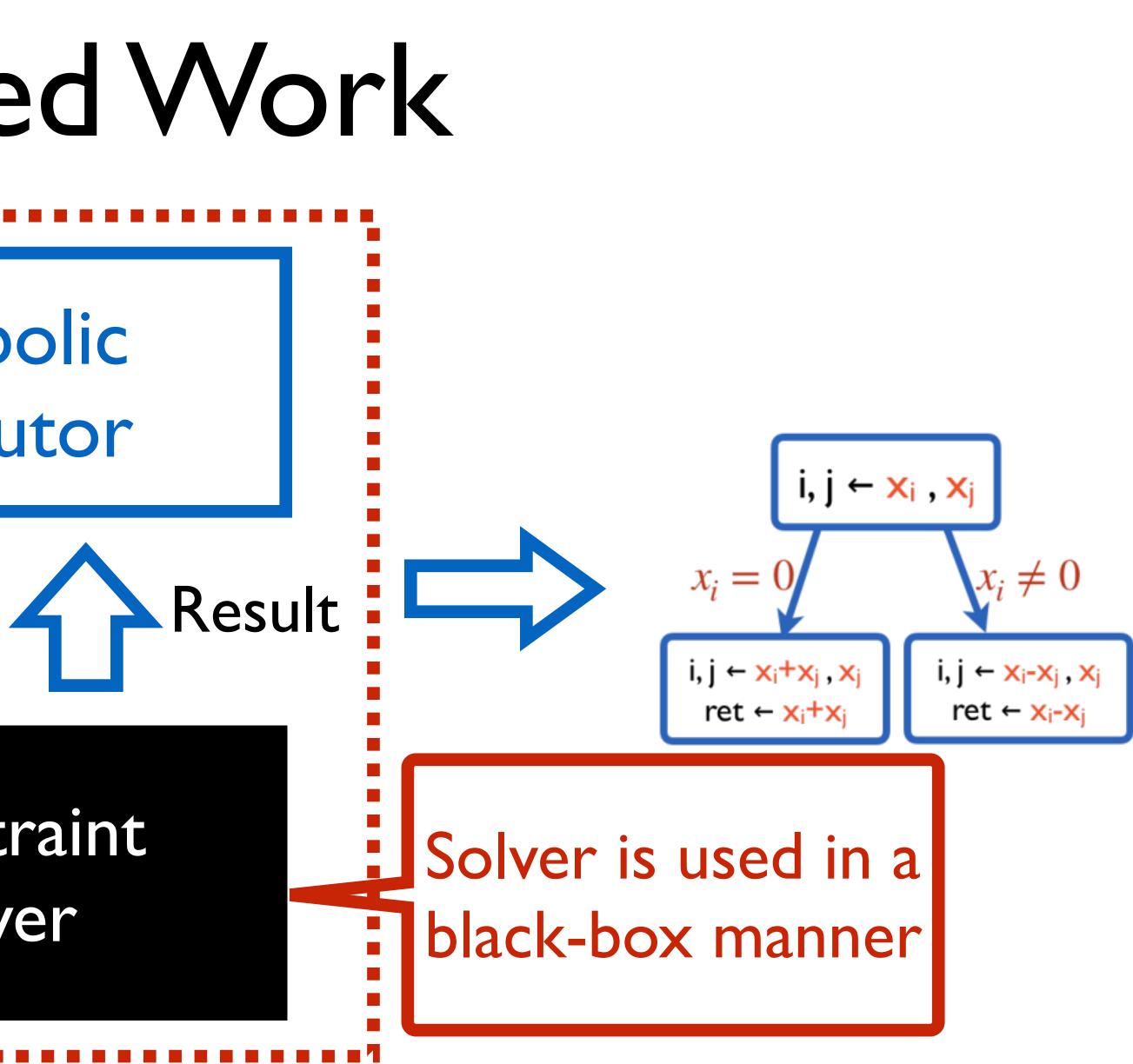
Symbolic Executor

• Eliminate array constraints Optimize before solving



PC

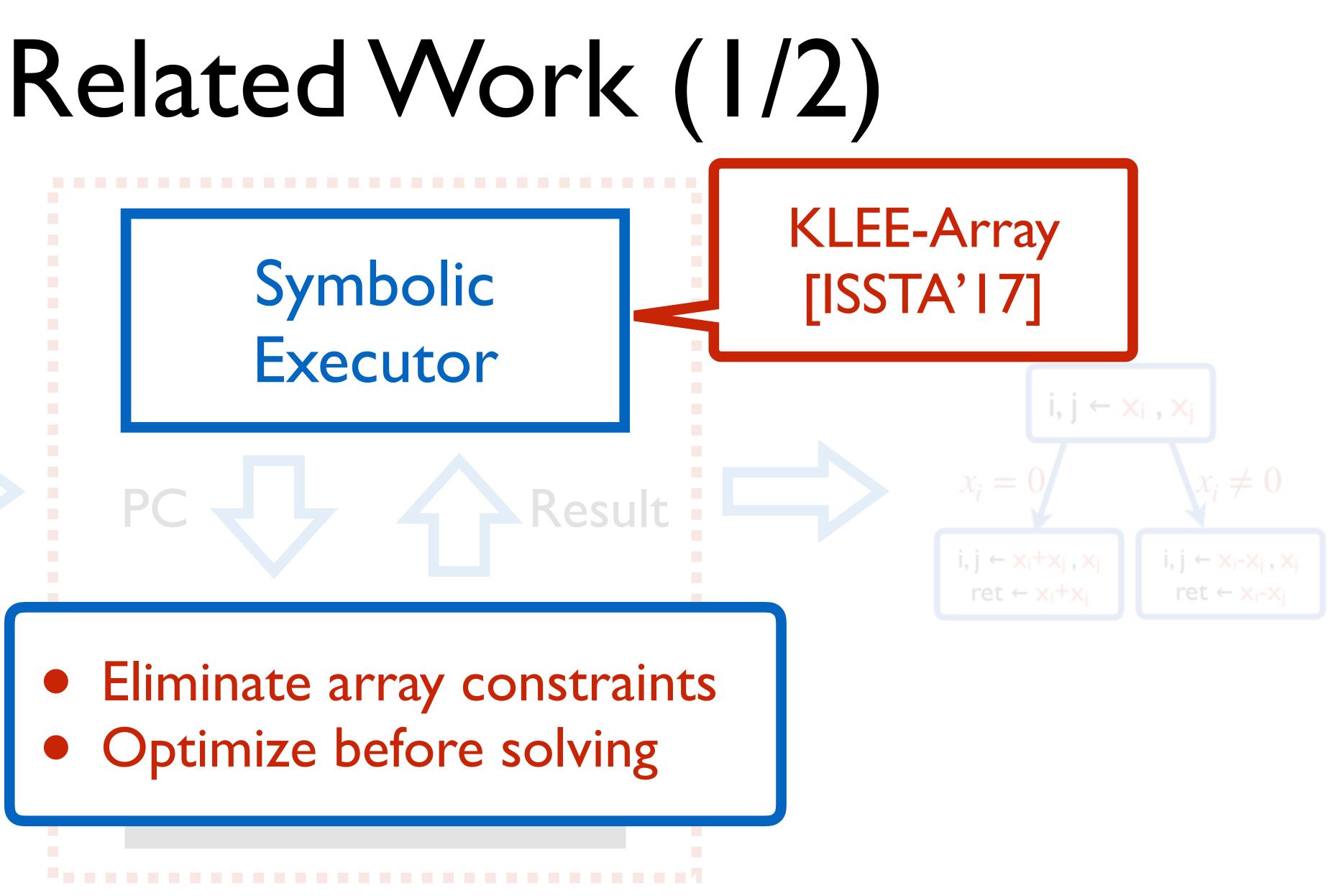




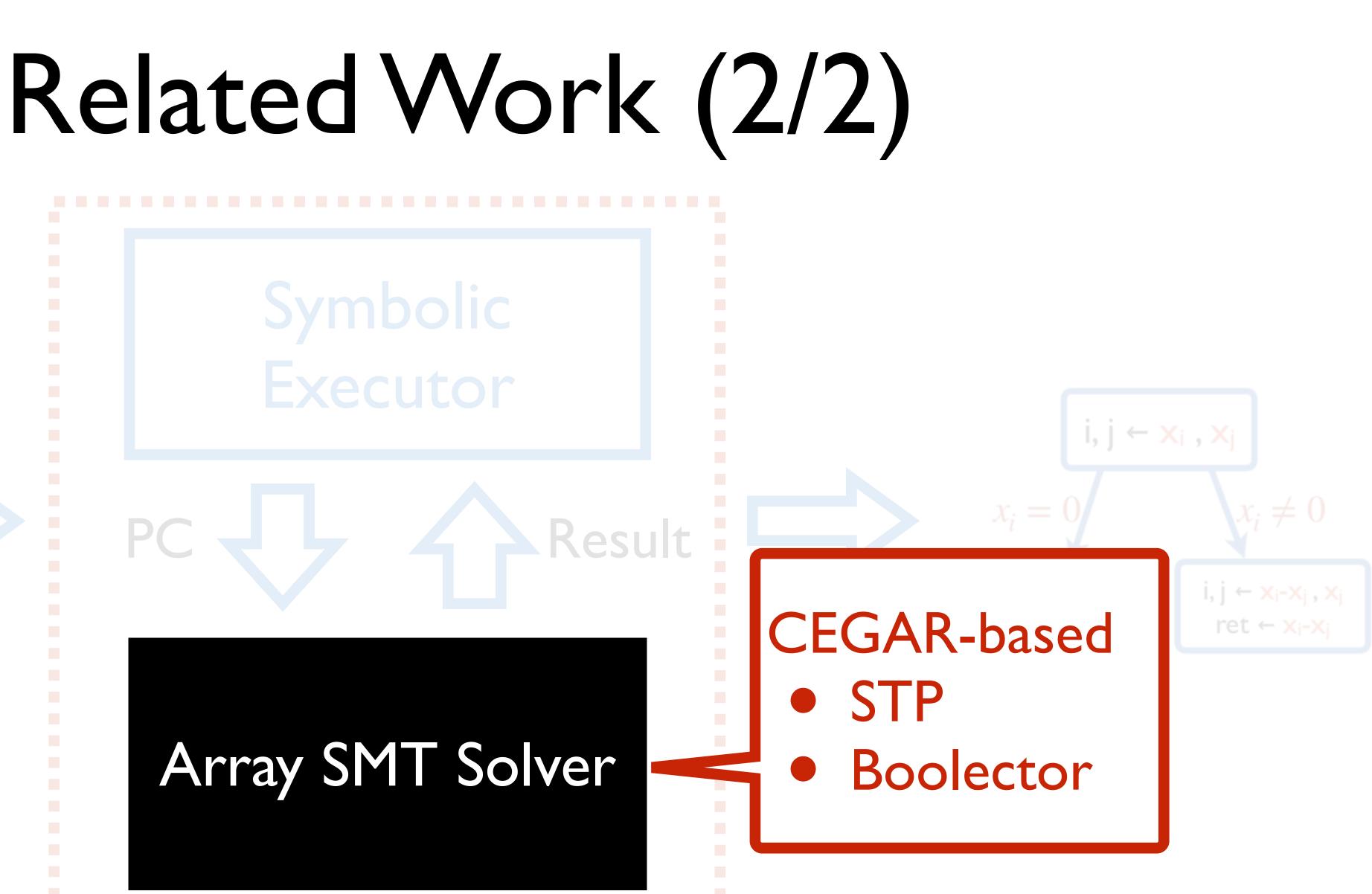
int foo(int i, j) { if (i == 0) { i = i + ji = i - j return i

