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Abstract—Constraint solving and environment modeling are
two challenging problems for symbolic execution. When a pro-
gram contains non-linear expressions, it is difficult for symbolic
execution to explore the program’s whole path space due to
the high complexity of the constraint solving for the non-
linear constraints. Besides, when the program uses a third-party
library and the source code of the library is not available, the
symbolic execution of the program often under-approximates
the analysis by concrete execution or over-approximates by
introducing new symbolic variables, which may fail to explore
the whole path space or introduce false alarms, respectively.
This paper proposes FUSE, a framework of synergizing symbolic
execution and fuzzing by function-level selective symbolization to
tackle these problems. First, FUSE collects the path constraints
of each function selectively and introduces symbolic function
invocation expressions for the complex or third-party functions.
Then, FUSE combines SMT solving and fuzzing to solve the
path constraints. We have implemented FUSE on the start-of-the-
art symbolic execution engine KLEE. The experimental results
demonstrate that FUSE effectively and efficiently improves the
code coverage. Compared with the state-of-the-art, FUSE achieves
6.6x speedups for achieving the same code coverage.

Index Terms—Symbolic Execution, Constraint Solving,
Fuzzing, Environment Modeling

I. INTRODUCTION

Symbolic execution [1]–[4] provides a precise method for
analyzing programs. Symbolic execution analyzes a program
by executing the program in terms of symbolic values and
checking the feasibility of paths by constraint solving [5],
[6]. Thanks to the recent advancements in constraint solving
[5], [6], symbolic execution has been successfully applied
to tackle many challenging software engineering problems,
such as automatic software testing [7], [8] and automatic bug
detection [9], [10], to name a few. On the other hand, symbolic
execution itself has also evolved to be more effective and
efficient for these software engineering problems.

Although there exist many successful applications, symbolic
execution still faces many challenging problems [4], including
path explosion, constraint solving, environment modeling, etc.
These problems limit the further applications and advance-
ments of symbolic execution. Constraint solving dominates
the time of symbolic execution [11], [12]. Especially when
the program under analysis contains non-linear expressions,
e.g., non-linear floating-point computations, the solving of the

constraints related to these expressions is very difficult or even
impossible [5]. If the constraint solving fails, symbolic execu-
tion may fail to explore some program paths, which causes the
missing of bugs or lower coverage. Environment modeling is
an inherent challenge faced by all program analysis techniques
[13]. When the program needs to invoke the methods in
third-party libraries or system libraries (called environment
methods) and the methods are only in binary format or pretty
complex (e.g., super-optimized), symbolic execution may fail
to collect the path constraints in the methods or fail to solve
the complex constraints produced by the methods, which may
yield both false positives and false negatives in bug detection.

Existing methods of tackling the challenges of constraint
solving and environment modeling in symbolic execution can
be divided into two groups: under-approximation and over-
approximation. For under-approximation approaches [14], the
main idea is to use concrete values to simplify the complex
constraints [15], [16] (e.g., non-linear arithmetic constraints)
or execute the environment methods concretely [2], [3]. These
approaches may fail to explore some program paths or make
symbolic execution diverge [17]. Besides, over-approximation
approaches abstract the path constraints by removing the
complex constraints [18], [19] or introducing new symbolic
variables for environment methods [8] (e.g., a new symbolic
variable for the return value of each invocation), which may
cause false alarms and also make symbolic execution diverge.
In practice, we have observed that these two kinds of ap-
proaches need improvement, and a better tradeoff is desirable.

Besides symbolic execution, fuzzing [20], [21] is also effec-
tive for testing programs. Fuzzing may outperform SAT/SMT-
based constraint solving [6] on complex constraints, e.g.,
floating-point constraints [22]. We have observed that sym-
bolic execution and fuzzing are good at analyzing different
program parts. For example, symbolic execution is preferable
for the parts in which only linear expressions exist but is
doomed when very complex constraints exist. On the other
hand, fuzzing may be better for the parts in which complex
constraints exist and the input spaces are large (or many
environment methods are used), but fuzzing is challenged by
the parts whose input spaces are small (e.g., magic number
expression). Hence, it is desirable to synergize symbolic exe-
cution and fuzzing to analyze different parts of the program.



