
Synchronization Error
Detection of MPI Programs by

Symbolic Execution

Xianjin Fu, Zhenbang Chen, Chun Huang, Wei Dong, and Ji Wang
zbchen@nudt.edu.cn

College of Computer
National University of Defense Technology

 Changsha, China

2014.12.02
Thursday, December 25, 14

mailto:zbchen@nudt.edu.cn
mailto:zbchen@nudt.edu.cn

High Performance Computing

• MPI is widely used
for developing HPC
applications

• MPI programs are
not easy to develop
and maintain

Thursday, December 25, 14

MPI Paradigm

• MPI implements a message-passing based
parallel programming style

P0 P1 P2

... ...

Pn

......

Thursday, December 25, 14

MPI Paradigm

• MPI implements a message-passing based
parallel programming style

• Frequently used optimization trick

• Overlapping of communication and
computation

• Asynchronous communication

Thursday, December 25, 14

Synchronization Error

• A buffer is written/read before asynchronously
sent out/received

• Incorrect data

• Crush the MPI application

Thursday, December 25, 14

Synchronization Error

• A buffer is written/read before asynchronously
sent out/received

• Incorrect data

• Crush the MPI application ISend(..., buff, req)
 buff[0] = 1
 Wait(req)

Sending Example

Thursday, December 25, 14

Synchronization Error

• A buffer is written/read before asynchronously
sent out/received

• Incorrect data

• Crush the MPI application ISend(..., buff, req)
 buff[0] = 1
 Wait(req)

Sending Example

 IRecv(..., buff, req)
 c = buff[0]
 Wait(req)

Receiving Example

Thursday, December 25, 14

Synchronization Error

• A buffer is written/read before asynchronously
sent out/received

• Incorrect computation and results

• Crash the MPI application

Thursday, December 25, 14

Synchronization Error

• A buffer is written/read before asynchronously
sent out/received

• Incorrect computation and results

• Crash the MPI application

How to detect synchronization
errors in MPI programs?

Thursday, December 25, 14

Existing Approaches

• Dynamic methods

• Runtime checking: SyncChecker[IPDPS’12],
UMPIRE[SC’00], ...

• Input coverage & Non-determinism

• No static methods

• False alarms

Thursday, December 25, 14

Problem

• How to detect input-related synchronization
error detection precisely?

 ISend(P1, buff, req)
 Wait(req)

P0

 IRecv(P0, buff, req)
 if (!X) c = buff[0]
 Wait(req)

P1

Thursday, December 25, 14

Problem

• How to detect input-related synchronization
error detection precisely?

Symbolic execution based detection

 ISend(P1, buff, req)
 Wait(req)

P0

 IRecv(P0, buff, req)
 if (!X) c = buff[0]
 Wait(req)

P1

Thursday, December 25, 14

Symbolic Execution

• A SAT/SMT based program analysis method

• Execute a program with symbolic values

• Convert a program into path conditions

• A precise method

• Usages

• Test generation, bug finding, etc.

Thursday, December 25, 14

Symbolic Execution

int main(int i, j) {
 if (i > 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

i, j ← xi , xj
PC: true

i, j ← xi , xj
PC: xi > 0

xi > 0 ？？
Solving

Thursday, December 25, 14

Symbolic Execution

i, j ← xi + xj , xj
PC: xi > 0

Symbolic Calculation

int main(int i, j) {
 if (i > 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

i, j ← xi , xj
PC: true

i, j ← xi , xj
PC: xi > 0

Thursday, December 25, 14

Symbolic Execution

i, j ← xi + xj , xj
PC: xi > 0

Program end

int main(int i, j) {
 if (i > 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

i, j ← xi , xj
PC: true

i, j ← xi , xj
PC: xi > 0

i, j ← xi+xj , xj
PC: xi > 0
ret ← xi+xj

Thursday, December 25, 14

Symbolic Execution

i, j ← xi-xj , xj
PC: xi <= 0

int main(int i, j) {
 if (i > 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

i, j ← xi , xj
PC: true

i, j ← xi , xj
PC: xi <= 0

i, j ← xi + xj , xj
PC: xi > 0

i, j ← xi , xj
PC: xi > 0

i, j ← xi+xj , xj
PC: xi > 0
ret ← xi+xj

i, j ← xi-xj , xj
PC: xi <= 0
ret ← xi-xj

Thursday, December 25, 14

Key Idea

• Use symbolic execution to ensure input
coverage

• Track the state transition of each
transferred buffer

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff0
Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff0

x ← xi

PC: true

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff1
Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff1
x ← xi

PC: xi != 0

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff1
x ← xi

PC: xi != 0

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff1
x ← xi

PC: xi != 0
x ← xi

PC: xi == 0

Thursday, December 25, 14

Motivation Example

 ISend(P1, buff0, req)
 Wait(req)

P0

 IRecv(P0, buff1, req)
 if (!X) c = buff1[0]
 Wait(req)

P1

x ← xi

PC: true

x ← xi

PC: true

InitISSUE Ready Final

Error

TRANS CHK

USE USE

USE

buff1
x ← xi

PC: xi == true
x ← xi

PC: xi == 0

A synchronization
error is detected

Thursday, December 25, 14

Internals of Our Method

• Symbolic execution framework

• Fixed number of processes

• A round-robin style schedule

• A process is preempted when being blocked

• Synchronization error checking as a dynamic
typestate analysis

Thursday, December 25, 14

Two Optimizations

• Optimization 1

• Only track the buffers used on
application level

• Optimization 2

• Remove the buffer from checking list
when its state reaches the final state

Thursday, December 25, 14

Implementation

• Cloud9 based implementation

• A multi-thread MPI library (azequiaMPI)
as the environment model for MPI

Symbolic Execution
Engine Errors

Hooked MPI Library

Recompiled C-MPI
programs

Analyzer

Thursday, December 25, 14

Experiments

• MPI Programs

Programs Description
change-send-buffer

Programs from Umpire benchmark
vector-isend

Programs from Umpire benchmark
noerror-wait

Programs from Umpire benchmark

irecv-isend

Programs from Umpire benchmark

athena 4.0 Astrophysical magneto hydrodynamics
heat-errors The equation of heat conduction

