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Abstract. Message Passing Interface (MPI) is the current de-facto stan-
dard for developing applications in high-performance computing. MPI
allows flexible implementations of message passing operations, which
introduces non-deterministic synchronizations that challenge the correct-
ness of MPI programs. We present in this paper a symbolic method
for verifying the MPI programs with non-deterministic synchronizations.
Insides the method, we propose a path-level modeling method that uses
communicating sequential processes (CSP) to precisely encode the non-
deterministic synchronizations of an execution path. Furthermore, for the
execution paths without non-deterministic message receive operations, we
propose an optimization method to reduce the complexity of the CSP mod-
els. We have implemented our technique on MPI-SV and evaluated it on
10 real-world MPI programs w.r.t. deadlock freedom. The experimental
results demonstrate the effectiveness of our verification method.

1 Introduction

Message Passing Interface (MPI) [21] is the most widely used standard for devel-
oping applications in high-performance computing (HPC). MPI provides a rich
set of message passing operations for developers. MPI programs are usually run
in many processes spanned on network-connected machines. These distributed
processes cooperate by message passings to accomplish a computation task. The
development of MPI programs is challenging, and it is highly demanded to have
methods and tools to ensure the correctness of MPI programs [8].

Existing approaches for verifying the correctness of MPI programs are mainly
dynamic methods [6,24], which run the program under a specific input and verify
the correctness of program paths. There are few static verification methods [2,18,
19], which abstract the MPI program and verify the correctness of the abstract
model. There are also symbolic execution based methods [14,27], which achieve
a balance between precision and scalability and provide a bounded verification
support for MPI programs.
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For improving the performance further, the MPI standard [7] allows flexible
implementations of MPI operations. Especially, the standard send operation can
be implemented in “rendezvous” mode [1], where the send operation blocks the
sending process until the message is received, or the “eager” mode [1], where the
send operation’s completion is independent of the corresponding receive opera-
tion and only requires that the sending message has been copied to the local
system buffer. If the local system buffer is full, the send operation also blocks.
Hence, the synchronizations in MPI programs depend on the MPI implemen-
tations, which we call non-deterministic synchronizations. Because of this, an
MPI program failure (e.g., deadlock) may appear only in some specific MPI
implementations, which brings difficulties for developing MPI programs. How-
ever, the existing work of verifying MPI programs seldom considers the problem
of non-deterministic synchronizations. As far as we know, the work in [1] is the
only one, which provides a dynamic verification method that can find potential
errors related to non-deterministic synchronizations. However, the method in [1]
cannot find the errors that depend on the program input.

Figure 1 shows an MPI program running in two processes. Process P0 first
sends a message to process P1. Then, if the input x is equal to ‘a’, P0 will receive
a messages from P1. On the other hand, if x is ‘a’, process P1 will first send a
message to P0. After that, process P1 receives a message from process P0. If the
input x is ‘a’ and both the send operations are implemented in the “rendezvous”
mode, a deadlock happens, i.e., both P0 and P1 block at the send operation and
wait for receive operations to receive the message. However, if send operations
are implemented in the “eager” model with non-zero-sized local system buffers,
there will be no deadlock, despite the input x. Hence, to verify the deadlock
freedom of the MPI program, we need to cover both the input space and the
non-deterministic synchronizations.

Fig. 1. A motivating example.

In this paper, we present a verification method that covers both the pro-
gram input and the non-deterministic synchronizations. Our approach is based
on the symbolic verification framework of MPI-SV [27]. Specifically, we pro-
pose a precise modeling method that utilizes communicating sequential processes
(CSP) [17] to encode the non-deterministic synchronizations. The key idea is to
use an internal choice to model the blocking or non-blocking of each send opera-
tion. Besides, we propose an optimization method for the MPI execution paths
without non-deterministic receive operations, which improves the verification’s
efficiency.
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We have implemented our method on MPI-SV [27], and evaluated it on 10
real-world MPI programs, totaling 46638 lines of code (LOC), w.r.t. the deadlock
freedom property. Our tool successfully verified all the 26 tasks within 90 min,
and found that 18 verification tasks have deadlocks due to the non-deterministic
synchronizations and 8 tasks are deadlock free. We manually confirmed that
all the detected deadlocks are real. These experimental results demonstrate the
effectiveness of our approach.