Based on this insight, we propose synergizing symbolic
execution and fuzzing for analyzing a program to tackle
the problem of constraint solving and environment modeling.
Our key idea is to separate the program into easy and hard
parts in the granularity of program functions. For the easy
parts, e.g., functions with linear expressions, we use symbolic
execution and employ SAT/SMT-based constraint solving to
analyze them. On the other hand, for the complex parts,
e.g., functions with very complex constraints or environment
functions, we use fuzzing to analyze them. This synergy makes
symbolic execution more scalable with respect to the challenge
of constraint solving. Besides, this synergy achieves a better
tradeoff for environment modeling compared with the under-
approximation and over-approximation approaches.

More specifically, we propose a dynamic symbolic execu-
tion (DSE) [2], [3] framework FUSE that tackles the problems
of constraint solving and environment modeling in a unified
way. FUSE selectively collects the path constraints of the
functions in the program. If the function is in the hard part
of the program, FUSE does not collect the path constraints
but uses a symbolic method invocation expression for rep-
resentation. We propose a method for on-the-fly determining
whether a function is easy or hard with respect to the hardness
of constraint solving. Then, FUSE combines SAT/SMT-based
constraint solving and fuzzing to solve the path constraints.
For the parts without symbolic method invocations, FUSE
employs the SMT solver; for the parts with symbolic method
invocations, FUSE converts the solving to a fuzzing problem
and employs a fuzzer for solving. We have implemented FUSE
on KLEE [7] and JFS [22]. The extensive experiments on
two different kinds of benchmarks indicate that our method
is effective and efficient for improving the code coverage on
complex benchmarks. The main contributions are as follows.

• We propose FUSE, a synergistic framework for dynamic
symbolic execution (DSE) and fuzzing. FUSE separates the
program into two parts at the function level and combines
SMT solving and fuzzing at the constraint solving level to
improve symbolic execution’s efficiency and effectiveness.

• We propose a method that classifies function on-the-fly
during symbolic execution to collect the path constraints
selectively.

• We propose a method for solving the path constraints
containing symbolic method invocations by combining SMT
solving and fuzzing.

• We have implemented FUSE on the state-of-the-art sym-
bolic execution engine KLEE. We applied our prototype to
two representative benchmarks, i.e., GNU Scientific Library
(GSL) [23] and Coreutils [24]. The results demonstrate that:
on the GSL benchmark, compared with the state-of-the-art
[25], FUSE, on average, achieves 18.1% relative increase
in statement coverage and 6.6x speedups for achieving the
same code coverage under BFS; on Coreutils, FUSE achieves
the same performance as the original DSE engine.

1 #include <assert.h>
2 #ifdef HAS_SOURCE
3 double sin(double x) {
4 ... // Implementation based on taylor series
5 }
6 #else
7 extern double sin(double);
8 #endif
9 double foo(double x, double y) {

10 double z, sinx;
11 sinx = sin(x);
12 if (y == 3.0) {
13 z = 100 * sinx;
14 if (z > 99)
15 assert(false);
16 } else
17 z = 10 * sinx;
18 return z;
19 }

Fig. 1. A motivation example program.

II. ILLUSTRATION

This section uses an illustrative example to motivate FUSE.
The code snippet in Figure 1 gives a simple C function foo
that contains a bug, i.e., Line 9. foo takes two input variables
x and y. In Line 11, the function invokes sin, one of the
most common trigonometric functions, to compute the input
variable x’s value. To demonstrate our method, we use a
predefined macro HAS_SOURCE to control the availability
of sin’s source code. Then, the following computations rely
heavily on the computed result sinx.

We use dynamic symbolic execution to analyze the example
program since FUSE is implemented on a DSE engine. Note
that our method is not limited to DSE. First, we will show that
the original DSE engine is hard to cover the buggy line, no
matter whether HAS_SOURCE is defined, and then elaborate
on the power of FUSE.

A. Original Dynamic Symbolic Execution

The original dynamic symbolic execution often starts with
an initial concrete input. After symbolizing input variables,
the DSE engine executes the program under test on such input
both concretely and symbolically. When doing the symbolic
execution, the DSE engine will collect symbolic value of
the branch being executed in concrete execution at each
branch point and construct a path constraint. Then, one of the
branch predicates is negated (also named flipped) in the path
constraint according to specified search strategy. The negated
path constraint is solved by the underlying constraint solver.
If satisfiable, the solution will be used as the next concrete
input. Otherwise, the DSE engine will try another flip. The
process is repeated until the path space is exhausted or some
criterion is satisfied.