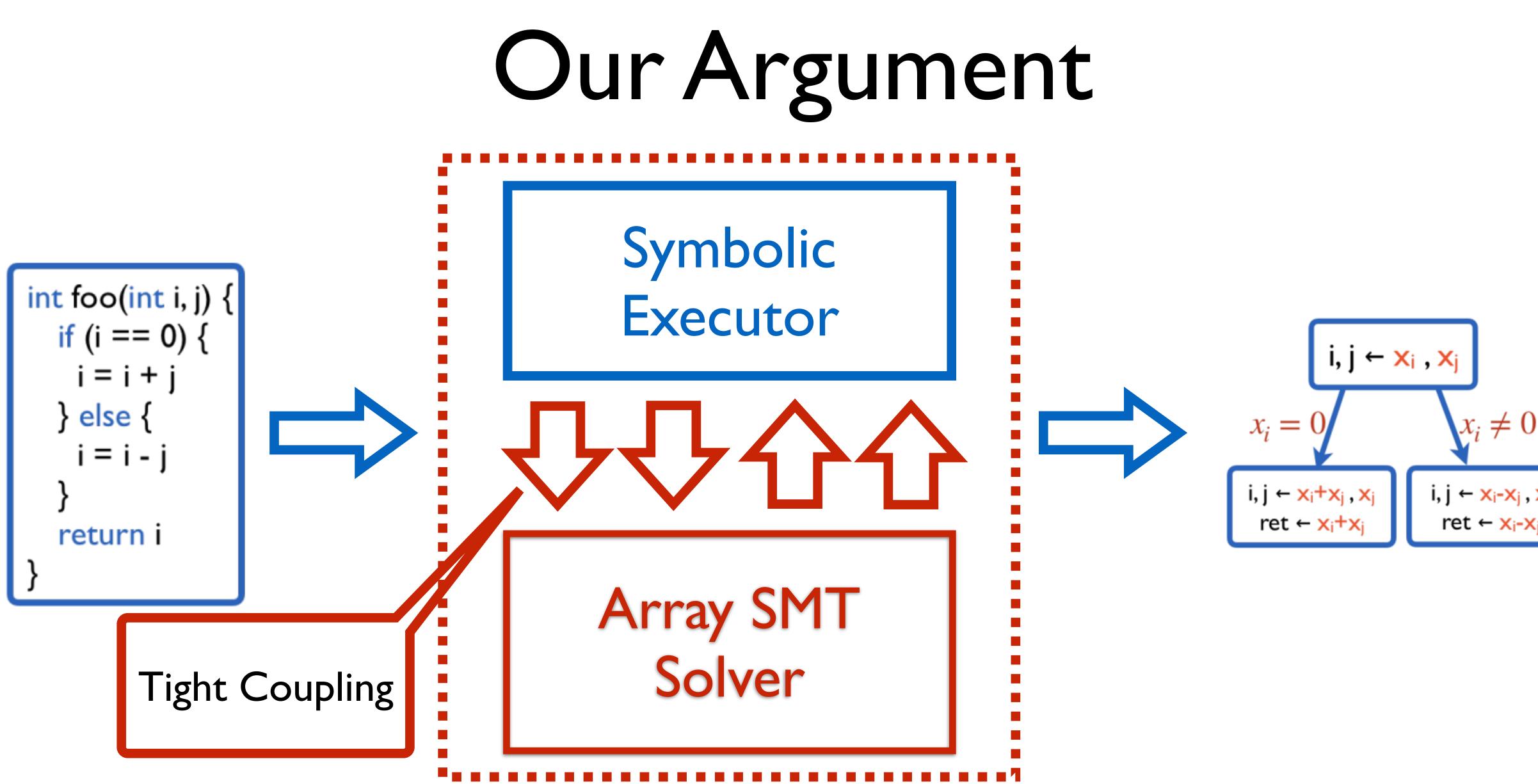
Symbolic Executor

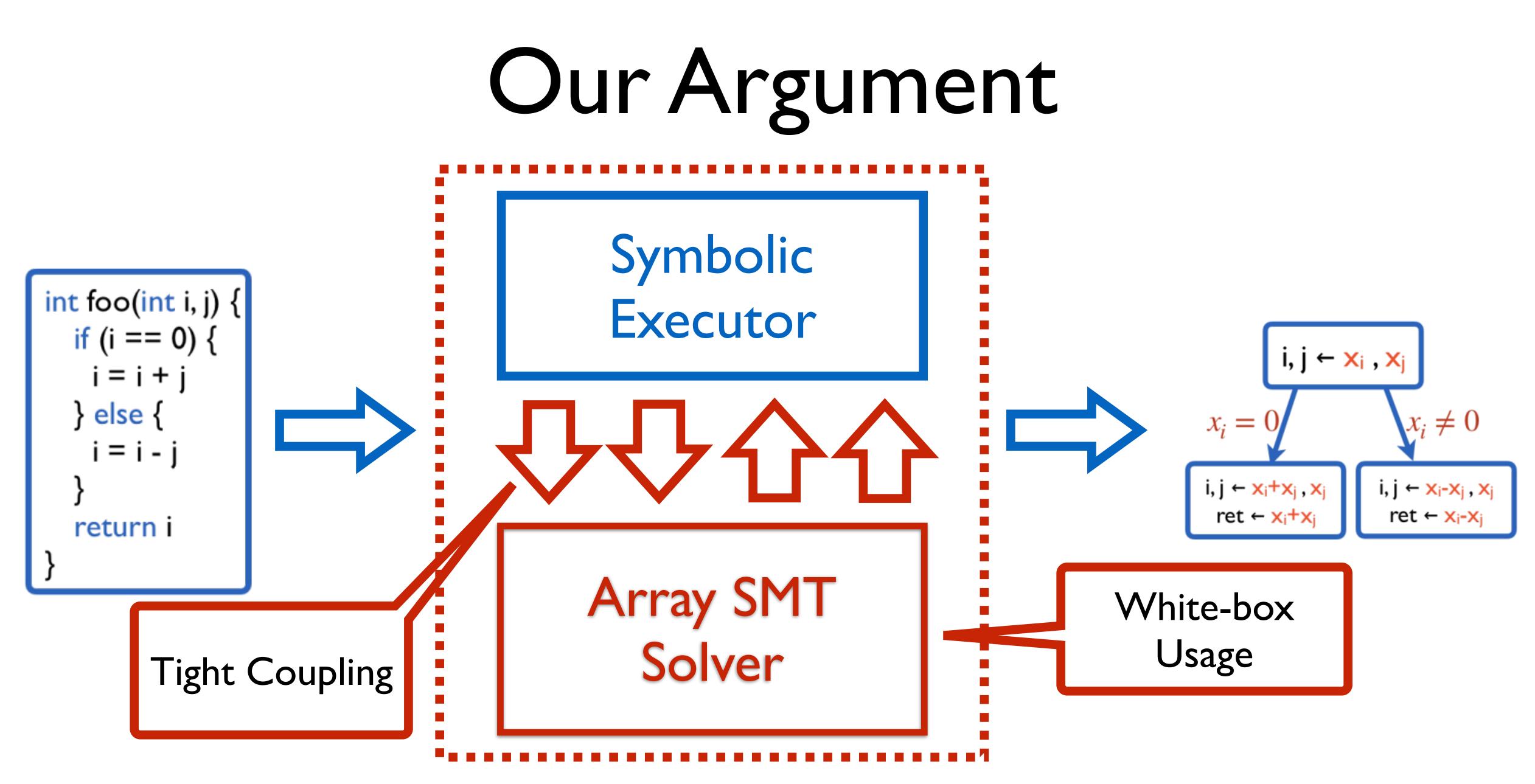
• Eliminate array constraints Optimize before solving



PC







Our Key Insights

- Many redundant axioms exist for byte array constraints
 - Array access type information
 - Array index constraint

Our Key Insights

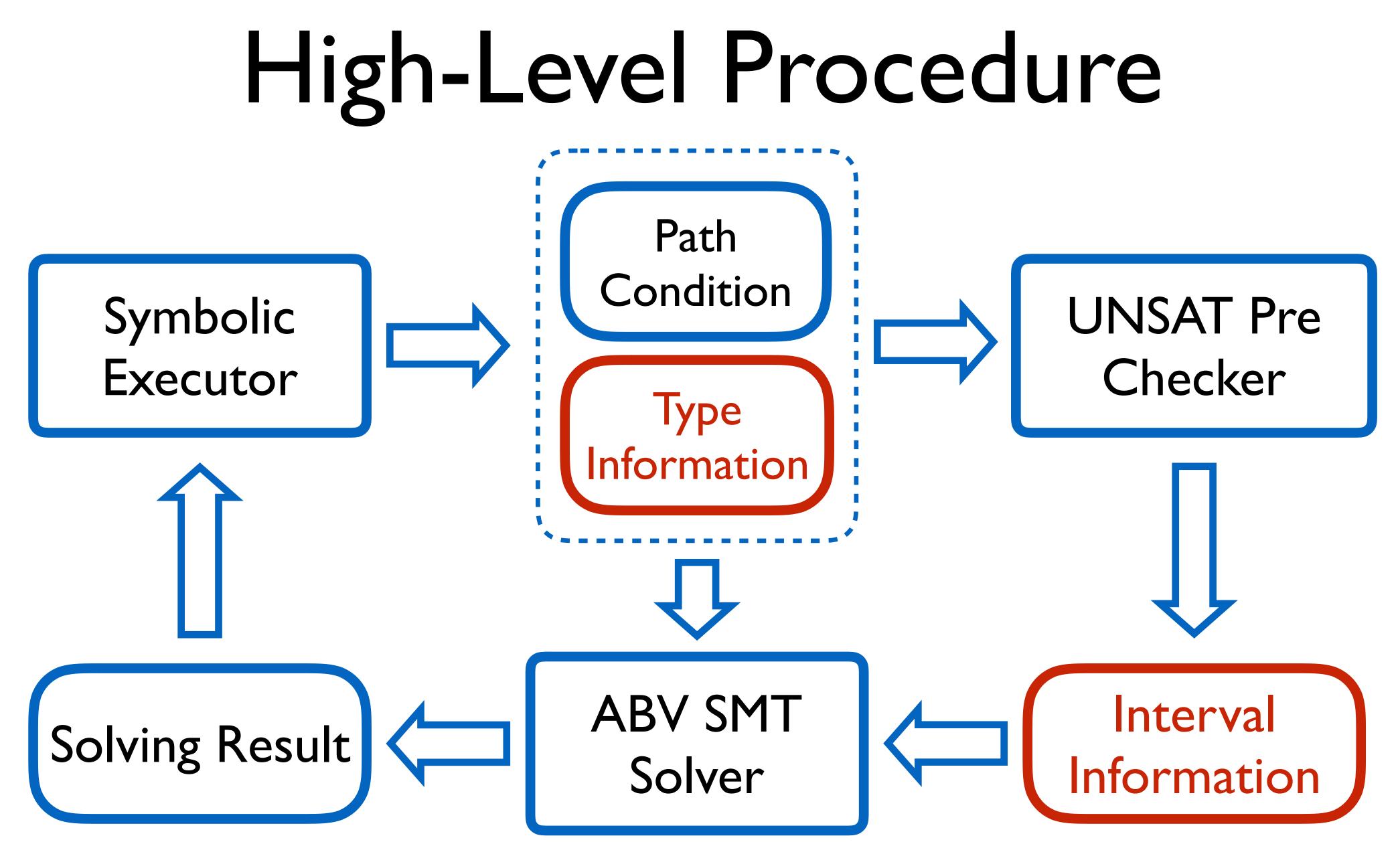
- Many redundant axioms exist for byte array constraints Array access type information
- - Array index constraint
- Unsatisfiability can be decided earlier