There are following main contributions of this paper.

– A precise method for modeling the non-deterministic synchronizations of an
execution path in terms of CSP.

– An optimization method that can reduce the complexity of CSP models for
paths having no non-deterministic receive operations.

– A prototype tool and an extensive evaluation on real-world MPI+C programs.

Related Work. There already exist some approaches for verifying MPI pro-
grams. MPI-SPIN [18,19] utilizes model checking [5] to verify MPI programs
w.r.t. LTL properties. However, MPI-SPIN needs manual efforts to build a
model in Promela [9]. ParTypes [13] integrates type checking and deductive
verification to verify MPI programs against a protocol. ParTypes’s verification
results hold for any number of processes but may have false positives. Besides,
ParTypes only supports MPI programs without non-blocking or wildcard opera-
tions. Dynamic verification approaches, e.g., ISP [24] and DAMPI [25], execute
the same input multiple times to cover the schedules. MOPPER [6] and the tool
in [10] encode the deadlock detection problem under concrete inputs in a SAT
and SMT equation, respectively. Hermes [11] integrates dynamic verification and
symbolic analysis to verify multi-path MPI programs. All these dynamic verifica-
tion approaches do not support input coverage. MPI-SV [27] integrates symbolic
execution and model checking to verify MPI programs w.r.t. a given property,
but does not consider non-deterministic synchronizations.

The closest related work is the method in [1], where a two-step verification
framework is proposed for MPI programs with non-deterministic synchroniza-
tions. They first build an abstract model by supposing all the non-deterministic
synchronous operations using the “eager” mode. A post-processing method is
then applied to the model to detect the potentially missed deadlocks introduced
by the non-deterministic synchronous operations. However, they only consider
communications under a specific input and may miss input-related deadlocks.
In contrast, our approach covers program inputs, different schedules, and non-
deterministic synchronizations.

The rest of this paper is organized as follows. Section 2 briefly introduces
MPI programs. Section 3 presents the verification framework. Section 4 details
our CSP modeling method. Section 5 gives the implementation and evaluation.
We conclude in Sect. 6.
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Fig. 2. Syntax of a core MPI language.

2 MPI Programs

In this section, we first define a core MPI language, including syntax and seman-
tics. Then, we give some MPI related definitions used throughout the remainder
of this paper.

2.1 Syntax

MPI is a library of message passing functions that can be used to create parallel
applications in different languages, such as C, C++, and Fortran. This paper
targets MPI+C programs. We define an MPI program MP as a finite set of
MPI processes {Proci | 0 ≤ i ≤ n}, where there are n + 1 processes, and each
Proci is defined by the language in Fig. 2.

Figure 2 gives the syntax of a core MPI language considered in this paper,
where T is a set of types, N is a set of names, and E denotes set of expressions.
It is worth pointing out that we omit complex language features for brevity, e.g.,
message related parameters of MPI operations, and pointer operations. Our tool
does support real-world MPI+C programs.

The statement var l : T defines variable l with type T (T ∈ T), and state-
ment l := e assigns the value of expression e (e ∈ E) to l. The statement Comm
defines an MPI operation, including both blocking and non-blocking message
passing operations. An MPI process can be constructed by composing the basic
statements using sequence, condition, and loop composition operators.

2.2 Informal Semantics

We present an informal semantics for MPI operations. In terms of the number
of evolved MPI processes, we divide the MPI operations into two main groups,
i.e., two-sided operations and collective operations.

We first explain the semantics of two-sided operations. The parameter e in
two-sided MPI operations denotes the destination process’s identifier, and the
parameter r denotes the handler of a non-blocking send or receive operation.
Ssend(e) is a blocking message send operation that blocks the process until
its message has been received by the destination process e, while ISend(e,r)
is a non-blocking message send operation that returns immediately after being
issued. Send(e) also sends a message to process e, and blocks the process until
its sending buffer can be reused. A message from process e can be received using
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Recv(e) and IRecv(e,r). Recv(e) will block the process until the message is
well received, while IRecv(e, r) returns immediately after being issued. Note
that Recv(*) and IRecv(*,r) are blocking and non-blocking wildcard receive
operations, which can receive a message from any processes. wait(r) is used to
ensure the completion of non-blocking operations, i.e., it blocks the process until
the non-blocking operation indicated by r is completed.