The major strength of dynamic symbolic execution is that it
can utilize concrete values from concrete execution to simplify
symbolic expressions whenever the symbolic reasoning is hard
(e.g., the symbolic expression is non-linear) or impossible
(e.g., the source code is not available), which is considered as



an under-approximation approach. The under-approximation
approach enables the analysis to proceed at the cost of sacrific-
ing completeness, i.e., some paths are missing. In this example,
we first suppose the invoked sin is from a third-party binary
library, i.e., HAS_SOURCE is not defined. In such a case,
sin’s behaviors can not be fully analyzed. Existing DSE
engines usually use the concrete computation result of sin
to under-approximate sin’s behaviors. For example, suppose
foo’s initial inputs are {x 7→ 0.0, y 7→ 0.0} and both of x and
y are symbolized. During DSE, sinx is not tainted by x and
only has the concrete value sin(0.0), i.e., 0.0. Hence, when
the first execution terminates, the execution’s path constraint
is as follows.

y 6= 3.0

Then, the path constraint is flipped and solved to get the next
inputs. Since x is a free variable, we get the following inputs
{x 7→ 4, y 7→ 3.0}, where 4 represents a random value. It is
quite hard for such inputs to cover the buggy line, where the
possibility is around 4.5%.

On the other hand, some DSE engines apply over-
approximation approaches to tackle external libraries [8]. A
typical over-approximation approach uses a new symbolic
variable to over-approximate the behaviors of sin. For ex-
ample, suppose that we have {x 7→ 0.0, y 7→ 3.0} as the
initial inputs now. The variable sinx is assigned with a new
symbolic variable (denoted by sinx). Then, the collected path
constraint is as follows.

y = 3.0 ∧ 100 ∗ sinx ≤ 99

Suppose we employ DFS search strategy here. Hence, the last
branch predicate is flipped and the flipped path constraint is
as follows.

y = 3.0 ∧ 100 ∗ sinx > 99

Then, the underlying constraint solver is invoked to solve the
flipped path constraint and tries to generate test case to reach
the bug. Unfortunately, the solution of the flipped constraint is
very likely to be {sinx 7→ O, y 7→ 3.0}, where O represents
a value that is greater than 1.0. The value is invalid due to
the semantics of sin, i.e., the variable sinx’s value must be
inside the interval [−1.0, 1.0]. Hence, the lack of semantics in
over-approximation approaches leads to an impossible value.

Even if HAS_SOURCE is defined, i.e., the source of sin
is available, the existing DSE engines still face challenges in
analyzing the example program, which is due to the complex-
ity in the implementation of sin. Usually, a trigonometric
function is implemented using Taylor’s approximation series
[26], where tons of non-linear operations are involved. Even
worse, the computations are based on floating-point values.
When the DSE engine delves into the sin function, it will
collect many non-linear floating-point constraints and pose a
huge burden to the underlying constraint solver. The solver
may always tend to time out and return UNKNWON. As a result,
the DSE engine fails to produce the valid inputs to cover the
buggy line.

B. Demonstration of FUSE

This paper proposes FUSE, a framework that synergizes
symbolic execution and fuzzing by function-level selective
symbolization to tackle the above problems. The key of FUSE
is to identify complex functions in program. A typical complex
function is a function with non-linear constraints or an envi-
ronment function. We propose a method to identify complex
functions on-the-fly during symbolic execution, which will be
presented in Section III. For the example program, sin is a
complex function, no matter whether the macro is defined.

During symbolic execution, each time a complex function is
invoked, FUSE builds a symbolic function invocation expres-
sion for it in the path constraint. For example, FUSE builds
the following symbolic function invocation expression of sin
in Line 11 for all paths.

sin(x)

The symbolic function invocation expression then is propa-
gated to other symbolic expressions. For example, suppose
that we have the same initial inputs as the previous over-
approximation approach, FUSE will generate the following
path constraint that is a bit different as before.

y = 3.0 ∧ 100 ∗ sin(x) ≤ 99

Please note that the symbolic variable sinx in previous
constraint is replaced by the symbolic function invocation
expression sin(x), which preserves the semantics of sin.
Similarly, under the DFS strategy, we get the following flipped
constraint.