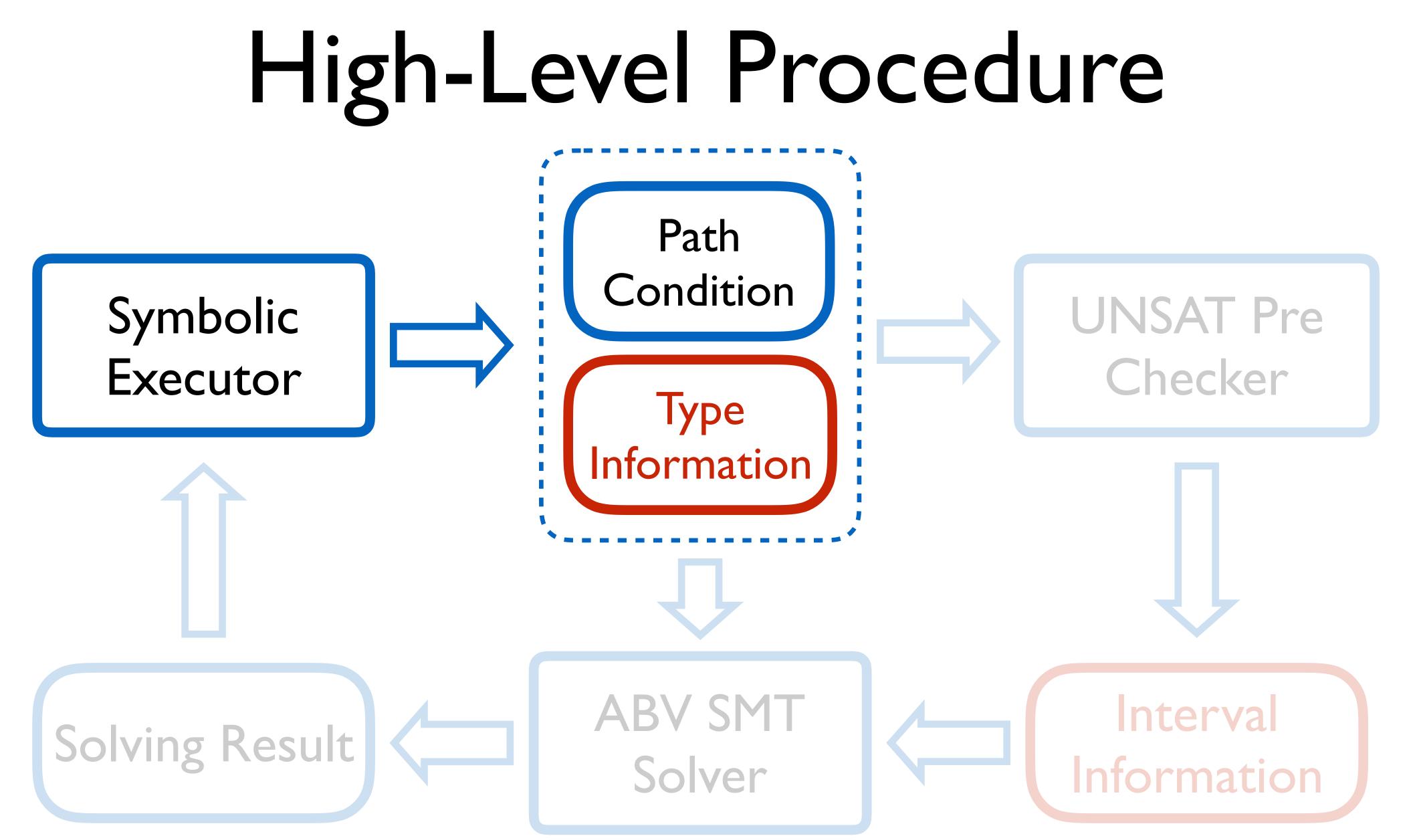
Our Key Idea

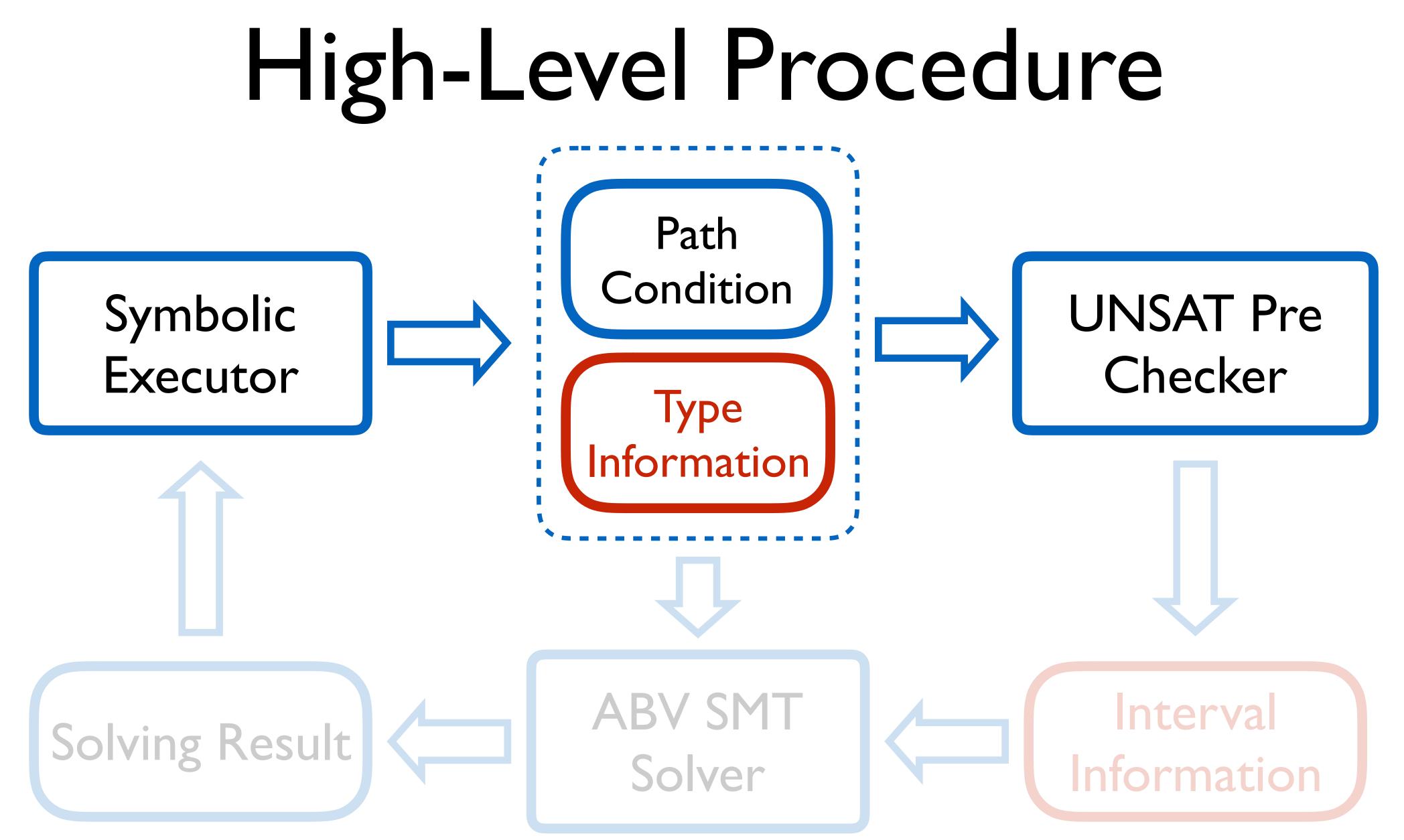
- Utilize the information calculated during symbolic execution
 - Type information of array accesses
 - Interval information of array index variables

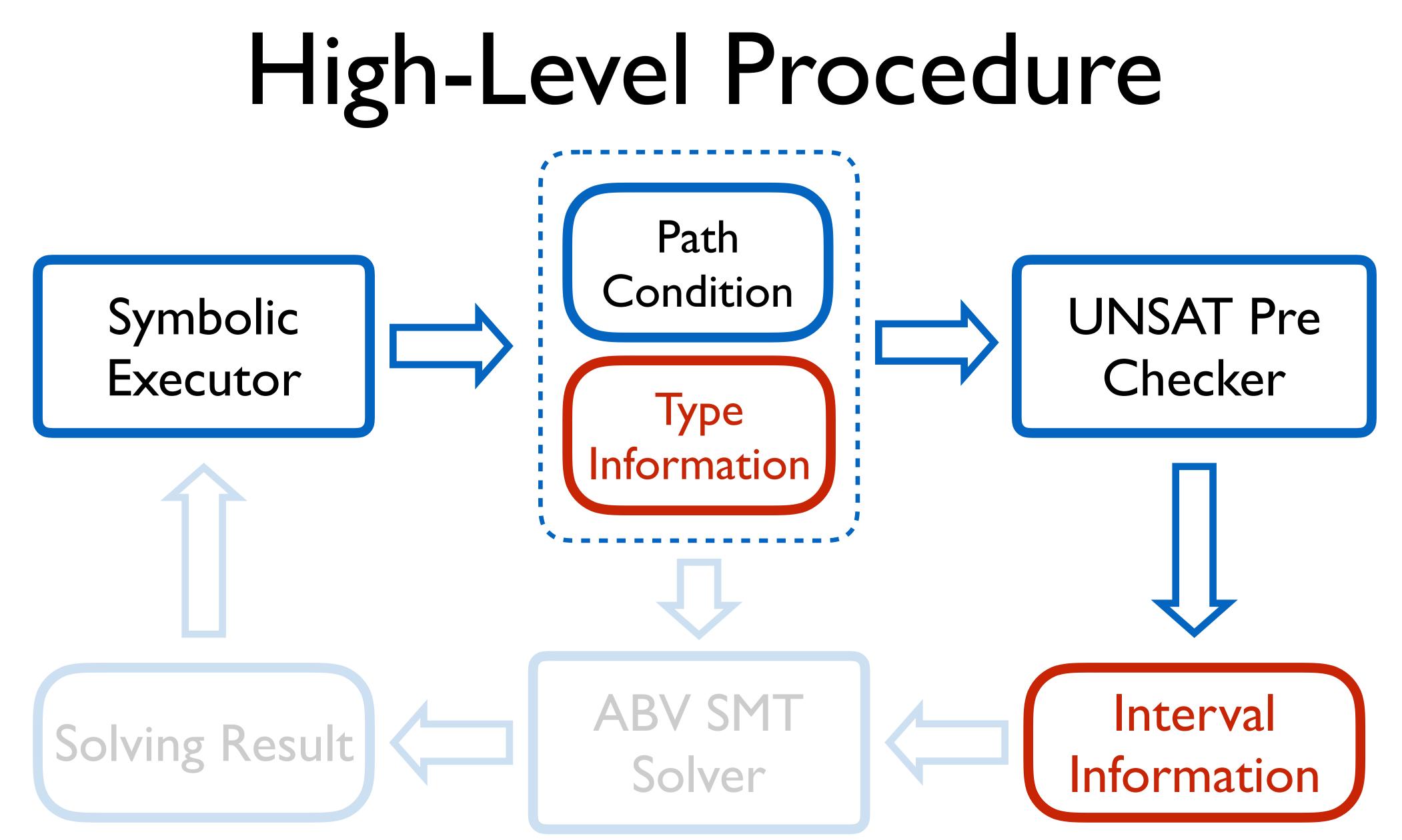
Our Key Idea

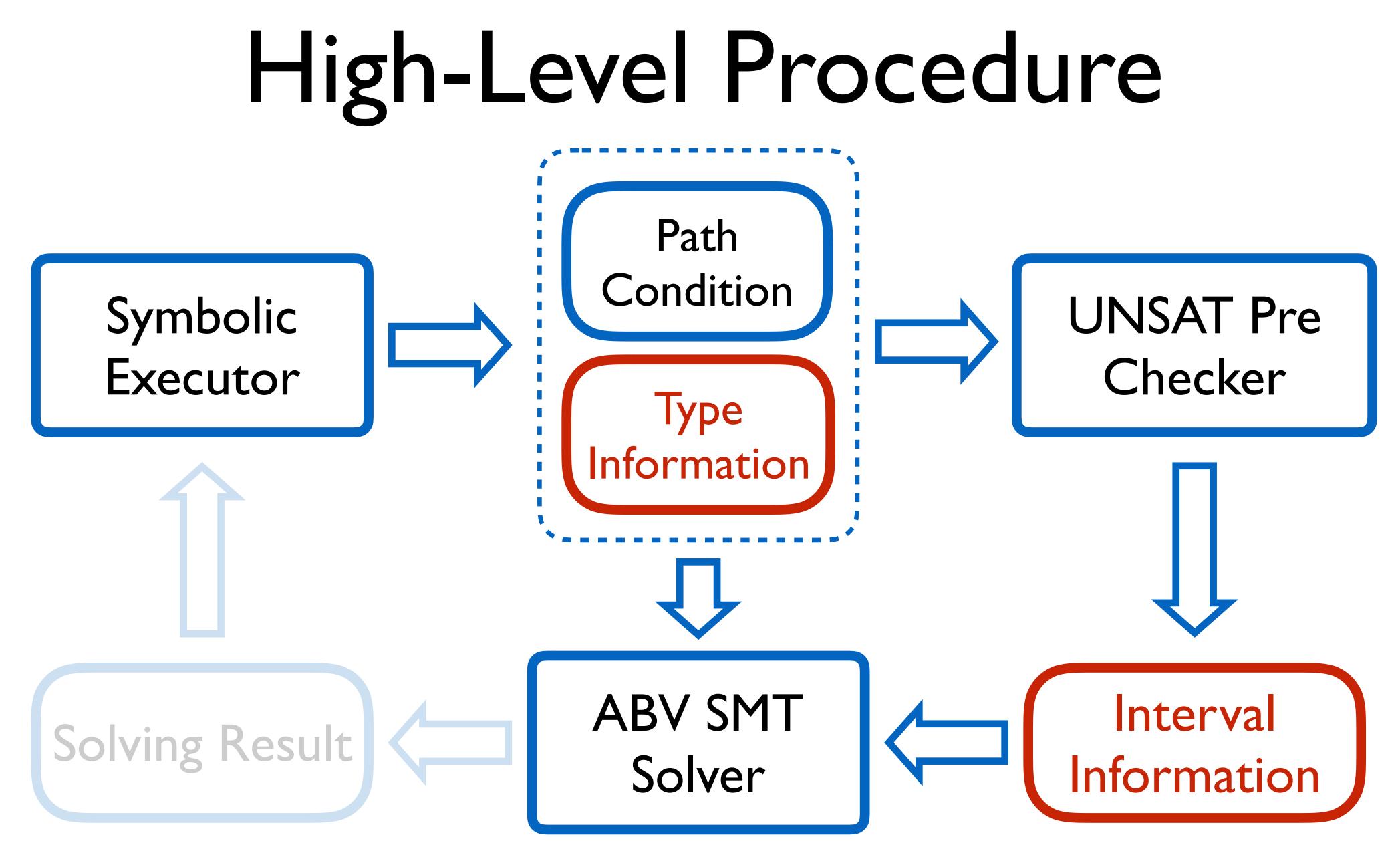
- Utilize the information calculated during symbolic execution
 - Type information of array accesses
 - Interval information of array index variables
- Check the unsatisfiability earlier
- Remove redundant axioms during solving