Collective operations include all the processes in the communicator. The
parameter e represents the identifier of the root process. Bcast(e) means that
process e broadcasts a message to the non-root processes, and the non-root
processes are blocked until the messages are received. Gather(e) gathers data
from all the processes to the root process e; hence, the root process is blocked
until all the messages are received. Scatter(e) scatters the data from process
e to all the processes, which will be blocked until the messages are received.
Barrier will block the process until all the processes have called it.

2.3 Definitions

Given an MPI program MP = {Proci | 0 ≤ i ≤ n}, we define a global state S
of MP as (s0, . . . , sn), where si is the local state of the ith process. The local
state si is a 4-tuple (M,Stat ,Seq i,F), where M is a mapping from variables
to values, Stat is the next program statement to be executed, Seq i records the
issued MPI operations of Proci, F is the flag of process status belonging to
{active, blocked, terminated}. An element elem of si can be accessed by si.elem.
For a global state S, we use Seq(S) = {Seq i | 0 ≤ i ≤ n} to denote the issued
MPI operations of S.

The formal semantics of the language in Fig. 2 can be defined based on the
definitions of global and local states. In principle, the semantics of an MPI
program is a communicating finite state machine [3] with different buffer sizes
determined by the MPI implementations.

3 Symbolic Verification Framework

This section explains the symbolic verification framework based on MPI-SV [27].
Algorithm 1 gives the framework. In principle, this framework combines symbolic
execution and model checking in a synergetic manner. The framework employs
symbolic execution to extract path-level models from the MPI program. Then,
the path-level models are verified by model checking. The results of model check-
ing are also used to prune paths in symbolic execution.

The inputs of the framework are an MPI program and a verification prop-
erty. The framework’s skeleton is a worklist-based symbolic executor [4]. In the
beginning, the worklist only contains the initial state Sinit. Then, the framework
iteratively selects a state from worklist to advance the state for symbolic execu-
tion until all the paths are explored or timeout (omitted for brevity). Select at
Line 4 can use different search heuristics for state exploration, such as depth-first
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Algorithm 1: Symbolic Verification Framework
SV-Framework(MP, ϕ)
Data: MP is an MPI program {Proci | 0 ≤ i ≤ n} and ϕ is a property

1 begin
2 worklist ← {Sinit}
3 while worklist �= ∅ do
4 Sc ← Select(worklist)
5 si ← Scheduler(Sc)
6 Execute(Sc, si, worklist)
7 if ∀si ∈ Sc, si.F = terminated then
8 if containWild(Sc) then
9 Γ ← GenerateCSP(Sc)

10 else

11 Γ ← GenerateCSP#(Sc)
12 end
13 ModelCheck(Γ, ϕ)
14 if Γ |= ϕ then
15 Prune(worklist, Sc)
16 end
17 else if Γ �|= ϕ then
18 reportViolation and Exit
19 end

20 end

21 end

22 end

search (DFS) and breadth-first search (BFS). For the state Sc, we select a pro-
cess for symbolic execution. Scheduler at Line 5 selects the non-blocking process
with the smallest rank. Then, Execute will symbolically execute the next state-
ment in the selected process’s state si, which may add new states to worklist .
When each process terminates normally in the state Sc (Line 7), we build a CSP
model Γ that encodes the equivalent states of Sc, i.e., the states having the
same path condition of Sc. Here, if there exists any wildcard receive along the
path to Sc, we build the CSP model by GenerateCSP (c.f. Sect. 4.2); otherwise,
we build an optimized model by GenerateCSP# (c.f. Sect. 4.3). Then, we verify
the CSP model Γ w.r.t. ϕ by model checking (Line 13). If Γ satisfies ϕ, we
prune the equivalent states from worklist; otherwise, if the model checker gives
a counter-example, we report the counter-example and exit.