y = 3.0 ∧ 100 ∗ sin(x) > 99

The constraint is then sent to the underlying constraint solver.
Although we can consider the named symbolic function in-
vocation as uninterpreted function (UF) at the level of SMT
solving, we do not use a UF theory SMT solver to solve the
above constraint, where the semantics of complex functions
cannot be utilized. Instead, we design a combined solver of
SMT solving and fuzzing in FUSE to handle such a constraint.
The first step is to split the constraint into easy and complex
parts. The criterion is whether there exist symbolic function
invocations in the part. Then we get the following partition.

y = 3.0︸ ︷︷ ︸
easy

∧ 100 ∗ sin(x) > 99︸ ︷︷ ︸
complex

The easy part is a magic number comparison that is friendly
to SMT solver rather than fuzzing, while the complex part
is on the other side of the coin. Therefore, FUSE combines
the strength of two powerful solving techniques. SMT solving
can solve the easy part quickly, and fuzzing can obtain the
semantics of complex functions through the binary code,
despite the source code’s unavailability. In fact, the solving
of the above constraint takes less than 0.2 second in FUSE’s
implementation. The solving result is satisfiable, and the so-
lution produced by the combined solver can lead the program
execution to Line 9, where FUSE finally finds the bug.



P ::= S∗

S ::= [l :]ST
ST ::= V ← E | if C goto l | V = f([V (, V )∗])

| return V | halt
V ::= v | ∗ v
E ::= V | &V | const | V op V | input()

(op ∈ {+,−,×, / . . . })
C ::= V cmp V (cmp ∈ {=, 6=,≥, >,≤, <})

Fig. 2. Syntax of a simple language.

III. FUNCTION-LEVEL SELECTIVE SYMBOLIZATION

A. Notations and Preliminaries

We consider a simple language as defined in Figure 2. A
program P is composed of a sequence of statements S that
are comprised of a label (if any) and a statement body, i.e.,
ST . The body ST can be one of the following types.

• an assignment;
• a conditional jump if C goto l where C is the condition

and l is the label of the jump target;
• an invocation to a function V = f([V (, V )∗]);
• a return stratement return V where V is the return value;
• a halt statement.

Each variable V has a type. For brevity, we do not define the
type of variables in the language. The definitions of condition
C and expression E are the same as that in C language.
We assume that the program acquires inputs using input()
invocation. Here we can decide whether to attach a symbol
to each input. For brevity, the simple language does not
support the definition of functions, but our implementation
does support real-world C programs.

A concolic execution engine executes the target program
both concretely and symbolically simultaneously by maintain-
ing a program state as tuple (S,Mc,Ms, PC). Here S is
the statement to be executed. Mc is the concrete memory
that maps each program variable to its concrete value, while
Ms is the symbolic memory that maps each variable to its
corresponding symbolic expression, if any. The definitions of
Mc and Ms can be extended to expressions and conditions
naturally. For example, Ms(V1 + V2) =Ms(V1) +Ms(V2)
and Ms(V1 ≥ V2) = Ms(V1) ≥ Ms(V2). PC is a set
of symbolic constraints expressing the condition that makes
inputs steer execution to the current location.

B. Framework
Our method is a variant of common concolic execution

algorithm. Algorithm 1 shows the framework of FUSE, where
our improvements are colored blue. We use a worklist to store
all the open branches yet to be covered. The algorithm contains
a loop which iteratively explores different paths. We use a
set Scf to record complex functions that are identified on-
the-fly. For each input I , the algorithm executes the program
along the path of I in a concolic manner with selective
symbolization (Line 5). The principle is that we will skip the
symbolic execution in complex functions and model them as
symbolic function invocations. Therefore, identifying complex
functions is the key to the success of our method. We discuss

Algorithm 1 Function-level Selective Concolic Execution
FUSE(I0)
Input: I0 is the initial input
1: worklist← ∅ //open branches
2: Scf ← ∅ //the set of complex functions
3: I ← I0
4: while true do
5: SConcolic(I, Scf )
6: saveOffPathBranches(worklist)
7: if worklist = ∅ then
8: break
9: end if

10: repeat
11: b← select(worklist)
12: s, solution← mixedSolve(b.pc, Scf )
13: if s = SAT then
14: I ← solution
15: end if
16: until s = SAT
17: end while

the criteria for identifying complex functions in Subsection
III-D. For each input, its execution may pass multiple functions
and switch between easy and complex functions for multiple
times. We elaborate the details of this part in Subsection III-C.
After each execution, we save all off-the-path branches in
the current path into worklist (Line 6). Then, one of the
branches is selected (Line 11) with regard to the specified
search strategy and the related path constraint is solved. Since
the path constraint may involve symbolic function invocations,
we propose a mixed solving method to handle it (Line 12),
which is the key of our approach’s performance strength over
pure SMT or fuzzing-based solving method. We discuss this
mixed solving algorithm in Subsection III-E. Note that our
method is orthogonal to existing search strategies.