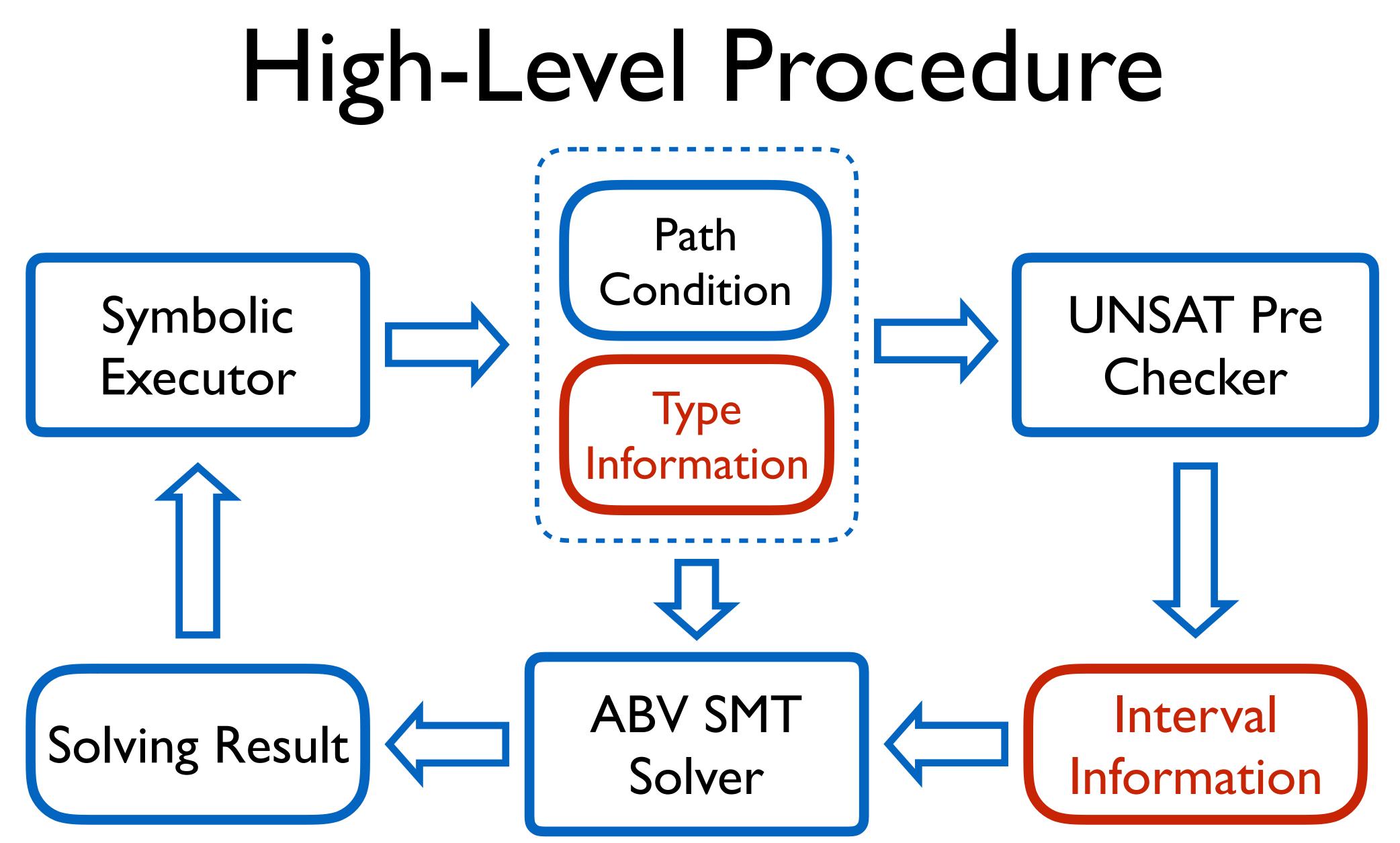


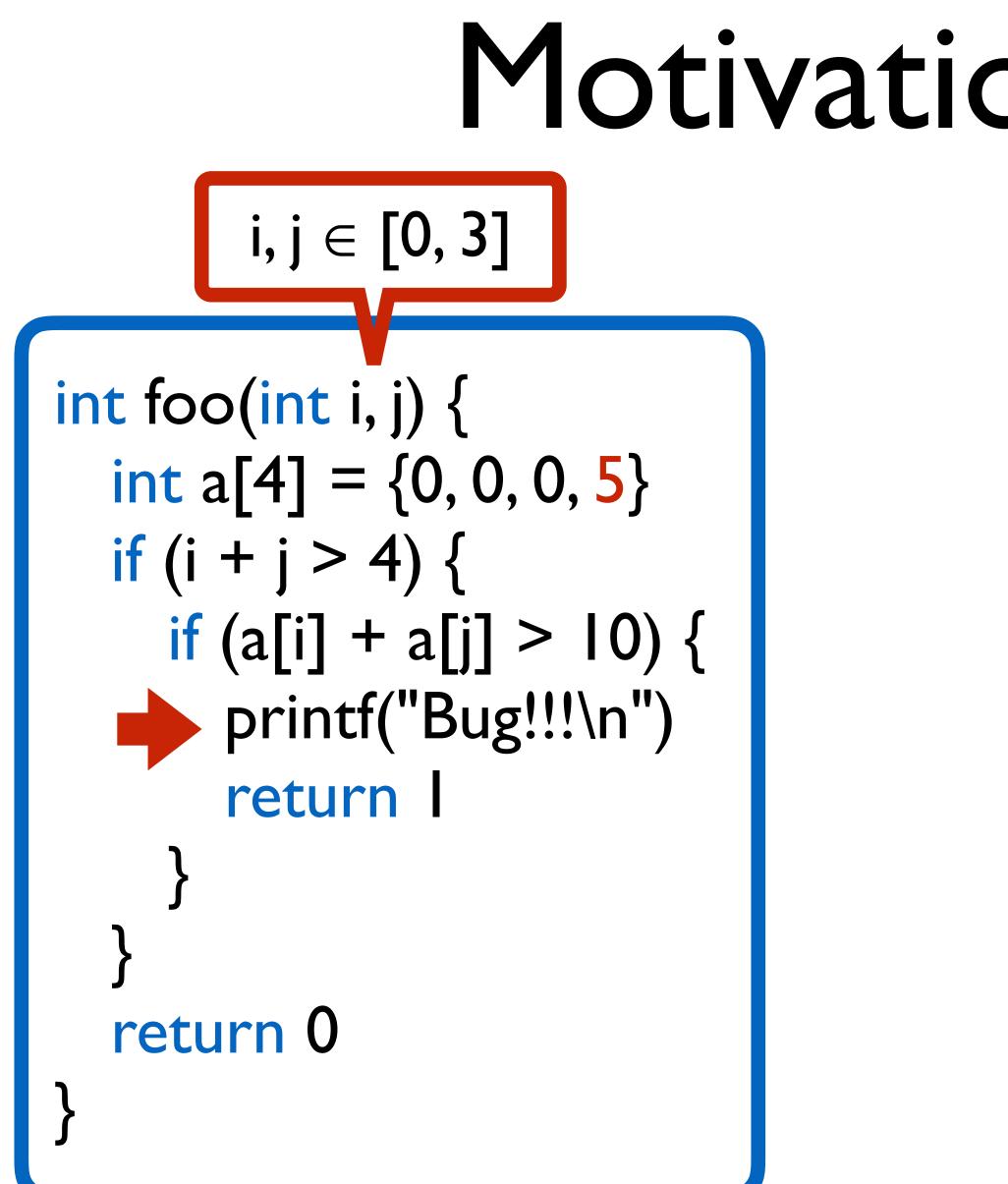


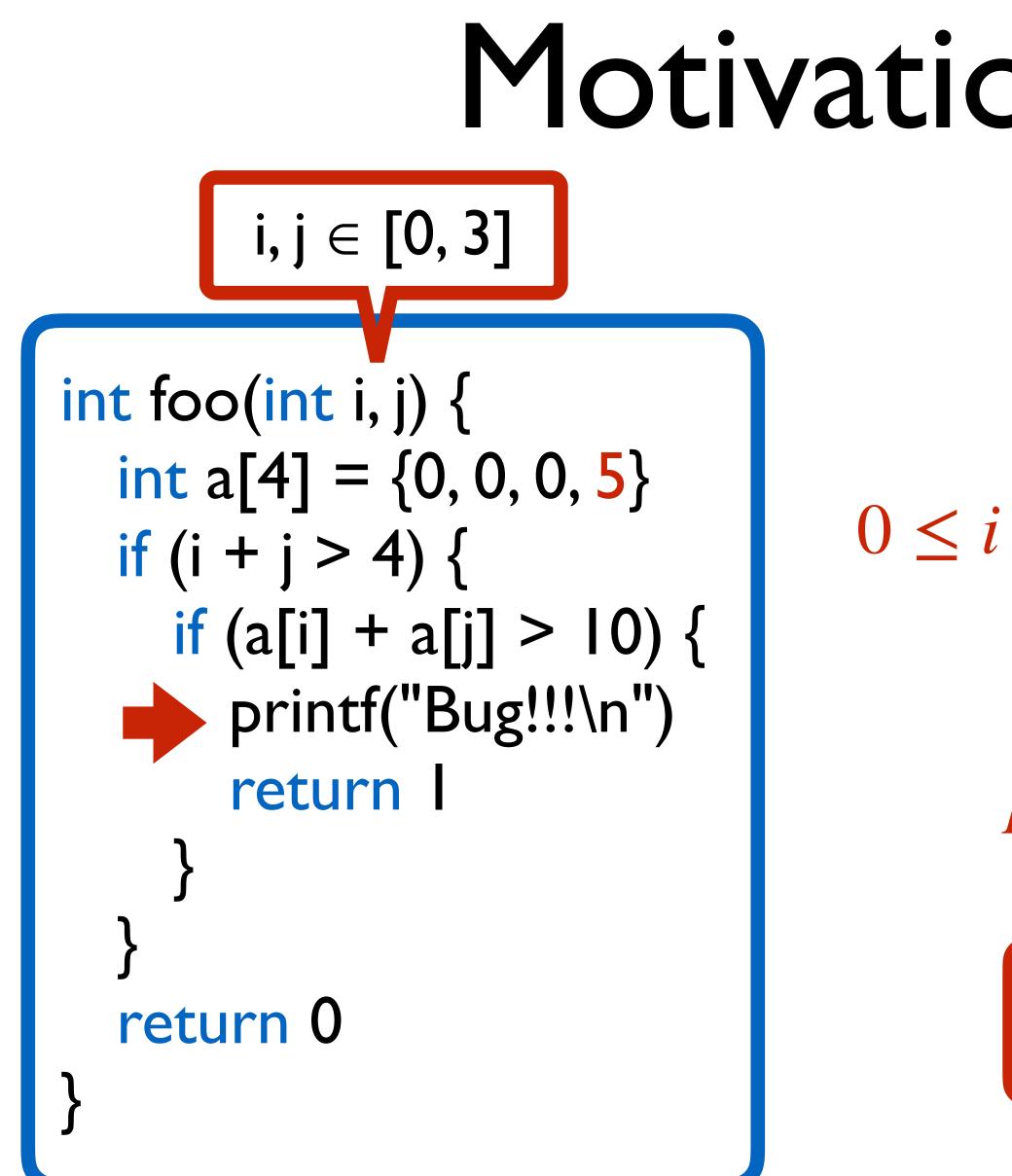








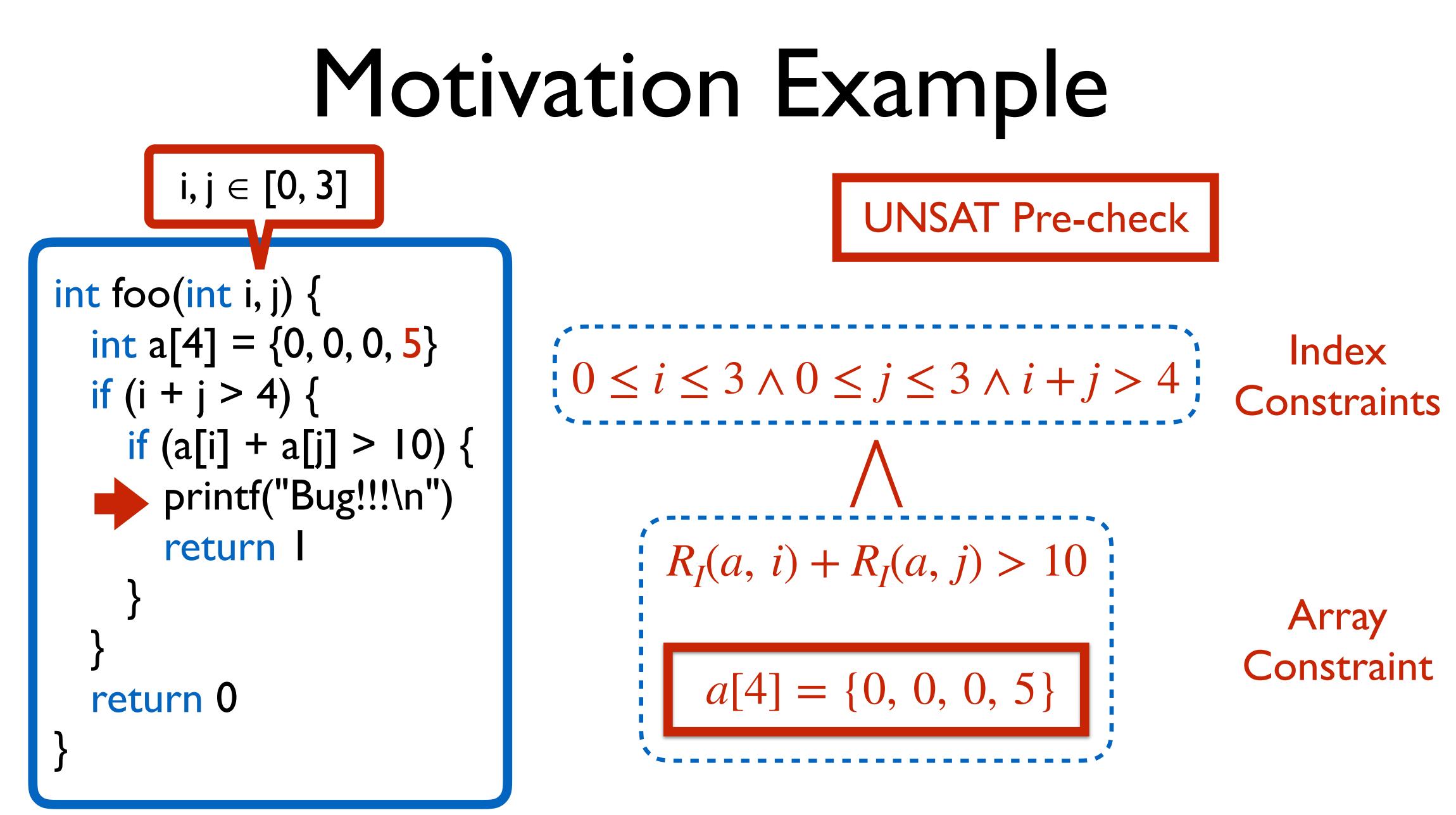


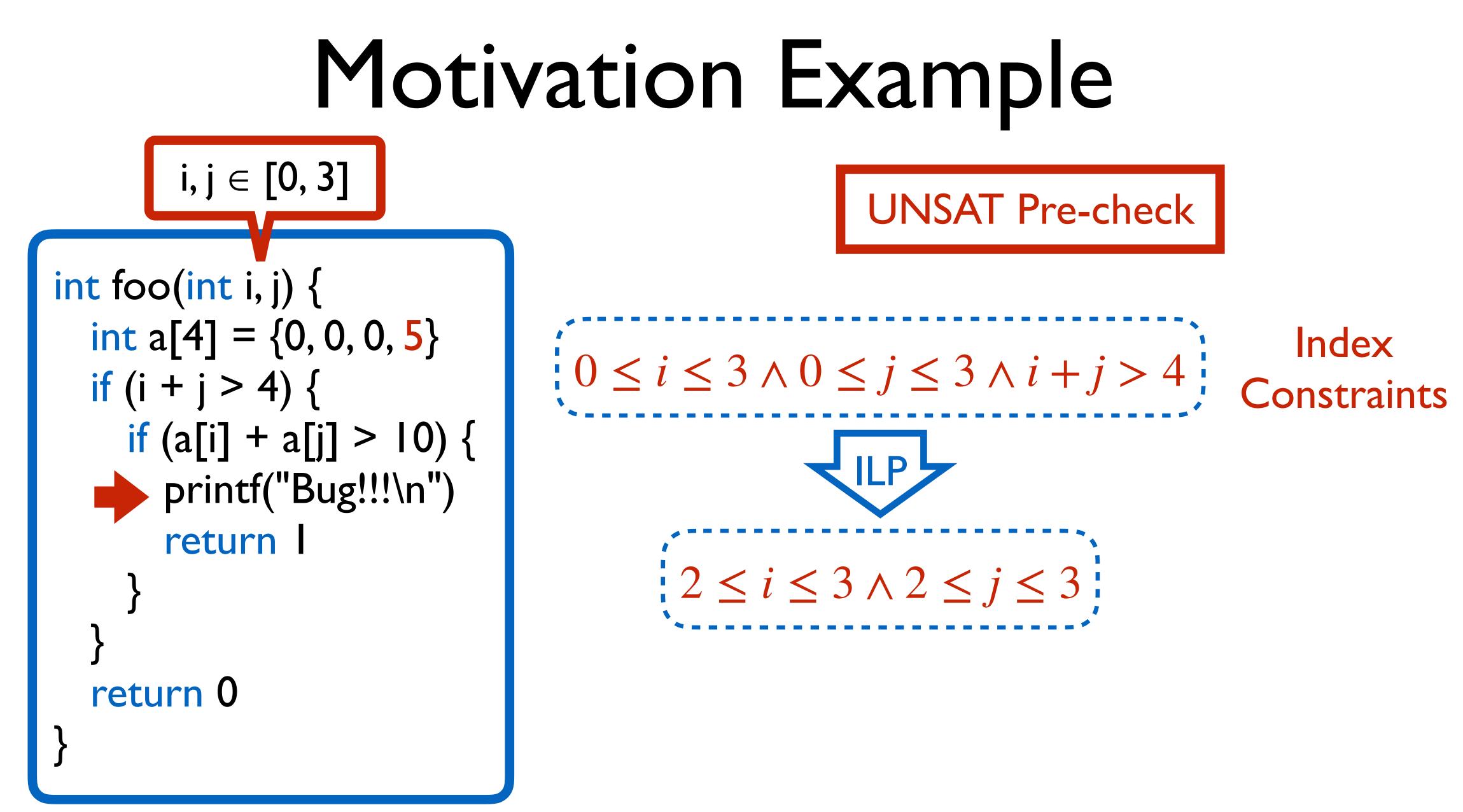


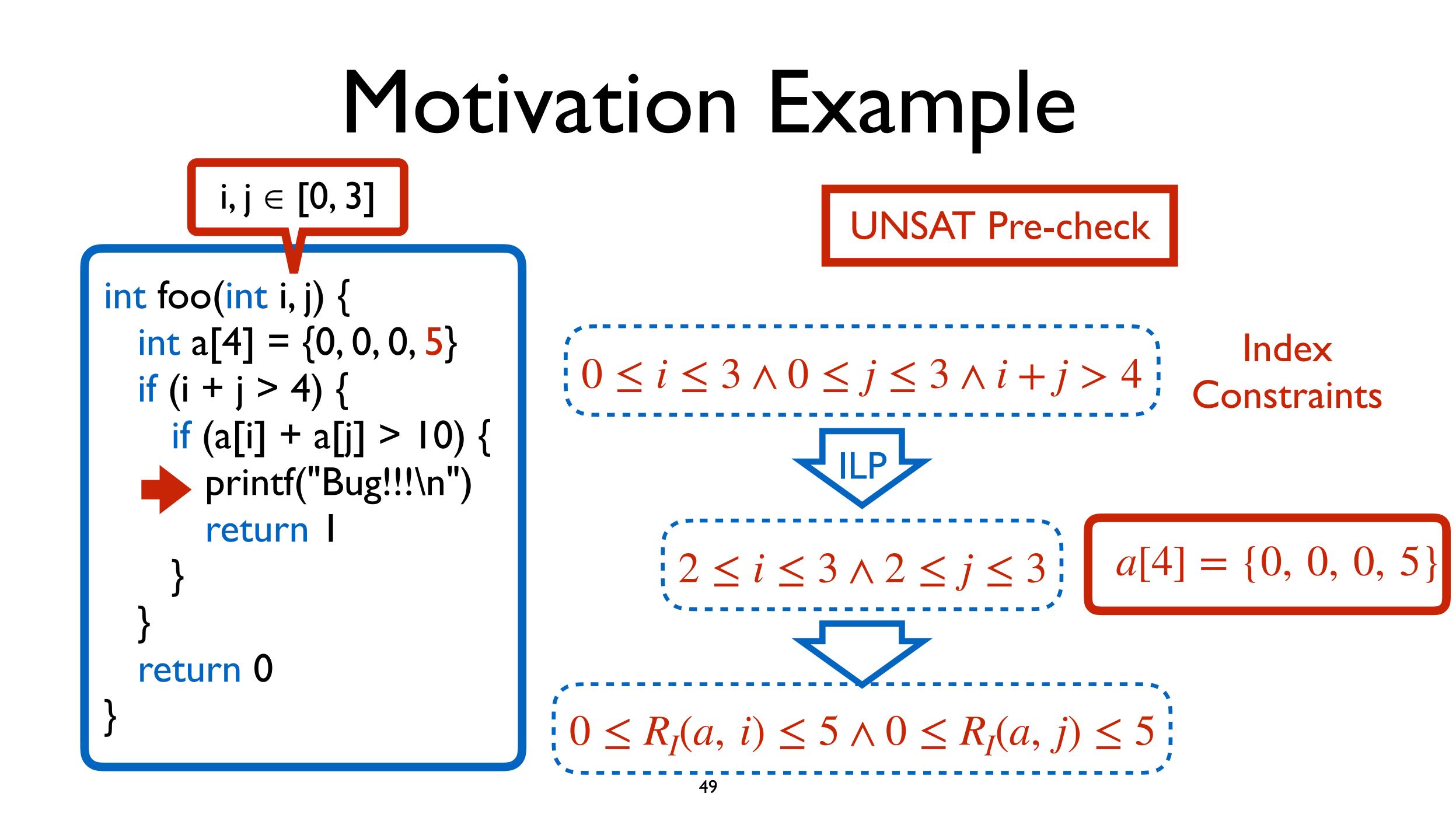
$0 \le i \le 3 \land 0 \le j \le 3 \land i + j > 4$ \bigwedge $R_{I}(a, i) + R_{I}(a, j) > 10$

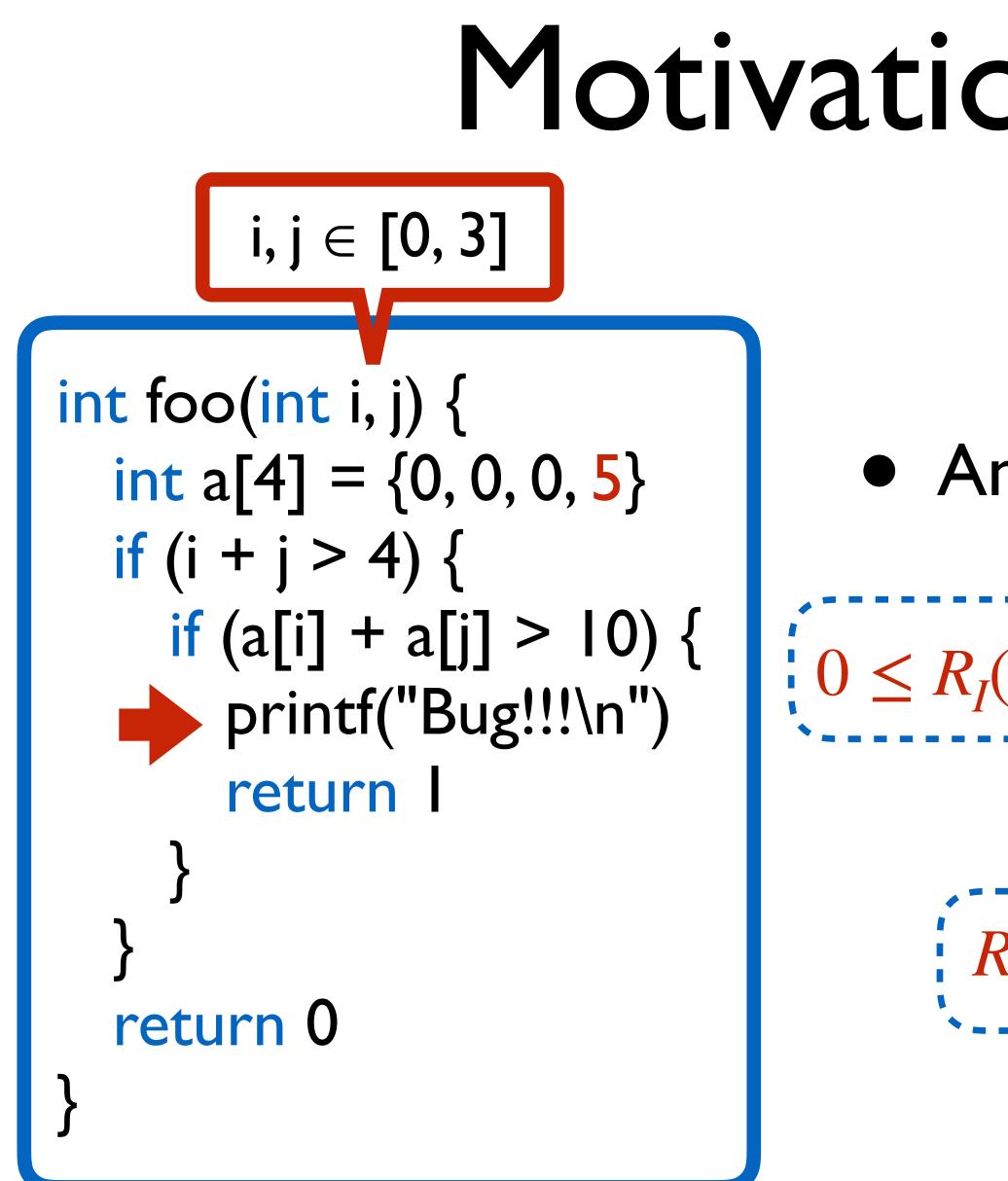
 $[a_{1}] = [0, 0, 0, 0]$

46







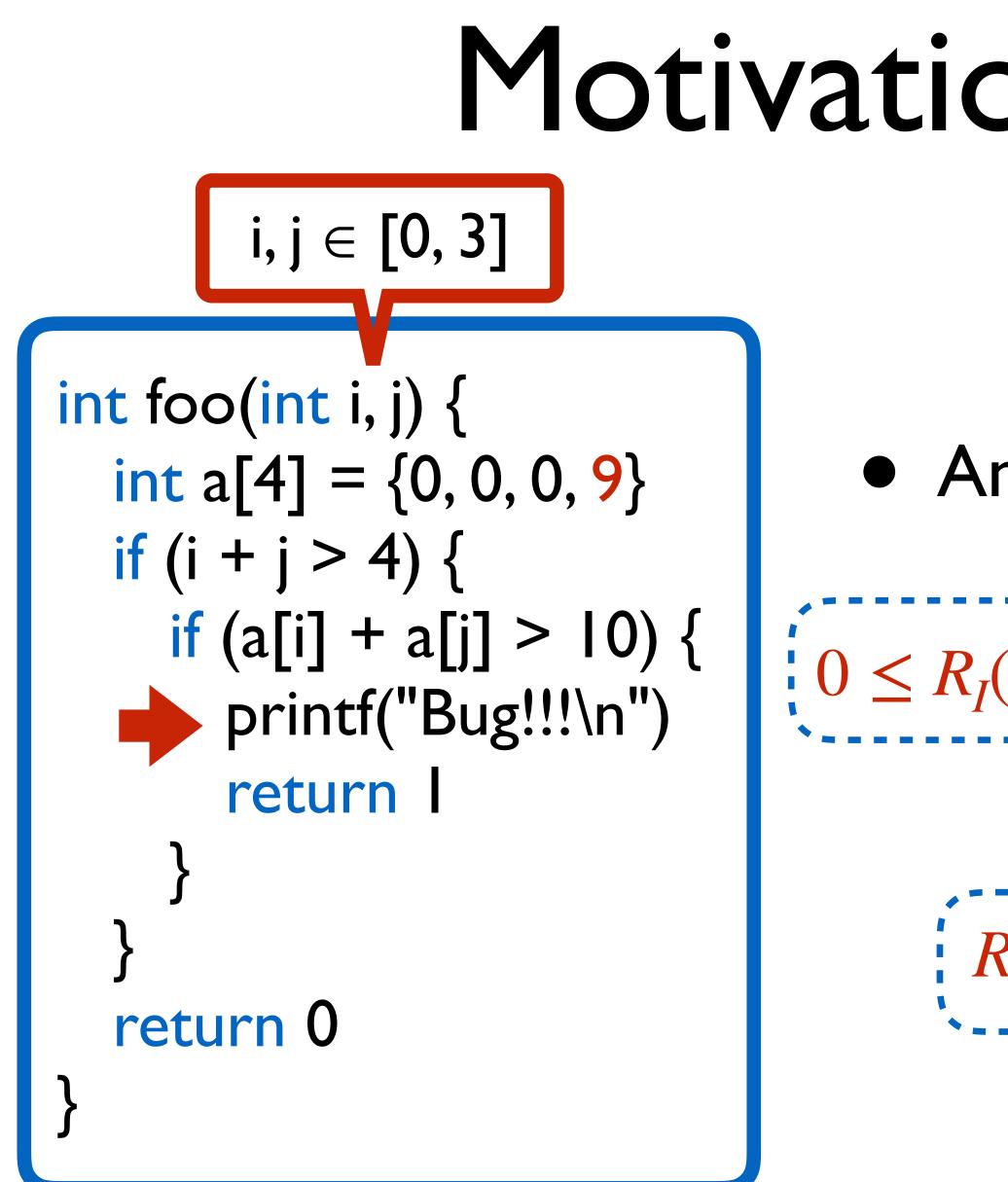


UNSAT Pre-check

An over-approximation

 $0 \le R_I(a, i) \le 5 \land 0 \le R_I(a, j) \le 5$ $R_I(a, i) + R_I(a, j) > 10$

Unsatisfiable!!!