Symbolic Execution. The symbolic execution step in the framework is the
same as traditional symbolic execution [12] except for the message-passing opera-
tions. To get the possible matchings of wildcard receives, the framework executes
the non-blocking processes as much as possible. The message operation match-
ings will be carried out when all the processes are blocked or terminated. The
framework matches the message operations w.r.t. the happens-before require-
ments in the MPI standard [7]. When some message operations are matched,
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the framework will do the symbolic execution of these operations and continue
to execute the processes that become active after matching. When a wildcard
receive is matched with N send operations, the framework will fork the current
state into N states to cover different cases.

Fig. 3. An illustrating example of MPI-SV.

Example. We use the example in Fig. 3 to show the workflow of symbolic
verification. The symbolic executor first executes process P0, and blocks at
Ssend(1). After that the symbolic executor executes P1 and P2 in sequence
and blocks at Recv(*) and Ssend(1), respectively. At this time, all the pro-
cesses are blocked, symbolic verification handles the message matchings. Clearly,
the wildcard receive Recv(*) has two matchings, i.e., P0’s Ssend(1) and P2’s
Ssend(1). The symbolic executor forks two states for the two matchings. Sup-
pose we first explore the state where Recv(*) matches P0’s Ssend(1), process P1

continues to be executed, and blocks at Recv(2). Symbolic verification handles
the message matchings again. After matching P1’s Recv(2) and P2’s Ssend(1),
all the processes are terminated, and the issued MPI operation sequences are
Seq0 = 〈Ssend(1)〉, Seq1 = 〈Recv(*), Recv(2)〉, and Seq2 = 〈Ssend(1)〉. Now,
for all the three processes, we generate the CSP processes for each of them and
then compose them in parallel to get the CSP model Γ (c.f. Sect. 4.2). The
model checking of Γ w.r.t. deadlock freedom reports a counter-example, i.e.,
P1’s wildcard receive receives the message from P2.

Discussion. Our framework integrates symbolic execution and model checking.
Scheduler at Line 5 actually employs partial-order reduction (POR) [5] to reduce
the full interleavings of different processes. Pure symbolic execution can only
verify reachability properties [15]. However, leveraged by the synergy, the frame-
work can verify a larger scope of properties, i.e., temporal properties, because
the CSP model encodes the interleavings of the message operations in different
processes.

4 CSP Modeling of Non-deterministic Synchronization

4.1 CSP Subset

We utilize a subset of CSP to model an execution path’s equivalent communica-
tion behaviors, i.e., changing the matchings and interleavings of wildcard receive
operations, and the implementations of the non-deterministic synchronizations.
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Let Σ be a finite set of events, C be a set of channels, and X be a set of variables.
Figure 4 gives the syntax of the CSP subset that we used, where P represents a
CSP process, a ∈ Σ, c ∈ C, X ⊆ Σ, x ∈ X and cond is a boolean expression.

Fig. 4. The syntax of the CSP subset.

A CSP process can be a single event a or an empty process skip that termi-
nates immediately. There exist five operators to compose complex processes, i.e.,
sequential composition (�), internal choice (�), external choice (�), parallel com-
position with synchronization (‖

X

) and guarded composition(→). Process P � Q

executes process P and Q in sequence. The choice of process P and Q executes P
or Q, the selection of internal choice (�) is non-deterministic, while the selection
of external choice (�) is made by the environment, i.e., which process is first
enabled to execute. P ‖

X

Q executes the interleaving of P and Q but requires P

and Q to synchronize on the events in X. Let PS be a finite set of processes,
‖
X

PS denotes the parallel composition of all the processes in PS. The guarded

composition executes the guard and the guarded process in sequence. Channel
operation c?x and c!x represent reading an element from channel c to variable
x and writing the value of x to channel c, respectively. The guard [cond] makes
the guarded process unable to be executed until the boolean condition cond is
true. cond can be the boolean condition of variables and channels, e.g., cempty(c)
means that channel c is empty.

4.2 CSP Modeling

Algorithm 2 depicts the basic procedure of building a CSP model for a normally
terminated path. The input is a normally terminated global state S for an MPI
program running with n + 1 processes, and Seq(S)={Seq i | 0 ≤ i ≤ n} contains
the recorded message passing operation sequences of the processes, i.e., Seq i is
the sequence of the MPI process Proci.