C. Concolic Execution With Selective Symbolization
Algorithm 2 shows the details of function-level selective

symbolization in concolic execution. The execution path of
the input I may travel along many functions. We use a tag
modec to indicate whether the current execution has entered
a complex function. Once the execution enters a complex
function f , modec will be set to true until the execution
returns from f (i.e., complex mode). The execution may switch
between easy and complex modes for multiple times along
one path. In our algorithm, we only symbolically execute the
statements under easy mode.

Under easy mode (Line 6), statements are executed symbol-
ically in the way of the original concolic execution [2], [3].
The path condition is collected when conditional statements
are met (Line 8). For easy mode, our algorithm differs from
common concolic execution in the following three aspects.

1) When we encounter an invocation to a complex function,
we switch to complex mode (Line 15 - 18).

2) When an invocation to an external function meets Crite-
rion 2 (Section III-D), we switch to complex mode (Line
19 - 23).

3) For a return V statement where V is the return value,
we use Criterion 1 (Section III-D) to check whether the
symbolic expression of V contains complex operations



Algorithm 2 Concolic execution with selective symbolization
SConcolic(I, Scf )
Input: I is the input, and Scf is the set of complex func-
tions
1: stmt← initialStatement
2: PC ← ∅ //PC is the path condition
3: entryc ← null //Entry of complex function
4: modec ← false
5: while stmt is not halt do
6: if ¬modec then
7: /*not in complex mode*/
8: if stmt is if C goto l then
9: if Mc(C) then

10: PC = PC ∪Ms(C)
11: else
12: PC = PC ∪ ¬Ms(C)
13: end if
14: else if stmt is V = f([V (, V )∗])) then
15: if f ∈ Scf then
16: modec ← true
17: entryc ← f
18: end if
19: if complexCriterion2(f) then
20: Scf ← Scf ∪ {f}
21: modec ← true
22: entryc ← f
23: end if
24: else if stmt is return V then
25: if complexCriterion1(Ms(V )) then
26: Scf ← Scf ∪ {currentFunction}
27: deleteConstraints(PC, f )
28: setExpression(f, V )
29: end if
30: end if
31: concolicExecute(stmt) /*concolic execution as usual*/
32: else
33: /*in complex mode*/
34: if stmt is return V ∧ currentFunction = entryc then
35: modec ← false
36: entryc ← null
37: setExpression(f, V )
38: end if
39: concreteExecute(stmt)
40: end if
41: stmt← nextStatement()
42: end while

(Line 25). If yes, the current function is identified as a
complex one on-the-fly (Line 26); otherwise, the function
is executed symbolically as usual. Next, we delete the
constraints collected inside f from current PC (Line
27), and replace the symbolic expression of V (i.e.,
Ms(V )) by f(args) (Line 28). Here f(args) represents
how V is calculated and will be leveraged by underlying
fuzzing-based constraint solver. We also call f(args) as
a symbolic function invocation expression.

Before the execution switches to the complex mode, we
need to record the complex function as the entry entryc (Line
17 and Line 22). Since a complex function may invoke the
other complex functions, we only need to build symbolic
function invocation expression for the top complex function
of the call chain, i.e., entryc. In complex mode, all statements
will be executed concretely (Line 39) with one exception.
Once we meet the return statement of the entry complex
function, we switch back to easy mode (Line 34). Similarly,
we also replace the value of V by f(args) (Line 37).

Algorithm 3 Combine SMT and Fuzzing solvers
mixedSolve(PC, Scf )
Input: PC is a constraint set.
Output: res is a solution set.
1: res← ∅
2: PCe, PCc ← split(PC, Scf )
3: s, rese ← invokeSMT(PCe)
4: if s is SAT then
5: PCc ← simplify(rese, PCc)
6: s, resc ←invokeFuzzing(PCc)
7: if s is SAT then
8: res← merge(rese, resc)
9: end if

10: end if
11: return s, res

D. Automatic Identification of Complex Functions

The most important question in our approach is the auto-
matic identification of complex functions. We expect that it is
beneficial to handle constraints involving symbolic function
invocation expressions with fuzzing-based solving method
rather than SMT solver. In our approach, we identify complex
functions according to the following criteria. Note that these
criteria can be refined or improved in the future.