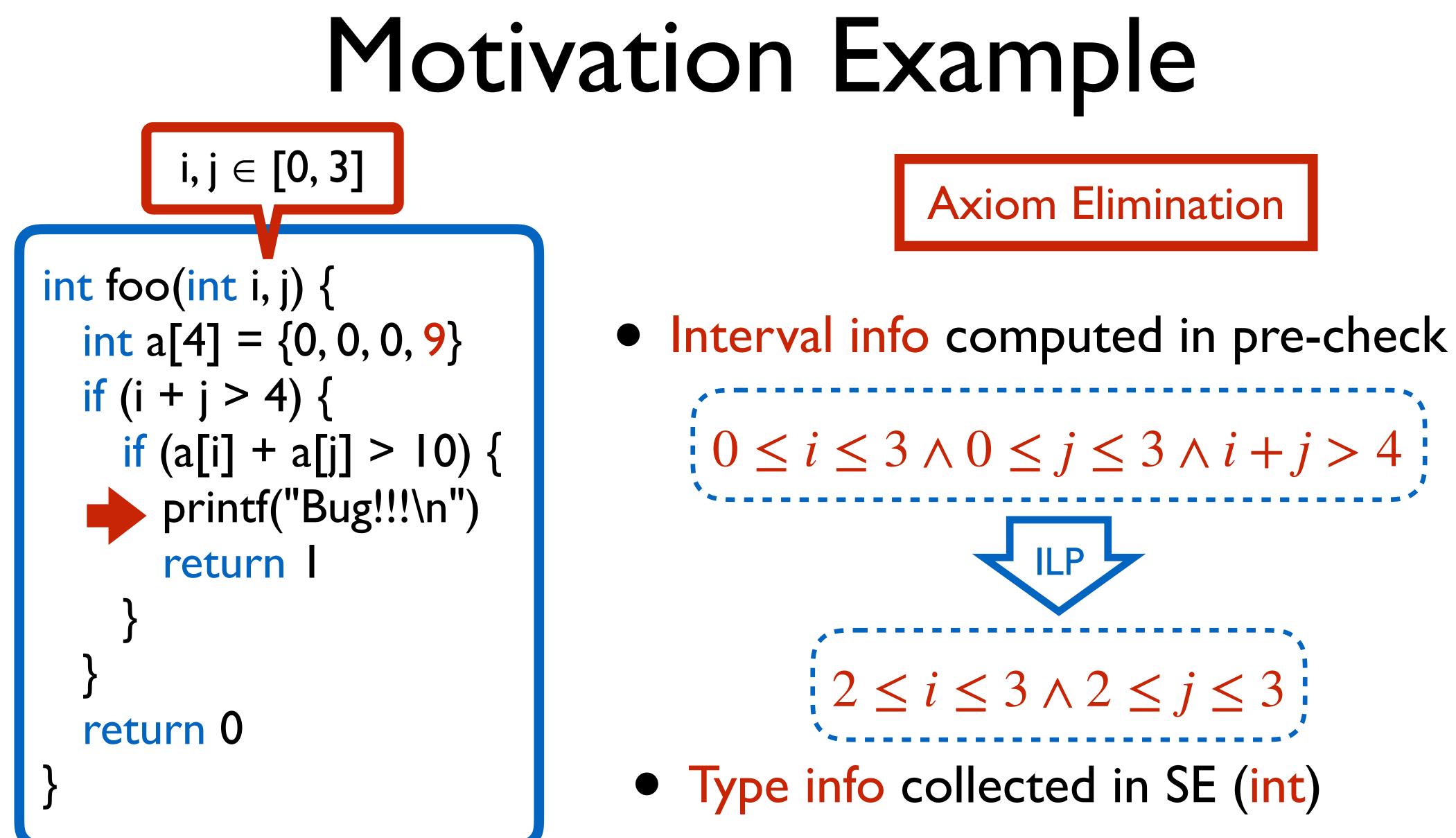


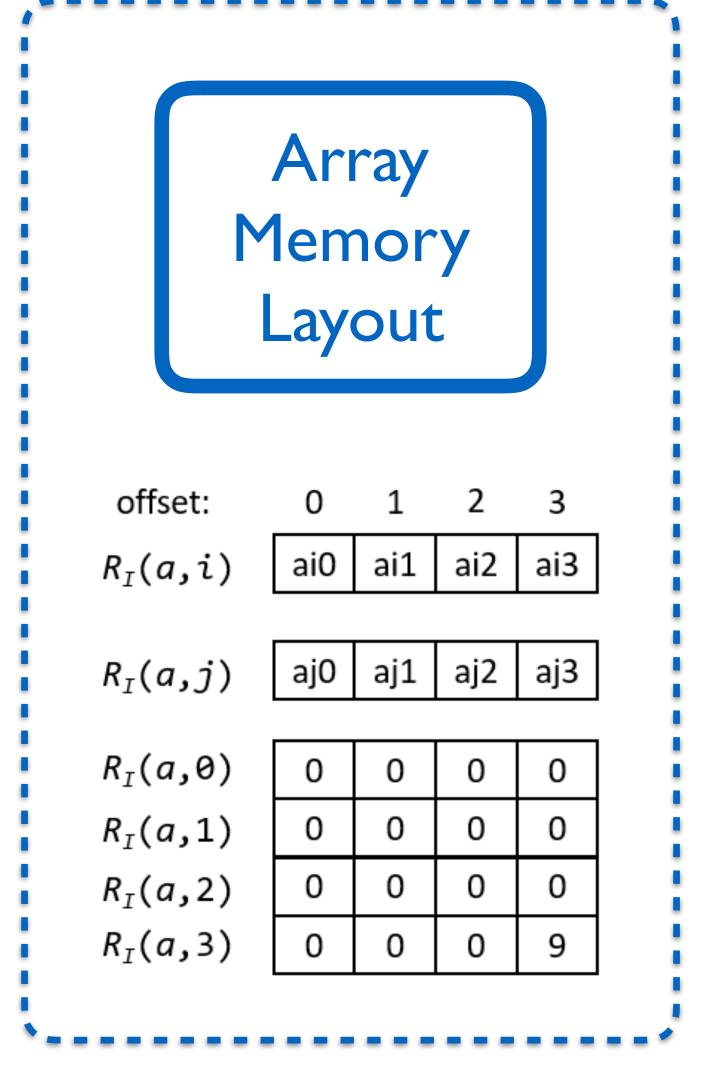
UNSAT Pre-check

An over-approximation

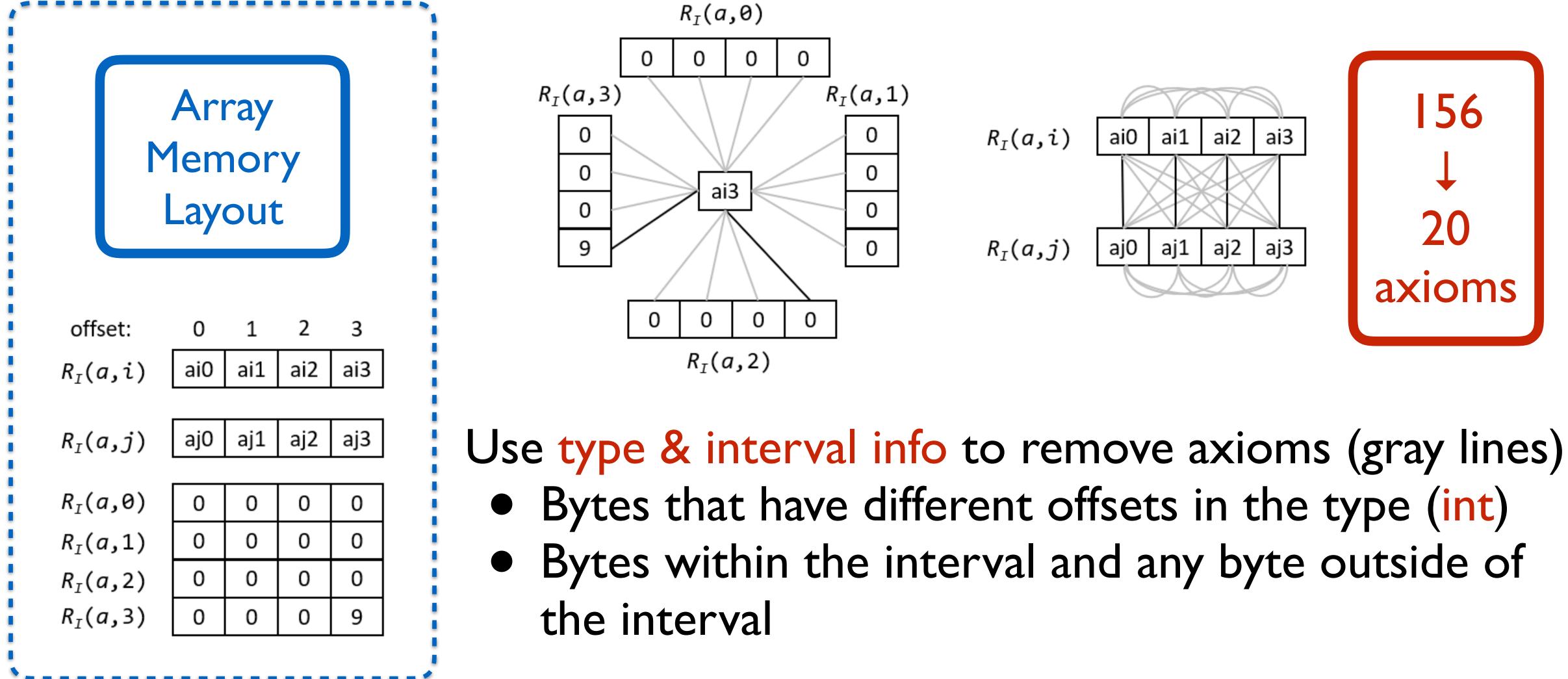
 $0 \le R_I(a, i) \le 9 \land 0 \le R_I(a, j) \le 9$ $R_I(a, i) + R_I(a, j) > 10$

Satisfiable??? NO





I 56 axioms



Type Inference

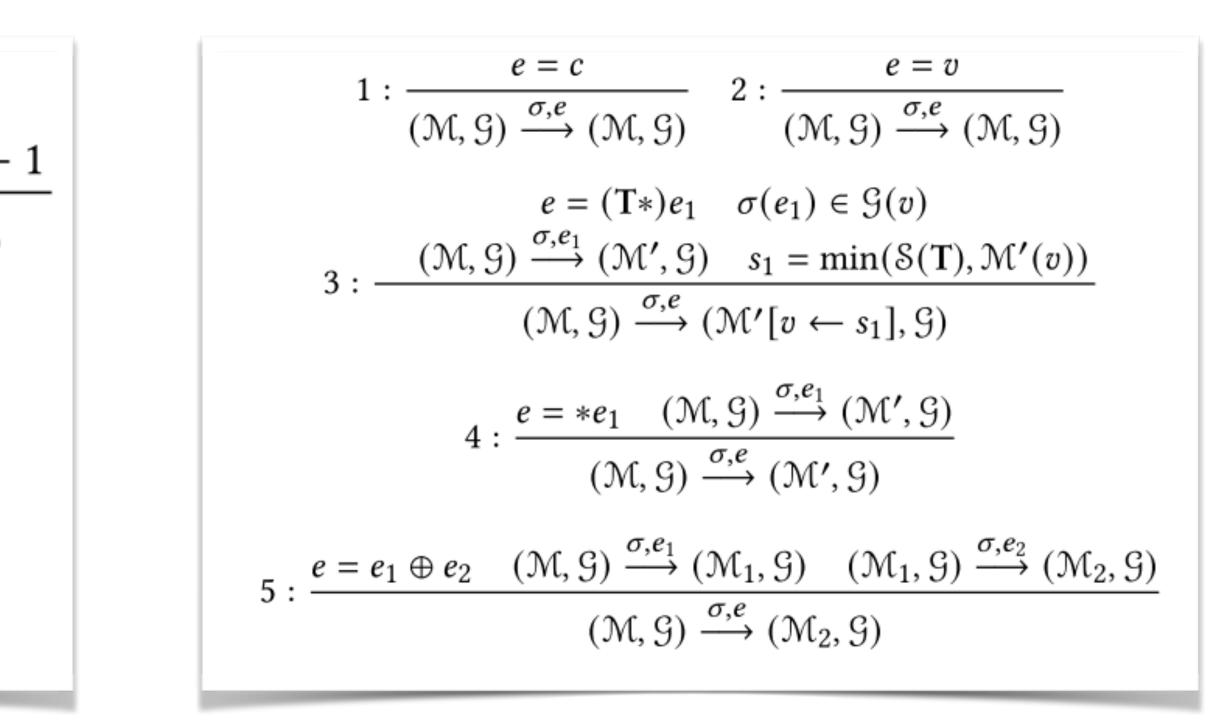
$$s = \operatorname{var} v[e] : T$$

$$1: \frac{(\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, e} (\mathcal{M}', \mathcal{G}) \quad u = \sigma(v) + \sigma(e) \times \mathcal{S}(T) - (\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, s} (\mathcal{M}'[v \leftarrow \mathcal{S}(T)], \mathcal{G}[v \leftarrow [\sigma(v), u]])}{(\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, s} (\mathcal{M}', \mathcal{G})}$$