The algorithm generates a CSP process for each MPI process and composes
the CSP processes in parallel to construct the whole CSP model. For each MPI
process, we use the generation rules defined in Fig. 5 to derive its CSP process P ′

i .
The generation is to scan the operation sequence backward. For each operation,
we generate its CSP model and compose the model with the previously generated
model. The basic idea of modeling non-deterministic synchronizations is to use
an internal choice between the “rendezvous” mode and the “eager” mode with
an infinite buffer for modeling message send operations.

For the standard send operation MPI_Send, we allocate a zero-sized channel
c0 and a one-sized channel c1, and use an internal choice of the channel writings
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Algorithm 2: CSP Model Generation for a Terminated State
GenerateCSP(S)
Data: A terminated global state S, and Seq(S)={Seq i | 0 ≤ i ≤ n}

1 begin
2 PS ← ∅
3 X ← ∅
4 for i ← 0 . . . n do
5 Pi ← skip
6 (Seq i, Pi, X)i →∗ (〈〉, P ′

i , X
′)i using the rules in Figure 5

7 X ← X ′

8 PS ← PS ∪ {P ′
i}

9 end
10 return ‖

{X}
PS

11 end

Fig. 5. CSP Model Construction Rules. S0 ◦ S1 represents the concatenation of two
MPI operation sequences. In (S, P, X)i, S is the current operation sequence, P is the
currently generated CSP model, X is the set of the generated synchronization events,
and i denotes the ith process Proci. Chans(op) returns a zero-sized channel and a one-
sized channel. Chan(op) returns a one-sized channel. Besides, →∗ represents applying
the rules zero or multiple times.

to model it (c.f., Rule Send). Each send operation has its channels. Hence, each
send operation can finish immediately or wait for the message to be received. The
internal choice models the non-determinism between the “rendezvous” mode and
the “eager” mode with an infinite buffer.
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For the collective broadcast operation MPI_Bcast, we model it as follows:
for the root process (c.f., Rule Bcast-1), we allocate a one-sized channel and
use internal choice of a one-sized channel writing and a synchronization event
(Bcastk1) to model it; while for the non-root processes (c.f., Rule Bcast-2), we use
an external choice of a guarded process and the synchronization event process
Bcastk, where cempty is a boolean function to test whether a channel is empty
or not. The external choice selects to execute the guarded process only if the
root process has written the one-sized channel.

For other collective operations, e.g., MPI_Gather and MPI_Scatter, we trans-
form them into a sequence of MPI_Send and MPI_Recv operations, which pre-
serves the semantics of these collective operations. For the remaining MPI oper-
ations, the modeling methods are the same as MPI-SV [27], which are omitted
for brevity.

Example. Let’s go back to the program in Fig. 1, even though there exist no
wildcard operations, we build each terminated path a CSP model. For the false
branch x 
= ‘a’, process P0 simply sends a message to P1 using a standard
send operation, and process P1 receives a message from P0. The issued MPI
operation sequences of P0 and P1 are Seq0 = 〈Send(1)〉 and Seq1 = 〈Recv(0)〉,
respectively. To model different implementations of the standard send operation,
we use internal choice (�) to compose the “rendezvous” mode (corresponding
to a zero-sized channel writing) and the “eager” mode that has infinite buffer
(corresponding to a one-sized channel writing). Hence, we generate CSP0 for
process P0, where c0 is a zero-sized channel and c1 is a one-sized channel.

CSP0 := c0!0 → skip � c1!1 → skip

On the other hand, to model the receive operation, we use external choice (�) to
compose the two possible matched channel reading operations, i.e., generating
CSP1 for process P1.

CSP1 := c0?x → skip�c1?x → skip

We compose the two CSP models in parallel, i.e., CSP0 ‖ CSP1, and verify that
the model is deadlock free. The result is that the model satisfies the property.

Similarly, for the true branch x== ‘a’, the issued MPI operation sequences
of P0 and P1 are Seq0 = 〈Send(1), Recv(1)〉 and Seq1 = 〈Send(0), Recv(0)〉,
respectively. We generate CSP ′

0 for process P0, and CSP ′
1 for process P1, where

c0 and c2 are zero-sized channels, c1 and c3 are one-sized channels.