• Criterion 1: If the function contains complex operations
that bring burden to SMT solver, we classify such function
as a complex function. Currently, we consider the non-
linear multiplication, division and other more complex oper-
ations on floating point expressions as complex operations.
Existing research has demonstrated that the state-of-the-
art SMT solver is not good at handling these operations.
On the contrary, fuzzing-based solvers (e.g., JFS [22]) are
more efficient on these types of constraints. Therefore, it
is appropriate to label the functions with these complex
operations as complex ones. In our algorithm, we implement
this criterion when the return statement under easy mode is
met.

• Criterion 2: External library functions whose parameters
and return values are of basic types are classified as complex
functions. As demonstrated by the motivation example, it
is natural to classify the external library functions without
source code to be complex functions, which can be executed
by the fuzzer when solving the path constraints. Besides,
we require that parameters and return values are all basic
types because state-of-the-art fuzzing-based constraint solv-
ing method does not support the complex data types such
as pointer.

E. Mixed solving

Algorithm 3 shows the combination of fuzzing and SMT
solver for solving the constraints that contain symbolic func-
tion invocation expressions. The first step is to divide the path
condition into easy and complex parts using the identified
complex function set Scf (Line 2), denoted by PCe and
PCc respectively. Each branch predicate is classified into the
different parts using the following criteria.



• If a branch predicate contains symbolic function invo-
cation expressions, the branch predicate is pushed into
PCc;

• If a symbolic variable b is involved in the above branch
predicate, then any branch predicate involving b is pushed
into PCc;

• All of the other branch predicates are pushed into PCe.
After splitting, we invoke SMT solver to solve PCe first

(Line 3). The solution (if any) of PCe is plugged into PCc to
simplify constraints (Line 5). Then we invoke fuzzing-based
constraint solver to find solution for PCc (Line 6). When both
these two solvers find solutions, we combine the solutions and
return (Line 8). Otherwise, we return UNKNOW, which is
omitted for the sake of space.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation
We implement FUSE in our customized concolic exeuction

engine based on KLEE-2.3 (commit 71c1c45) [7]. We use
Z3 [6] version 4.6.2 as the backend SMT solver because Z3
supports multiple theories including uninterpreted function,
bit-vector and floating-point theory, etc. We use JFS [22] to
solve constraints with symbolic function invocation, i.e., the
complex part. JFS is a constraint solver based on coverage-
guided fuzzing technique. We extend JFS to support select
and store operations in array theory that is widely employed
by KLEE. Besides, we link the third-party libraries involved
in our evaluation to JFS’s runtime library to support symbolic
function invocations.

B. Research Questions
We conduct extensive experiments to answer the following

research questions:
• RQ1: Effectiveness. How effective is FUSE on exploring

program paths compared with the baselines? We use the
number of covered lines and coverage of analyzed function
to measure the effectiveness.

• RQ2: Efficiency. How efficient is FUSE to achieve the same
coverage compared with the baselines?

C. Experimental Setup
1) Benchmarks: We use the following two real-world

benchmarks for evaluating FUSE. (a) GNU Scientific Li-
brary (GSL) [23] is a widely employed numerical library in
scientific computing. Hence, GSL contains lots of complex
mathematical functions, such as trigonometric, exponential
and logarithmic functions, which use many floating-point and
non-linear operations. In addition, GSL is also a common
benchmark in the studies on floating-point program analysis.
We choose the programs under the specfunc directory in GSL-
2.7 as our benchmark. There are 106 programs in total in GSL
benchmark. (b) GNU Coreutils [24] is a core tool collection
that provides the basic operation utilities of UNIX operating
system. Coreutils is the standard benchmark of KLEE-based
symbolic execution research. Typically, the programs in Core-
utils do not produce many complex constraints. There are 99
programs in Coreutils benchmark.

