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Abstract—Extracting fault features with the error logs of
fault injection tests has been widely studied in the area of large
scale distributed systems for decades. However, the process of
extracting features is severely affected by a large amount of
noisy logs. While the existing work tries to solve the problem by
compressing logs in temporal and spatial views or removing
the semantic redundancy between logs, they fail to consider
the co-existence of other noisy faults that generate error logs
instead of injected faults, for example, random hardware faults,
unexpected bugs of softwares, system configuration faults or the
error rank of a log severity. During a fault feature extraction
process, those noisy faults generate error logs that are not
related to a target fault, and will strongly mislead the resulted
fault features. We call an error log that is not related to a
target fault a noisy error log. To filter out noisy error logs,
we present a similarity-based error log filtering method SBF,
which consists of three integrated steps: (1) model error logs
into time series and use haar wavelet transform to get the
approximate time series; (2) divide the approximate time series
into sub time series by valleys; (3) identify noisy error logs by
comparing the similarity between the sub time series of target
error logs and the template of noisy error logs. We apply our
log filtering method in an enterprise cloud system and show its
effectiveness. Compared with the existing work, we successfully
filter out noisy error logs and increase the precision and the
recall rate of fault feature extraction.1

Keywords-error log; event filtering; fault injection; large
scale distributed system;

I. INTRODUCTION

In order to design an appropriate fault tolerance strategy

for a large scale distributed system, the fault feature model

of the system should be built up first [1]. A common way

to model the features is to inject faults into the system

and observe the subsequent anomaly symptoms from both

the client QoS view and the system inner behavior view,

e.g. error logs [2]. Event log has been widely used for

characterizing software faults for decades [3]. The patterns

of different log occurrence can help to extract the feature

of a specific fault through pattern mining algorithms like

Apriori association rule [4] and decision tree [5].

However, due to the boosting complexity and scale of

distributed systems, there always exist noisy faults in a

system. These noisy faults produce ambiguous noisy event

1This work was carried out at Alibaba Cloud Computing Company

logs that are unrelated to an injected fault, e.g. random

memory errors, disk errors or network glitter, unknown bugs

are touched or even configuration errors exist during a fault

injection process. Except the noisy faults, the log severity

level may be falsely set by developers either and cause

to generate large amount of unrelated error logs. These

problems are commonly happened in nowadays distributed

systems. The existence of noisy logs hinders a fault feature

extraction process in at least two ways: (1) some event logs

will be falsely identified as a part of a fault feature; (2) the

convergence of the precision and recall with target data set

is slow and more learning data is needed to increase the

precision of extracting a fault feature.

Filtering event logs is a challenging work and been

widely studied and applied in large scale distributed systems.

Existing work mainly focuses on improving the compression

rate, such as filtering event logs from both spatial view and

temporal view [6][7], or using causality analysis to remove

the semantic redundancy [8]. However, under the existence

of noisy log, unrelated logs are either falsely identified as a

part of fault features or need to execute fault injection tests

multiple times to get a relatively reasonable model. Coarsely

removing all the ambiguous error log types that occur before

injecting a fault may lose the precision of the fault features.

In this paper, we present an event log filtering method

by modeling the event logs of a specific type into log time

series and filtering the unrelated log via the similarity of

the time series. Our method has two advantages compared

with existing work: (1) event logs are filtered with a finer

granularity and the suspicious event logs probably related to

the injected fault are preserved; (2) less tests are required to

extract a fault feature with comparable precision.

The rest of this paper is organized as follows: Section II

introduces the preliminaries of our work. Section III presents

the similarity based event log filtering method. Section IV

shows the experimental results. The related work is reviewed

in Section V and the conclusion is drawn in Section VI.

II. PRELIMINARIES

The event logs in our target system record software

behavior [9] rather than hardware status or failures [6][7][8].