CSP ′
0 := (c0!0 → skip � c1!1 → skip) � (c2?x → skip�c3?x → skip)

CSP ′
1 := (c2!2 → skip � c3!3 → skip) � (c0?x → skip�c1?x → skip)

When verifying the CSP model CSP ′
0 ‖ CSP ′

1 w.r.t. deadlock freedom, the
model checker gives a counter-example, where both the internal choices select to
1We allocate each group of MPI Bcast operations a unique synchronization event
Bcastk.
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write an element to the zero-sized channels, i.e., c0 and c2. Hence, our approach
detects the deadlock related to non-deterministic synchronizations.

Our CSP modeling method ensures that there will be no deadlock for the
“eager” mode with an any-sized finite buffer if the generated model is deadlock-
free. We prove this result in Theorem 1, where CSPi(p) represents the CSP model
built by Algorithm2 for a normally terminated path p, and CSPb(p) denotes the
CSP model built by having a finite buffer in “eager” mode.

Theorem 1. If CSPi(p) is deadlock free, CSPb(p) is deadlock free.

Proof. The key idea of the proof is to use the refinement relation of CSP in
stable-failures semantics [17]. The stable-failures semantic model of a process P
is (T (P ),F(P )), where T (P ) contains the traces of P , and F(P ) contains the
elements formed as (s,X), which represents that P refuses to execute any event
in X after executing the trace s.

The only different between CSPi(p) and CSPb(p) is the modeling of send oper-
ations. For CSPi(p), any send operation can block or finish immediately, due to
the infinite buffer. However, for CSPb(p), a send operation’s behavior depends on
the size of the buffer when it selects “eager” mode. If the buffer is full, the send
operation blocks; otherwise, it can finish immediately. Hence, for a send opera-
tion op, if Mi(op) and Mb(op) represent the models built by Algorithm2 with
infinite and finite buffers, respectively, we have F(Mi(op)) ⊇ F(Mb(op)) and
T (Mi(op)) ⊇ T (Mb(op)). Because the modeling of all the remaining operations
is same between CSPi(p) and CSPb(p), we can have F(CSPi(p))) ⊇ F(CSPb(p))
and T (CSPi(p))) ⊇ T (CSPb(p)).

Hence, we can prove that CSPb(p) is a stable-failures refinement of CSPi(p),
which implies the theorem.

4.3 Optimization

For the execution paths without wildcard receives, we can optimize the CSP
model construction by only considering the “rendezvous” mode. The intuition is
that a model with more synchronizations tends to have a deadlock. The correct-
ness of the optimization is ensured by Theorem 2, where CSPr(p) represents the
CSP model built by Algorithm2 for a normally terminated path p considering
only “rendezvous” mode.

Theorem 2. Given an execution path p along which there are no wildcard
receive operations, CSPr(p) is deadlock free if and only if CSPi(p) is deadlock
free.

Proof. The CSP modeling also complies with the happens-before requirements
of the MPI standard [7]. Especially, the non-overtaken rules [24] are the ones
that motivate the optimization. The rules require that:

– if there exist two send operations of a process that send messages to the same
process and both can match a receive operation, the receive operation should
receive the message of the first issued send operation;
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– if a process has two receive operations that can match the same send oper-
ation, the send operation’s message should be received by the first issued
receive operation.

As a result, the message operation matchings are deterministic for the paths
having no wildcard receive operations, despite the implementations of send oper-
ations.

With respect to the semantic definition [17] of internal choice, we can have
that CSPr(p) is a stable-failure refinement of CSPi(p). Hence, if CSPi(p) is dead-
lock free, CSPr(p) is deadlock free. Next, we prove that the deadlock freedom of
CSPr(p) implies that CSPi(p) is deadlock free by contradiction. Suppose CSPr(p)
is deadlock free but there exists a deadlock in CSPi(p), and the deadlock hap-
pens after executing the trace sd, i.e., CSPi(p) refuses to execute any event after
executing sd. Due to the non-overtaken rules and the assumption of no wild-
card receives, the message matchings are deterministic. Hence, CSPr(p) can also
executes sd. Besides, the deadlock of CSPi(p) means that CSPr(p) cannot exe-
cute any event either. So, CSPr(p) also deadlocks, which contradicts with the
assumption.