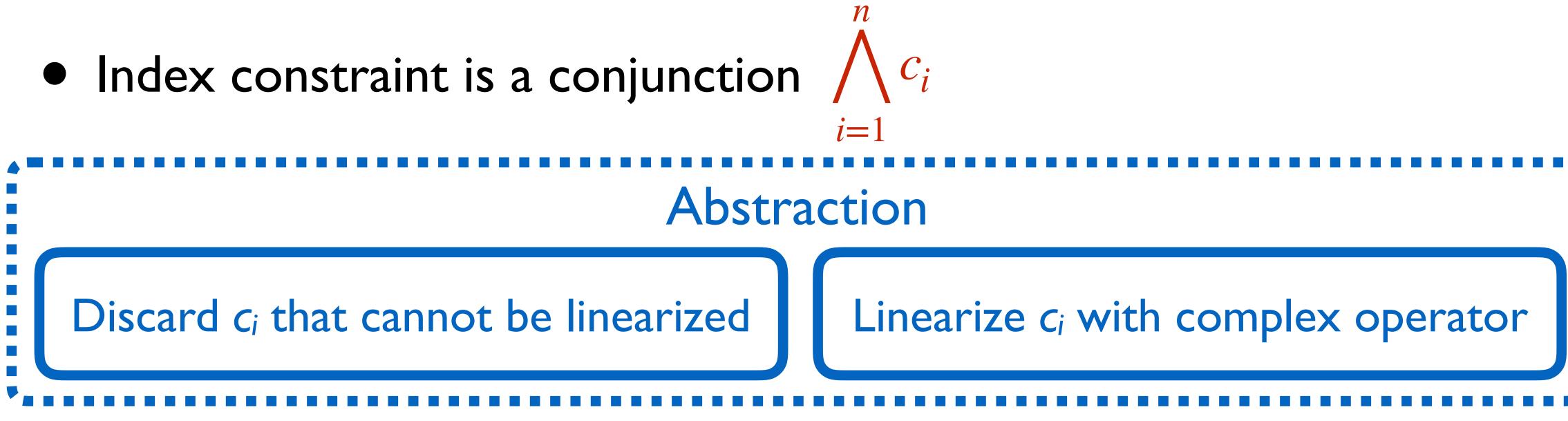
$$2: \frac{s = v := e \quad (\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, e} (\mathcal{M}', \mathcal{G})}{(\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, s} (\mathcal{M}', \mathcal{G})}$$

$$3: \frac{s = *v := e \quad (\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, s} (\mathcal{M}', \mathcal{G})}{(\mathcal{M}, \mathcal{G}) \xrightarrow{\sigma, s} (\mathcal{M}', \mathcal{G})}$$

Reserve minimum type size of array accesses



Index Constraint Abstraction



• Translate bit-vector index constraint to ILP problem

The abstraction rules ensure over-approximation

- Two simplifications to reduce cost of ILP solving
 - Simple interval computation before linearization
 - Caching ILP solutions

Other Internals

Evaluation

- Research Questions
 - Effectiveness
 - Relevance of either optimization
 - Comparison with KLEE-Array

Evaluation

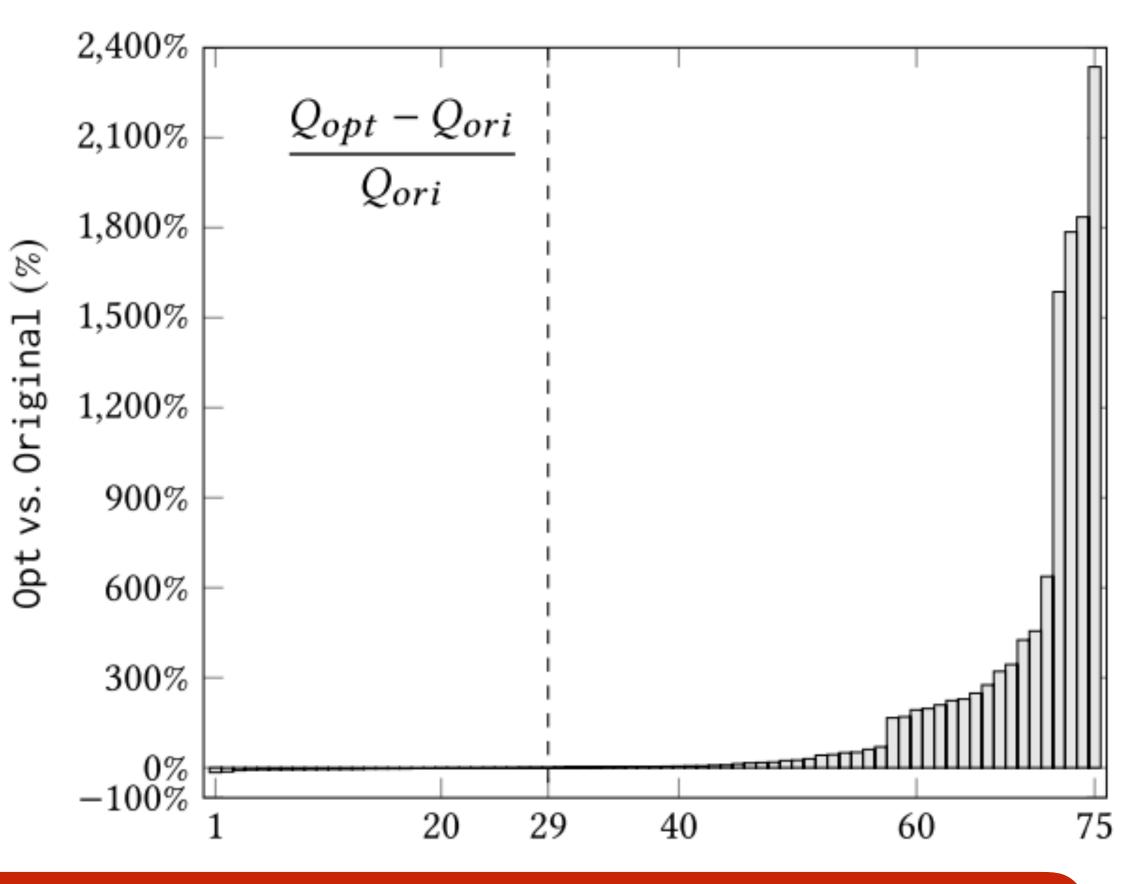
- Implementation
 - KLEE with STP
 - PPL solver for ILP solving

- Real-world programs as benchmark
 - Coreutils programs (62)
 - Lexer programs of various grammars (13)