IS Integer sort from NPB

Thursday, December 25, 14

Results (1/2)
Table I

EXPERIMENTAL RESULTS

Program #proc Error #ins LS checks memIns time(s)
no opt opt no opt opt

change-send-buffer 2 send 29990456 4322220 17960 3.25 3.11
vector-isend 2 send 30008052 4346419 42091 3.25 3.14

noerror-wait⇤ 2 recv 30074743 4323203 18943 3.35 3.30
irecv-isend⇤ 2 recv 30082632 4325064 20606 3.09 3.07
athena4.0⇤ 2 recv 37285238 5559386 1249438 11.86 7.80
heat-errors 2 send 31373864 4411571 103350 4.96 3.30

IS⇤ 16 recv 71232393 11117094 5384417 13.68 13.8

Symbolic Execution
Engine Errors

Hooked MPI Library

Recompiled C-MPI
programs

Analyzer

Figure 3. The framework of MPISE

the latter analyzes the usages of each buffer to see if there
is a synchronization error according to Algorithm 2.

Same as our previous work [4], we also employ a multi-
thread MPI library as the MPI “model” for symbolic exe-
cution. We use azequiaMPI [10], which is an MPI platform
on which an MPI program is run in a multi-thread man-
ner. An MPI program will be compiled into LLVM [11]
bytecode first. Then, the generated bytecode will be linked
with azequiaMPI library bytecode to form a multi-threaded
version, which should generate the same result as that of
running the MPI program in parallel. The path space of
the multi-threaded version will be explored by the symbolic
execution engine to detect synchronization errors. When
a synchronization error is found, MPISE records all the
information, including the input, the sequences of message
passings, etc.

For the analyzer, when implementing the symbolic ex-
ecution semantics of each instruction in an MPI program,
we implement the synchronization error checking algorithm
(c.f. Algorithm 2) at the related instructions, to analyze the
usage of each message buffer.

When one feeds an MPI program to MPISE, he/she
needs to tell MPISE the inputs that the analysis needs to
cover (thanks to KLEE, one can also provide “symbolic
arguments” to tell MPISE without code modifications).
Then, the program will be executed in a specific number
of processes. For each path during symbolic execution, the
analyzer checks the existence of any synchronization error.
At the same time, the runtime errors in the MPI programs,
such as division by zero and array index out of bound, can
also be detected.

Based on the prototype, we have conducted the experi-
ments of typical MPI programs to justify the effectiveness.
The results and discussions will be shown in the next
Section.

V. EXPERIMENTAL RESULTS

During experiments, we manually marked some in-
puts as symbolic inputs. Table I shows the experi-
mental results, where we use 7 programs to evaluate
MPISE: (1) change-send-buffer, vector-isend,
noerror-wait and irecv-isend, which are from Um-
pire [2]; (2) athena [12], which is an MPI application for
astrophysical magneto hydrodynamics; (3) heat-error

from [13], which implements the equation of heat conduc-
tion. (4) IS in NAS Parallel Benchmarks (NPB) [14]. In
Table I, if a program is marked with ‘*’, it indicates that the
synchronization error in the program is injected. The reason
of why we only choose IS from NPB benchmarks is that:
IS and DT are the only two programs in NPB written in C,
while DT has no non-blocking communications. The first 6
programs in Table I are run with 2 processes, and the last
one with 16 processes. All the experiments were conducted
on a Linux server with 32 cores and 250 GB memory.

As shown in Table I, MPISE can not only detect the four
injected input-related synchronization errors successfully,
but also the two in the test cases of Umpire. The second
column shows the number of the processes run for each
program. The third column shows the type of the buffer
related to the detected synchronisation error. The column “#
ins” shows the count of the executed instructions of each
application. The next two columns in “LS checks” show the
count of the checks when handling Load/Store instructions
without (no opt) or with (opt) optimizations. The last two
columns in “memIns time(s)” show the total time used
by all the load/store instructions without (no opt) or with
(opt) optimizations, which includes the time for checking
synchronization errors. Hence, using optimizations, we can
reduce the times of memory checkings significantly, which
justifies the effectiveness of the first optimization. However,
for the second optimization, i.e., reducing map size, its
effectiveness is not significant in the experiments, and the
reason is that there are not many messages transferred in the
analyzed programs. In addition, according to the execution
time of load/store instructions in the last two columns,
the optimizations do not have an impressive effect. The
reason is the execution time is dominated by the execution
of instructions. The saved memory checkings for detecting
synchronization errors do not need much time.

Thursday, December 25, 14

Results (2/2)

• Analyzing NPB IS with different numbers of
processes

0

20

40

60

80

100

120

140

160

2 4 8 16 32

sy
m

bo
lic

 e
xe

cu
tio

n
 ti

m
e(

s)

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

2 4 8 16 32

L
S

C
he

ck
s

no�opt

opt

Thursday, December 25, 14

Conclusion

• A symbolic execution based method for
detecting synchronization errors in MPI
programs

• Two optimizations

• A prototype and the experiments on real-
world MPI programs

Thursday, December 25, 14

Work in progress

• Sound method for analyzing asynchronous
MPI programs

• Applications on more real-world MPI
programs

• Improvements and optimizations on tool

Thursday, December 25, 14

Thank you!
Q&A

Thursday, December 25, 14