The event logs are exemplified as follows:
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[2010:11:24 11:01:13.193424] [INFO] [build/common/log manager.cpp:744] prepa-

ration LogHeader successes

[2010:11:29 22:37:29.131597] [WARNING] [build/Schedule/master.cpp:420] Role-

Merge:Role Normal

[2010:11:29 22:37:30.121176] [ERROR] [build/FileSystems/worker.cpp:823] Failure-

Processed:SSset = −1

An event log mainly contains 4 attributes: (1) Logging

Time is the time when the event happens with the accuracy

of microsecond; (2) Log Level is the severity of the log;

(3) Log Path is the exact line of the source code that

generates the log; (4) Description is the detail information

that the developers give to the log, including static text, the

status variables and the stack trace. Log categorization is

challenging and has been studied for decades for problem

determination and failure prediction by using text extraction

technology [10]. Although there are many other aspects that

can be used to categorize event logs, we choose Log Path

as the type of an event log. Because Log Path shows the

exact line of the code producing the log and represents the

logical context of an error.

Figure 1 shows a fault injection test case from a log time

series view. The time window Wf ranges from injecting a

fault till the recovery of the fault, and Wt is the time window

before injection a fault. As can be seen from Figure 1, not

every error log in Wf is related to the injected fault, and

some of them have already been generated in Wt. When

characterizing a fault, traditional pattern mining approaches

such as Apriori and DecisionTree might falsely identify

those logs as part of the fault features.

Figure 1. How Noisy error logs interfere the fault characterization process.

As shown in Figure 1, error logs of type B and C occur

periodically in both Wf and Wt. When applying pattern

mining techniques such as Apriori on all Wf , it could

easily identify A, B, C, D as a frequent item. However, by

manually examining the logs, we found that B is logged

for a mis-configuration of the testing environment while C

was caused by a common library and could be generated for

a wide variety of faults. A coarse way to filter those error

logs in Wf is to remove them if they are occurred in Wt.

However, some candidate noisy error logs in Wt show an

obvious pattern change of occurring counts after injecting a

fault. For example, in Figure 1, the average counts of type

B was increased from 10 to 25 when the fault was injected

into the system, which means B might be related with the

fault to some extent.

A. Definitions

Log categorization is challenging in log-based problem

determination and failure prediction. A common way to

tackle this problem is to use text extraction techniques [10].

We define an event log as a 2-dimension vector 〈type, time〉.
Although the clock frequency of different hosts are not

concurrency in a distributed system, we can limit the time

shifting within seconds in our testing environment with the

help of NTP (Network Time Protocol) service.

Definition 1 (Log time series of a log type α): Given a log

type α, a natural number set N , a sampling interval s, a start

time ts and an end time te, a time series of α in [ts, te) is a

n-dimension vector P = 〈p1, p2, p3, · · · , pn〉, where pi(1 ≤
i ≤ n) and pk is the count of the log type α that occur

during [ts+ i×s, ts+(i+1)×s), and ts+(i+1)×s < te.

We call Pi,j = 〈pi, pi+1, · · · , pj〉 as a sub time series of P ,

where i < j and ts + (j + 1)× s < te.

A common way to extract a time series’ feature is to

use the Discrete Wavelet Transform [11] techniques. With

Discrete Wavelet Transform, we can reduce the noise and get

an approximate time series that contains only the key char-

acters of the original time series. This approximation process

is done by wavelet decomposition and reconstruction. A

wavelet decomposing operation decomposes a time series

into approximation coefficients and detail coefficients. The

key characters are presented in the approximate coefficients

while the noise is stored in the detail coefficients. By

reconstructing the time series from approximate coefficients

and eliminating the detail coefficients (e.g. assign them

to 0), we can get an approximate time series. We use

Trans(wavelet, w) to represent the approximation process,

where wavelet is the wavelet form used to decompose and

reconstruct the time series and w is the original time series.

Trans returns the approximate time series aw.

In this paper, we use Haar wavelet transform for

wavelet, which is a very basic and most widely used wavelet

transform. Haar wavelet transform is done by a series of

average and difference operations on the input time series.

The 1-level decomposition and reconstruction process has a

time complexity of O(n), where n is the size of the time

series. However, the choosing of Discrete Wavelet Transform

Level is another open question. In this paper we choose

1-level wavelet transform by our experience, and its validity

is justified by our experimental results.

Definition 2 (Similar time series): Given two time series

W, W ′ and a threshold T , if D(W, W ′) < T , then W is
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similar to W ′, where D is a similarity calculation function.