In summary, the theorem holds.

According to Theorem 2, when an execution path has no wildcard receive
operations, we only need to treat the send operations as blocking operations for
the verification of deadlock freedom. Such optimization can significantly reduce
the complexity of CSP models because the state space of the original CSP model
increases exponentially w.r.t. the number of send operations. We omit the opti-
mization from the construction rules for brevity.

Example. We still take the program in Fig. 1 for example. For the terminated
path p of the true branch x== ‘a’, the issued MPI operations of process P0 and
P1 are Seq0 = 〈Send(1), Recv(1)〉 and Seq1 = 〈Send(0), Recv(0)〉, respectively.
Since p has no wildcard receive operations, we use the optimization method to
build the CSP model. We build the following two CSP processes, i.e., CSP0 and
CSP1, where channel c0 and c1 are zero-sized channels.

CSP0 := c0!x → c1?x → skip

CSP1 := c1!x → c0?x → skip

When verifying the optimized model CSP0 ‖ CSP1 w.r.t. deadlock freedom, we
can successfully detect the deadlock, because the standard send operations are
implemented in “rendezvous” mode. Compared with the CSP model generated
by the rules in Fig. 5, the optimized model is much simpler.

5 Experimental Evaluation

In this section, we first introduce the implementation of our approach. Then, we
give the experimental setup. Finally, we present the experimental results.
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5.1 Implementation

We have implemented our approach on MPI-SV [27], whose basic procedure is
to compile an MPI+C program to LLVM bytecode using Clang, and then link
it with a pre-compiled multi-threaded MPI library AzequiaMPI [16] to generate
the input for verification. We implemented our path-level CSP modeling method
as a module within the symbolic execution engine, which will be invoked if the
generated path has wildcard receive operations or non-deterministic blocking
operations. We adopt the state-of-the-art CSP model checker PAT [22] to verify
the path-level CSP models w.r.t. deadlock freedom.

5.2 Setup

Table 1 lists the programs analyzed in our experiments. All the programs are
real-world open source MPI programs. DTG is a testing program from a PhD
dissertation [23]. Integrate mw and Diffusion2d come from the FEVS bench-
mark suite [20]. Integrate mw2 calculates the integrals of trigonometric func-
tions, and Diffusion2d is a parallel solver for two-dimensional diffusion equation.
Gauss elim is an MPI implementation for gaussian elimination used in [26]. We
downloaded Pingpong, Mandelbrot, and Image manip from github. Pingpong is
a testing program for communication performance. Mandelbrot parallel draws
the mandelbrot set for a bitmap. Image manip is an MPI program for image
manipulations, e.g., shifting, rotating and scaling. The remaining three programs
are large parallel applications. Depsolver is a parallel multi-material 3D elec-
trostatic solver, Kfray is a ray tracing program that can create realistic images,
and ClustalW is a popular tool for aligning multiple gene sequences.

We experiment on a laptop with 8G memory and 2.0 GHz cores. The oper-
ating system is Ubuntu 14.04. We set the time threshold as 90 min for each
verification task. The conducted experiments are to answer the following two
questions:

– Effectiveness: Can our tool effectively verify real-world MPI programs having
non-deterministic synchronizations w.r.t. deadlock freedom?

– Optimization: Can the optimization for modeling the paths without wildcard
receives reduce the cost of CSP model checking?

5.3 Experimental Results

Table 2 lists the verification results for the programs with different numbers of
processes. To evaluate our approach, we verify each program under 6, 8, and 10
processes. The first column Program shows the program names. Column #i
(i ∈ {6, 8, 10}) indicates the number of running processes. A verification task con-
sists of a program and the number of running processes. Column Deadlock indi-
cates whether a task is deadlock-free, where no denotes that our tool successfully

2Integrat mw is adopted from [6], in which a static schedule is employed.
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Table 1. The programs in the experiments.