2) Setup: Baselines. We have the following three baselines.
• DSE+SMT: our DSE engine only using SMT solver as the

underlying constraint solver;
• DSE+JFS: our DSE engine only using JFS as the underlying

constraint solver;
• MCS [25]: dynamic symbolic execution with Mixed

Concrete-Symbolic (MCS) solving [25]. MCS splits the
path constraint into easy and complex parts like FUSE.
However, it applies incremental solving in SMT solver to
obtain multiple solutions from the easy part and uses theses
solutions to simplify the complex part. Finally, the simplified
complex part is solved by SMT solver again. The major
difference between Fuse and MCS is that MCS does not
employ a function-level symbolization and hence cannot
leverage the strength of fuzzing. Since MCS is built on
Symbolic PathFinder [18], a symbolic execution tool for
Java bytecode, we implement the core algorithm of MCS
in our own DSE engine.
We create a symbolization driver for each program in GSL

benchmark. The driver provides initial concrete input for the
program’s entry function and symbolizes each byte of the
input to perform symbolic execution. FUSE analyzes each
program for 30 minutes. The timeout threshold of constraint
solver is 30 seconds. To eliminate the randomness, we use
deterministic search strategies in analysis, i.e., BFS and DFS.
Finally, we performed all experiments on a 16-core server with
Intel(R) Xeon(R) Platinum 8269CY CPU at 2.50GHz CPU
and 32GB of memory. The operating system is Ubuntu 18.04.
Each experiment is carried out for 3 times and all experimental
results are average values.

D. Experimental Results

Here, we use the number of covered lines of code (#CLoC)
and coverage of analyzed function (Cov) to evaluate the
FUSE’s effectiveness. Note that #CLoC are measured at the
level of C code. The two indicators focus on different points.
#CLoC directly shows the ability of path exploration, while
Cov suggests whether the method is easily getting trapped in
complex functions and fails to explore the remaining space.
A larger Cov demonstrates a more powerful ability of path
exploration.

1) Effectiveness: Figure 3 and Figure 4 show the results of
FUSE compared with baselines on GSL benchmark programs
under BFS search strategy. In Figure 3, the X-axis shows the
program numbers and the Y-axis shows a decorated relative
increase of #CLoC. The decorated value (i.e., Dcloc) orders
the programs on X-axis. Note that we use the decorated
value to smooth the big gaps between the relative increases
in different programs. To be specific, Dcloc is calculated
as follows, where Lfun represents #CLoC in FUSE, and
Lbaseline represents #CLoC in baseline.

r =
Lfun − Lbaseline

Lbaseline
(1)

Dcloc =

 lg(r × 100 + 1) r > 0
0 r = 0

−lg(−r × 100 + 1) r < 0
(2)
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Fig. 3. Results of Dcloc on GSL benchmark under BFS.
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Fig. 4. Results of Cov on GSL benchmark under BFS.

As shown by the equations, there is no increase when Dcloc

is zero, which maps to the programs between two vertical dot-
ted lines in the figures. This is because these programs are fully
explored by both configurations. The actual relative increases
are 10% and 100% when Dcloc are 1 and 2, respectively. We
first give the results under BFS search strategy. Compared with
DSE+SMT, FUSE covers more lines for 57(53.8%) programs
and fewer lines for 12(11.3%) programs. On average, the
relative increasing value for the number of covered lines is
24.0%(−31.6%∼256.9%). Compared with DSE+JFS, FUSE
covers more lines for 84(79.2%) programs and fewer lines for
9(8.5%) programs. On average, the relative increasing value
for the number of covered lines is 72.3%(−45.9%∼718.2%).
The decrease in #CLoC is due to coarse granularity of the
function-level symbolization. An identified complex function
may contain not only complex non-linear constraints but also
a bulk of easy constraints, where the aforementioned two
configurations covered lots of lines quickly. The situation can
be avoided by designing more precise automatic identification
algorithm of complex functions.

In Figure 4, each point shows results of Cov on a GSL
program, where x-value and y-value give the results of FUSE
and baseline respectively. Below the diagonal line, FUSE
outperforms the baseline; on the other side, FUSE is de-
feated. FUSE achieves higher coverage of analyzed function
on 41(38.7%) programs and 76(71.7%) programs compared
with DSE+SMT and DSE+JFS, respectively. The average
coverage of analyzed function are 84.2%(32.5%∼100%),
77.2%(20%∼100%) and 62.7%(15.2%∼100%) in the three
configurations, respectively. The results show that FUSE is less
possible to get trapped in complex code and able to explore
more path space.

The results under DFS are shown in Figures 5&6. In Figure
5, compared with DSE+SMT, FUSE increases and decreases
the number of covered lines on 75(70.8%) programs and
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Fig. 5. Results of Dcloc on GSL benchmark under DFS.
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Fig. 6. Results of Cov on GSL benchmark under DFS.