There are many methods for calculating similarity,

such as Minkowski distance [12], Dynamic Time Warping

(DTW ) [13], etc. We choose DTW that uses a dynamic-

programming methodology to find the best matching path

between two time series to get the minimized Minkowski

path. Compared with the original Minkowski distance,

DTW is better in accuracy and the tolerance of time

shifting. Giving two time series W = 〈w1, w2, · · · , wn〉
and W ′ = 〈w′

1, w
′

2, · · · , w
′

m〉, the Dynamic Time Warping

distance D(W, W ′) is defined in Formula 1 [13] where

dist(wi, wi
′) = |wi − wi

′|, n and m is the size of W and

W ′.

D(W, W ′) = dt(n, m)
dt(n, m) = 0, dt(i, 0) = dt(0, j) = ∞

dt(i, j) = dist(wi, w
′

j)+min







dt(i, j − 1)
dt(i − 1, j)
dt(i − 1, j − 1)

(i = 1, ..., n; j = 1, ..., m)

(1)

One drawback of DTW is its time complexity, i.e.

O(n×m), where n and m is the size of W and W’. Though

there are choices with a lower complexity, we prefer to

get a better accuracy and select DTW as our similarity

calculation function. We are trying to filter out the logs

that may not relate to an injected fault under the following

assumptions:

A1 A stable workflow persistently invoking the common

requests of the target service during the fault injection

test.

A2 All logs have been well categorized.

A3 All injected faults are evidenced in logs by a signature

despite there exist few failures without signatures.

A4 The types of the logs that occur before a fault (in

Wt) have the most suspicion to be unrelated with the

injected fault.

A fault injection testing framework guarantees A1. A2 is

guaranteed by using Log Path as the log categorization

heuristics, it also means our filtering method can be easily

extended to other log categorization method. For A3, al-

though there may exist other failures that leave no signature

on error logs, we believe such failures are rare. A4 is inspired

by our observation and lays the basis of our filtering method,

which means we will ignore the error log types that are not

occurred in Wt for a specific fault injection test.

Definition 3 (noisy logs of type α): Given Wt as the time

range [ts, te) staring from the start of a test till injecting a

fault, Wf as the time range [te, te′) starting from injecting

a fault till the recovery of the system, a sampling interval s,

a log time series P of type t in Wt, a time series P ′ in Wf ,

Pi,j as the sub time series of P , P ′

k,l as the sub time series

of P ′ and a similarity threshold T . If D(Pi,j , P
′

k,l) < T ,

then all the logs of type t in [te+k×s, te+(l+1)×s) are

identified as noisy logs, where D is the similarity function.

In this paper, we model event logs into time series and try to

detect amphibious event logs by comparing the occurrence

pattern with the candidate noise template. By filtering the

“matched” event logs and leaving the “amphibious” event

logs, we can successfully filter out the noisy event logs and

increase the fault diagnosis precision rate and recall rate.

III. SIMILARITY-BASED LOG FILTERING

Given a time series P of a log type α in Wt, a time series

P ′ in Wf and a similarity factor th ∈ [0, 1], the detailed

Similarity-based Log Filtering (denote as SBF) method is

shown in Algorithm 1.

Algorithm 1: Similarity based log filtering

Input: P is a time series of a log type α in Wt, P ′ is a

time series of α in Wf , th is a similarity factor.

Output: P ′′, which is the filtered time series of P ′

reconstruct P and P ′ with Trans and return TP and1

TP ′ ;

divide TP and TP ′ into sub time series with2

segmentation and return sub time series sets TPS

and TPS′ ;

foreach i of TPS do3

/*calculate the threshold for each noisy template4

independently*/

T ← 0 ; // T is the similarity threshold5

initP ← 〈0, · · · , 0〉 ; // initialize a zero time series6

and |intiP | equals to |i|
T ← D(i, initP )× th ;7

foreach j of TPS′ do8

distance← D(i, j) ;9

if distance ≤ T then10

delete the logs of type α from P ′ in the11

time range of j;

Break ;12

Algorithm 1 mainly contains the following 3 steps:

1) Line 1 gets the approximate time series TP and TP ′

of P and P ′ through Trans.