Queries without KLEE opt

Improves the queries for 46 programs, 160.52% on average

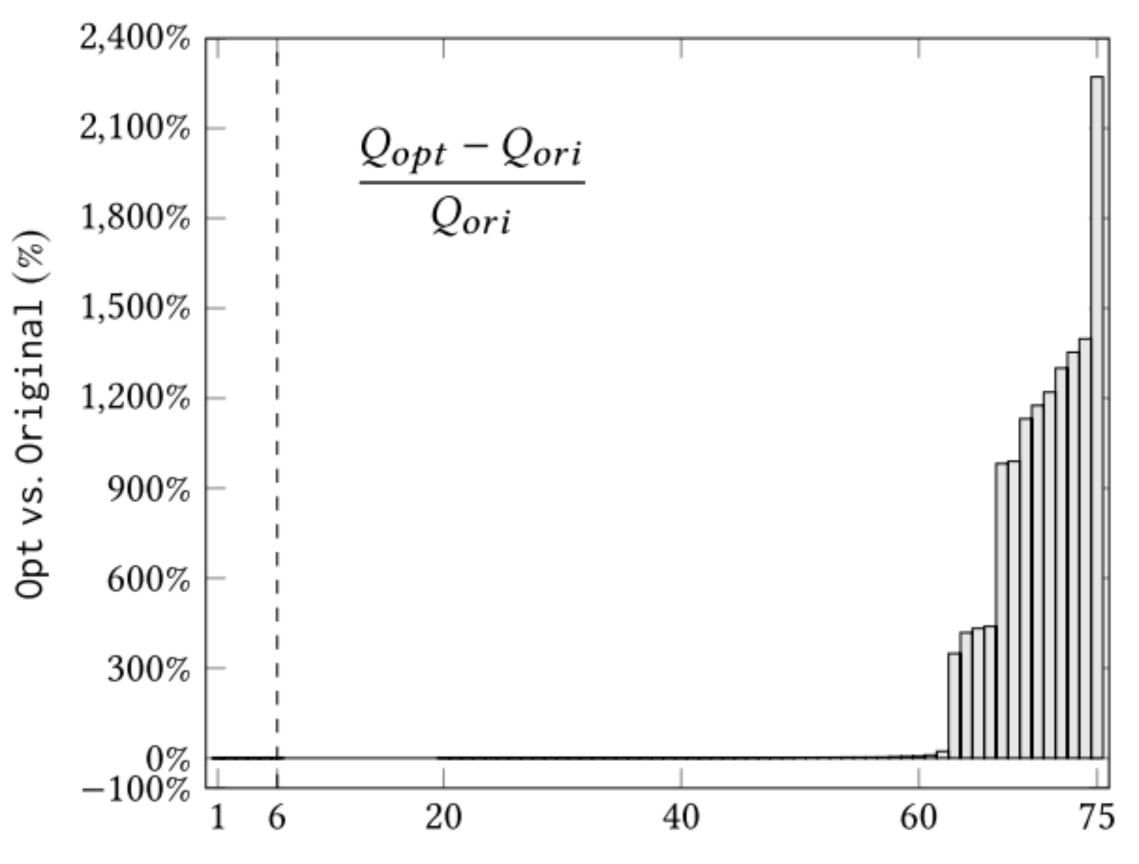
Results of Effectiveness



Queries with KLEE opt

Improves the queries for 56 programs, 182.56% on average

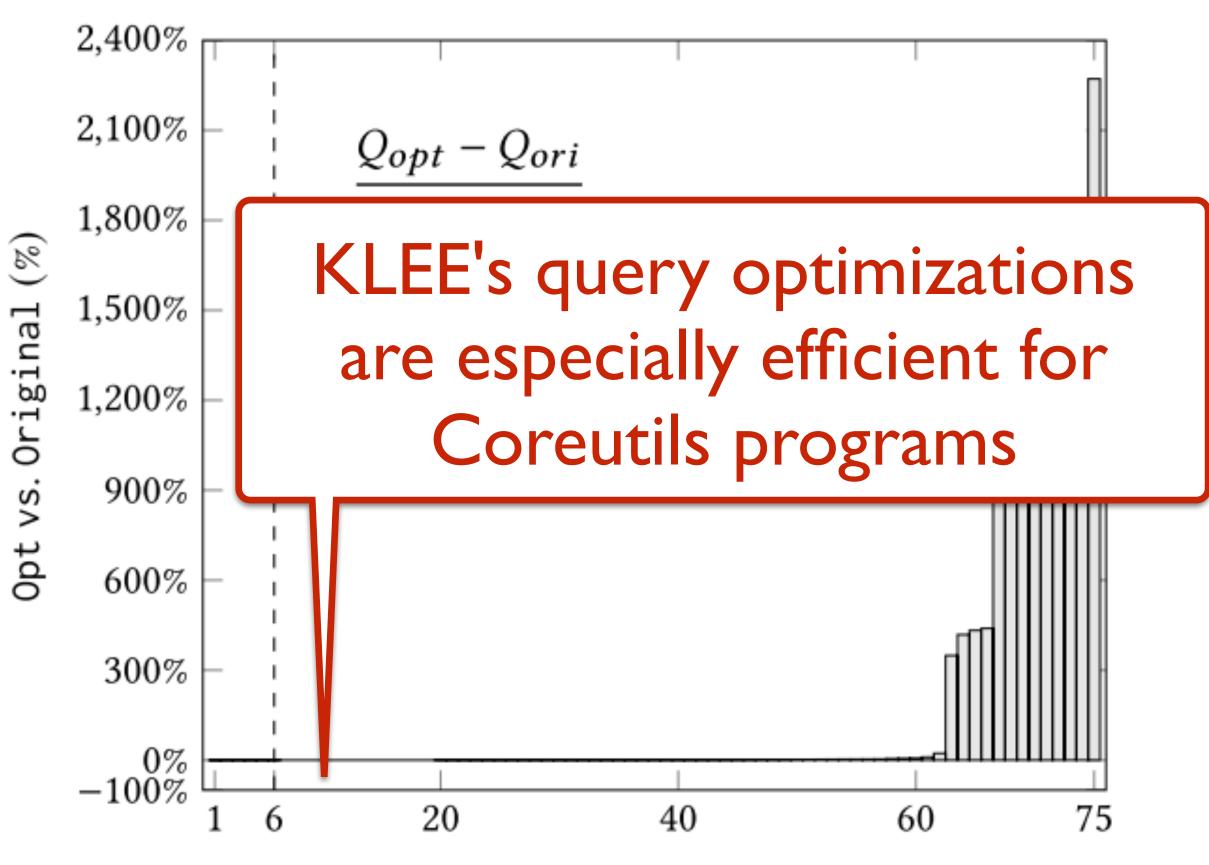
Results of Effectiveness



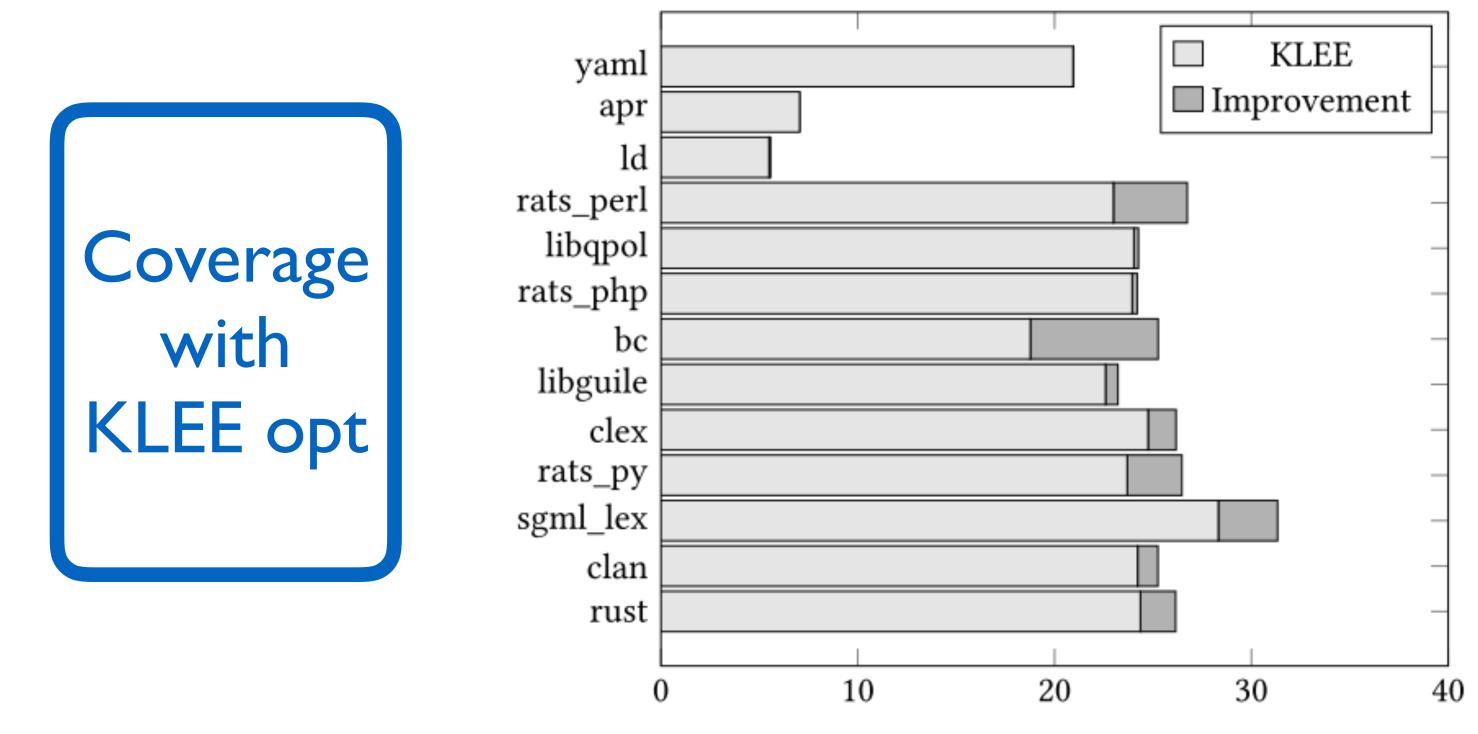
Queries with KLEE opt

Improves the queries for 56 programs, 182.56% on average

Results of Effectiveness



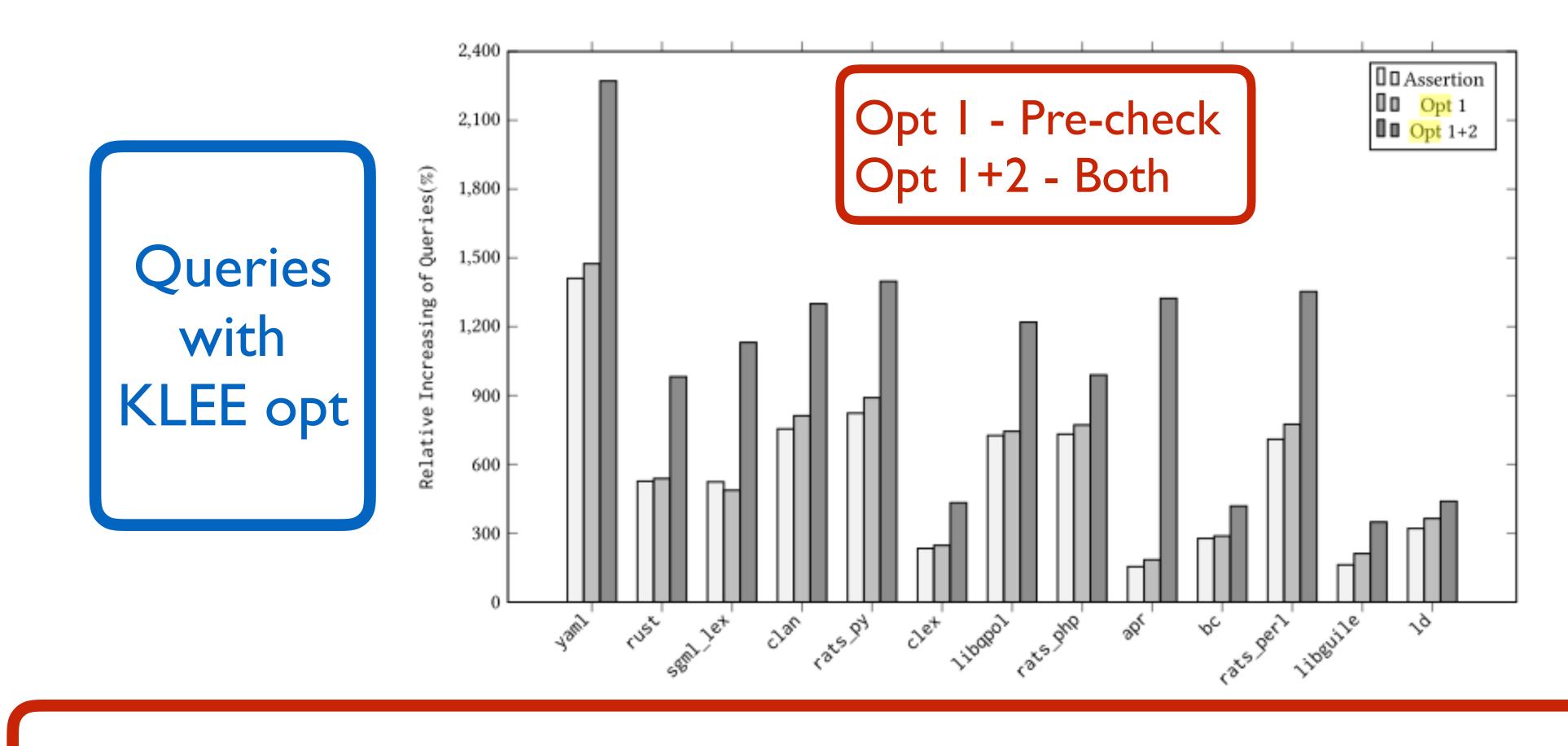
Results of Effectiveness



The advancement in constraint solving can directly benefit SE

Statement Coverage (%)

Results of Relevance



Opt 2 is more significant, while Opt 1 can generate useful information for Opt 2

Comparison with KLEE-Array

Program yaml rust sgml_lex

- clan
- rats_py
- clex
- libqpol
- rats_ph
- apr
- bc
- rats_pe
- libguil
- ld

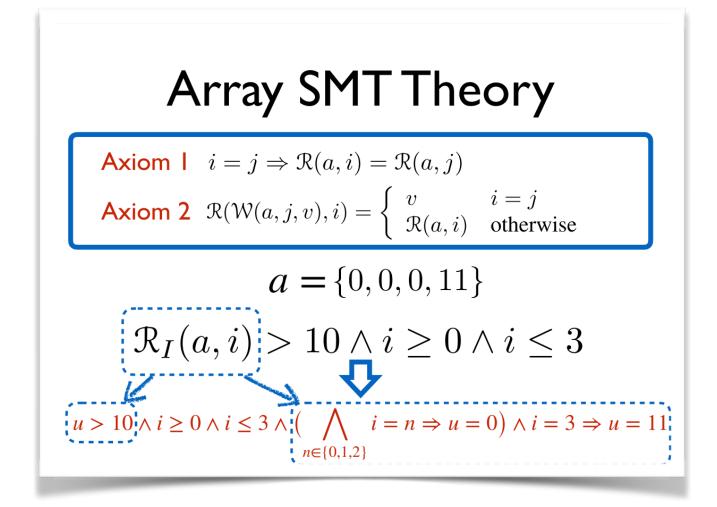
With

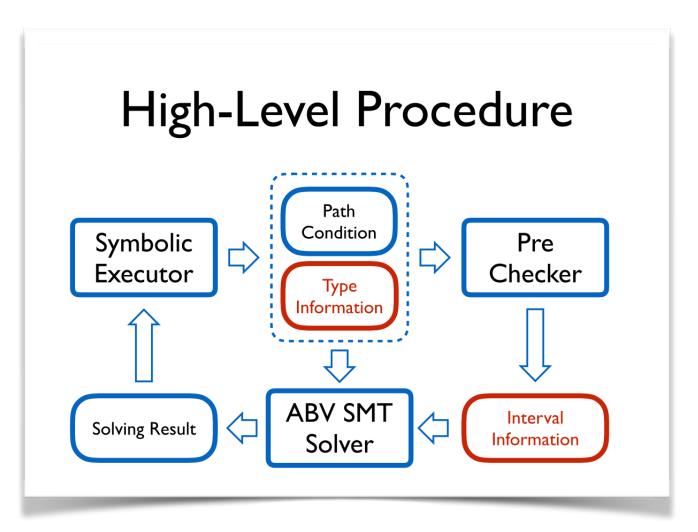
KLEE opt

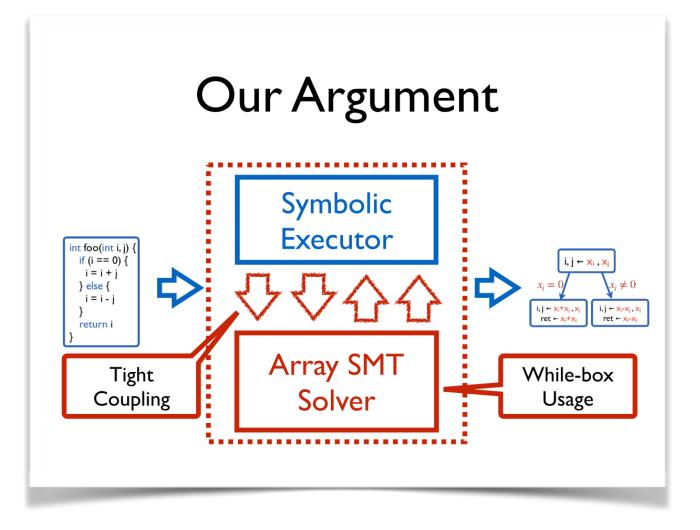
ns	KLEE-Array		Our Method	
	#Instrs	#Paths	#Instrs	#Paths
	71687	29	63864	28
	38892	24	53921	38
ex	599397	184	523956	165
	69777	66	89288	86
/	353230	342	417394	401
	87322	87	115455	124
L	35871	22	45190	35
np	5221268	1554	14514660	4479
	637629	3456	880674	5542
	340874	36	440008	43
erl	325398	338	379466	402
le	665723	337	750713	421
	373181619	489	373304921	584

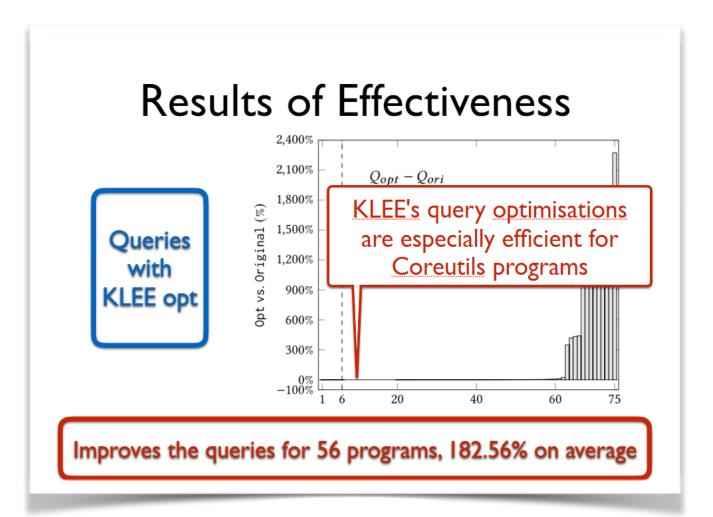
Our method increases the number of paths and instructions by 30.31% and 40.39%, respectively

Conclusion









ACM SIGSOFT International Symposium on Software Testing and Analysis