Program LOC Brief description

DTG 90 Dependence transition group

Integrate mw 181 Integral computing

Diffusion2d 197 Simulation of diffusion equation

Gauss elim 341 Gaussian elimination

Pingpong 220 Comm performance testing

Mandelbrot 268 Mandelbrot set drawing

Image manip 360 Image manipulation

DepSolver 8988 Multimaterial electrostatic solver

Kfray 12728 KF-Ray parallel raytracer

ClustalW 23265 Multiple sequence alignment

Total 46638 10 open source programs

verified that the program is deadlock-free under the number of processes, and yes
denotes that a deadlock exists. The column Time(s) gives the verification time.
Table 3 lists the results for DTG and Pingpong that are developed under a fixed
number of processes, where column #Procs gives the number of processes.

Table 2. Results for programs with variable number of processes.

Program Deadlock Time(s)

#6 #8 #10 #6 #8 #10

Integrate mw No No No 10.8 54.1 3783.4

Diffusion2d Yes Yes Yes 20.3 12.9 13.1

Gauss elim Yes Yes Yes 16.1 21.1 28.6

Mandelbrot Yes Yes Yes 11.7 12.6 14.1

Image mani Yes Yes Yes 11.6 13.3 15.4

Depsolver Yes Yes Yes 127.9 204.8 322.8

Kfray Yes Yes Yes 46.1 51.3 52.7

Clustalw No No No 68.3 154.1 3651.2

Table 3. Results for programs with fixed number of processes.

Program # Procs Deadlock Time(s)

DTG 5 No 7.8

Pingpong 2 No 343.8
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To the best of our knowledge, there exist no verification tools that can cover
both the inputs and the schedules of the MPI program with non-deterministic
synchronizations. Hence, we evaluate our tool directly on real-world programs.
Our tool successfully verified all the tasks within 90 min, i.e., deadlock for 18
tasks, and no deadlock in 8 tasks. We manually confirmed that the detected dead-
locks are real and are caused by the non-deterministic synchronizations. Even
for the large tasks, e.g., the last three programs running in 10 processes, Our
tool can successfully verify them, demonstrating the scalability of our technique.

We evaluate the effectiveness of our optimization on the programs having no
wildcard receive operations, i.e., DTG∗3 and Pingpong. Table 4 gives the detailed
results. The first column PATH is the label for the execution paths of symbolic
execution, and the suffix of the program indicates the execution path’s index.
Column Time(s) gives the time consumption for verifying the corresponding
CSP models and column #States gives the explored states in the CSP model.
CSP and CSP# represent the default modeling method and the optimized
modeling method, respectively. Column Speedup shows the speedups of opti-
mization. In terms of time consumption for model checking the path-level CSP
models, CSP# achieves an average 3x speedup. On the other hand, the number
of states that need to be explored is reduced significantly by the optimization,
i.e., CSP# explores at least 2.4x fewer states than CSP. These results indi-
cate that our optimization for the paths without wildcard receive operations can
effectively reduce the verification complexity of path-level CSP models.

Table 4. Results for optimization.

PATH Time(s) #States

CSP CSP# Speedup CSP CSP# Speedup

DTG∗
1 13.8 7.9 1.8 386 32 12.1

Pingpong1 11.5 10.1 1.1 133 55 2.4

Pingpong2 88.2 16.5 5.3 2413 967 2.5

Pingpong3 63.2 14.7 4.3 1813 727 2.5

Pingpong4 37.5 14.3 2.6 1213 487 2.5

6 Conclusion and Future Work

This paper has presented an approach for verifying MPI programs with non-
deterministic synchronization features. We enhance the symbolic verification by
proposing a precise method for modeling the non-deterministic synchronizations
of an execution path in terms of CSP. To improve the scalability, for the exe-
cution paths without wildcard receive operations, we give an optimization to
reduce the complexity of CSP models. We have implemented our approach as a

3DTG∗ is the version that replaces the wildcard receives by deterministic receives.
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prototype tool and extensively evaluated it on real-world MPI+C programs. The
experimental results demonstrate the effectiveness of our approach. Our future
work mainly includes two directions: (1) reducing the complexity of CSP models
for paths having wildcard receive operations; and (2) applying our tool to verify
temporal safety properties related to non-deterministic synchronizations.
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