2) Line 2 divides TP and TP ′ into sub time series

set TPS and TPS′ by segmentation. We use the

nearest two valley of a time series as a heuristic to

divide a time series into sub time series set. That is,

for a time series P = 〈p1, · · · , pn〉, if pi < pi−1

and pi < pi+1 then we get a valley point pi. The

original time series can be divided into sub time series

by the nearest two valley point’s time stamp. We use

segmentation(P ) to represent this process. The time

complexity of segmentation(P ) is O(n) where n is

the size of time series P .
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3) From line 3 to 13, it first calculates a similarity thresh-

old of noisy template i by th, than for each element j

in TPS′, it calculates the similarity with the ith noisy

template by using similarity measurement D. If the

resulted distance is less than the threshold T , j is a

matched sub time series, and all the logs of type t in

the time range of j should be deleted.

To calculate the time complexity of Algorithm 1, we

assume: (1) |TP | = n1, |TP ′| = n2, |TPS| = k1 and

|TPS′| = k2; (2) each time series of TPS contains m1’s

sampling points on average, while m2 for TPS′. We have

n1 = k1 ×m1 and n2 = k2 ×m2. Both Step 1 and Step 2

have a time complexity of O(n1 × n2), and D(i, j) has a

time complexity of O(m1×m2) [13], while the iteration has

been executed for k1 × k2 times, which makes the overall

time complexity is O(k1 × k2 ×m1 ×m2) = O(n1 × n2).
An example of the SBF filtering effect is shown in Figure

2 with th = 0.1. Picture (e) is the final filtering result,

Algorithm 1 successfully filters most of the noisy logs and

leaves those suspicious logs.
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Figure 2. Example Effects of SBF. (a) and (b) are time series
of a log type that extracted from Wt and Wf , while (c) and (d)
are approximate time series of (a) and (b) after Trans(’haar’,w)
process; (e) is the filtered result of (b) by using SBF

IV. EXPERIMENTS

The experiments are to evaluate the effectiveness of SBF

log filtering method on improving fault detection precision

and recall. The target system is a large scale distributed

system built on the Master-Worker style. The experiments

were done on a cluster composed of 100 nodes. There are 10

test cases in each test round, and totally 30 rounds of tests

are executed. After each test round, the logs are gathered

and imported into a centralized DBMS. Totally 2,800,973

logs are collected.

A. Test case overview

In our experiments, a test round contains 10 fault injection

test cases that simulate the process crash scenario by killing

the process. The basic statistic information of all test cases

is listed in Table I. All test cases can be clustered into 3

categories: (1) crash a worker process, (2) crash a master

process, (3) crash a communication agent. In each test case

we only crash one process. For multiple worker processes,

the test case will randomly choose one to crash. DBmr1

uses application requests while DBmr2 uses inner requests

to judge the service’s status. The average recovery time of

each service crash is rather different, ranges from 16 seconds

to 548 seconds. For each test case, a priori knowledge of the

average recovery time is needed for setting the timeout of

for each test case. For those timeout cases and short recovery

time cases, we choose 100 seconds for Wt.

Table I
OVERVIEW OF TEST CASES

test case average recovery average Wt

time (seconds) (seconds)

DBwr fail 156 150

DBmr1 fail timeout 100

DBmr2 fail 16 100

FSwr fail 34 100

FSmr fail 548 300

SSwr fail timeout 100

SSmr fail 80 100

NLwr fail 68 100

MSmr fail 80 100

CA fail 135 150

B. Experiments Results

We follow the basic processing framework to extract fault

feature that in [8] (denote as CFC): (1) filter the raw logs

from spatial and temporal views; (2) filter the semantically

related combined events; (3) use the resulted combined

events to construct the decision tree. The difference between

our work and [8] is we add a step before (1), that is: (0)

filter out the noisy logs by Algorithm 1.

A 10-fold cross validation process is applied for evaluat-

ing the precision and recall of the model. As was proposed

in [8], we evaluate two metrics of fault detection: precision

(i.e. the proportion of correct detections to all the detection

results) and recall (i.e. the proportion of correct predictions

to the number of injected faults).Due to different scenarios

and system configurations compared with [8], we choose 30,

50, 100, 200 and 500 seconds as the candidate association
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Figure 3. Experiment results. (a) and (b) compare the precision and
recall of SBF and CFC under different settings. (c) and (d) compare
the congestion of SBF and CFC in time window 200 seconds.

time window with regard to the average recovery time of

different test cases.

As shown in Figure 3(a) and Figure 3(b), our presented

method generally acquires better precision rate and recall

compared with CFC when noise faults exist. For CFC, the

noise faults strongly affect the recall rate. It is because

the resulting association rules of CFC are affected by the

noisy log, which produce the wrong judgment conditions

in the decision tree and cause the failure of fault detection.

Especially, when the association time window is large (e.g.

500 seconds), we get the worst recall rate of the experiment

- 30%. However, the precision rate seems to be less affected

by noisy logs in CFC. It is because the detected faults are

actually related with some noisy logs from client libs, and

the features of those faults are rather different.

SBF filters those unrelated noisy logs and provides more

accurate association rules. To the effect of the time series

threshold of SBF, there are no obvious differences when

setting th to 10% or 20%. However, a little performance

degradation is observed when setting th to 30%. That is be-

cause some logs are mistakenly filtered and some judgment

conditions in the decision tree are lost. The best precision

of SBF is 96% in 100 seconds when th = 20% and the best

recall is 94% in 100 seconds when th = 10%, compared

with 90% in 200 seconds and 57% in 100 seconds of CFC.

Another interesting comparison is done on evaluating the

relationship between fault detection results and the number

of test rounds used to learn the model. We choose time

window of 200 seconds as an example. As shown in Figure

3(c) and Figure 3(d), SBF congests much faster than CFC.

CFC should use more learning data to acquire a relative

good precision rate and recall rate because of the noisy logs.

With SBF, the system administrator can use less data to

fast the feature modeling of a fault, which saves human and

computing resources.

V. RELATED WORK

Event logs have been widely used to characterize fault

features. The scenarios for generating logs can be catego-

rized into two classes: getting logs from production system

[15][16] and using fault injection tools like G-SWFIT[2] to

generate logs during the testing phase. The latter always

injects fault into source code to simulate logical mistakes,

and then evaluates the impact of the faults from both QoS

view and fault detection view [17]. However, as observed

in our target system, process crashing is a much common

fault than logical error. We choose to use crashing process

as our injected fault, which can offer much practical result

for daily system management.

However, nearly all logging systems have redundant and

inaccurate logs. Existing log analysis work tries to solve it

by filtering the log from both temporal and spatial views

with high log compression rate [6][8], that is to remove

the same type of events reported from different location

(e.g. different host) within a time window. The purpose of

such filtering process is to reduce the related set of alerts

to a single initial alert per failure. It makes the ratio of

alerts to failures nearly one. Zheng, Z. et al. give a practical

log pre-processing method by combining regular expression

based event categorization and Apriori association analysis

rules [8]. It effectively filters out semantic redundant logs

without sacrificing the precision of failure identification

and improves the failure prediction by up to 174% with

compression rate more than 90%. However, existing work

ignore the noisy log that occurs during a fault injection

process, which is difficult to distinguish the cause-effect

relation between event logs and injected faults. With the

existence of noisy faults during system running, existing

work may extract imprecise fault model because of keeping

unrelated logs or removing the related logs.

Compared with the existing work, we model the logs of a

specific type into time series and use Haar wavelet to extract

the log occurrence pattern. By filtering out logs that fits the

noise template, we successfully filter the noisy logs in a fine

granularity and improve the validation of fault features.

VI. CONCLUSIONS

Extracting fault features by fault injection tests is usually

affected by noisy logs. We present a log filtering method

by modeling the logs of a specific type into log time series

and filtering out the noisy log via the similarity between

time series. The main contributions of our work are: (1)

logs are filtered in a finer granularity and the suspicious

logs are preserved to better characterize fault features; (2)

less learning data is needed to compute a fault feature with

a comparable precision. Comprehensive experiments have
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been carried out, and the results show a better precision and

recall rate compared with the existing work.
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