18(17.0%) programs, respectively. The averaged increasing
value is 70.0%(−81.1%∼1025%). Compared with DSE+JFS,
the increases and decreases are shown on 71(67.0%) pro-
grams and 15(14.1%) programs, respectively. The average
relative increasing value is 38.0%(−67.8%∼430%). In Figure
6, compared with DSE+SMT and DSE+JFS, FUSE achieves
higher coverage of analyzed function on 66(62.3%) programs
and 55(51.9%) programs, respectively. The average cover-
age results of analyzed function are 78.4%(18.2%∼100%)
, 63.1%(0%∼100%) and 68.2%(15.2%∼100%) in the three
configurations, respectively.

These results indicate that FUSE can combine the strength of
SMT solving and fuzzing to explore the path space more effec-
tively. However, we observe that search strategy influences the
effectiveness differently with regard to baseline configurations.
Compared with DSE+SMT, FUSE is more effective for DFS
rather than BFS. This is because DFS strategy always tends
to generate long and complex path constraints that hinder
the SMT solver (DSE+SMT). But FUSE is able to abstract
the complex semantics in code. Compared with DSE+JFS,
the observation is opposite. FUSE is more effective for BFS
rather than DFS, which is the result of awkwardness JFS
suffers when solving simple constraints. Unfortunately, BFS
always tends to generate such constraints like simple bit-vector
constraints without floating-point in our evaluation.

Besides, we also compared FUSE with the most related
work, i.e., MCS on the number of covered lines in Figure
7. FUSE covers more lines for 46(43.4%) programs and
fewer lines for 20(18.9%) programs under BFS. The values
are 64(60.4%) and 21(19.8%) under DFS. On average, the
relative increasing values for the number of covered lines
are 18.1%(−45.9%∼718.2%) and 70.1%(−81.1%∼1025%)
under BFS and DFS, respectively. The results demonstrate the
effectiveness of FUSE over MCS. The combination of SMT
solving and fuzzing in the mixed solving method of FUSE



15 30 45 60 75 90 106

−1

0

1

2
D

c
lo

c

(a) Fuse vs. MCS (BFS)
15 30 45 60 75 90 106

−1
0

1

2

3

(b) Fuse vs. MCS (DFS)
Fig. 7. Results of Dcloc on GSL benchmark compare with MCS.

0 20 40 60 80 106
0

5

10

15

20

#
f
c
o
m

p
le
x

(a) under BFS

external auto

0 20 40 60 80 106
0

5

10

15

(b) under DFS

external auto

Fig. 8. The number of identified complex functions in GSL evaluation.

is superior to the sole dependence on SMT solving in MCS,
even if MCS employs many powerful heuristics to simplify
and accelerate the solving.

Here, we report the results of automatic identified functions
in GSL evaluation. Figure 8 shows the number of complex
functions (#fcomplex) in the analysis of each program under
BFS and DFS strategies. Complex functions in GSL evaluation
are composed of two types of functions: predefined external
library functions (denoted by the blue part of the bar) and
automatic identified functions with complex operations (de-
noted by the red part of the bar). On average, FUSE identifies
8.1 and 7.1 complex functions per program under BFS and
DFS strategies, respectively. The results indicate that path
constraints under BFS encounter more complex functions than
DFS, which is quite intuitive.

At last, we conducted experiments on Coreutils benchmark
to evaluate FUSE on programs that mainly produce easy-to-
solve constraints. Figure 9 shows the coverage of analyzed
functions on Coreutils benchmark. As shown in the figure,
the performance of FUSE is very close to DSE+SMT because
the combined solver in FUSE degrades to SMT solver when
facing simple constraints. However, compared with DSE+JFS,
FUSE shows a better performance on nearly all programs. The
reason is that JFS is not good at solving simple bit-vector
constraints because it introduces some unexpected overhead
such as compiling and linking overhead.

Answer to RQ1: FUSE is effective to improve the
code coverage of GSL benchmark programs. Compared with
MCS, FUSE, on average, increases the statement coverage
by 24.0%(−31.6%∼256.9%) and 70.0%(−81.1%∼1025%)
under BFS and DFS, respectively. FUSE performs the same
as pure SMT solving when dealing with simple constraints.

2) Efficiency: In the following, we evaluate the efficiency
of FUSE through the time budget to cover the same number
of lines. Figure 10 shows the trends of the covered lines
during analysis. The X-axis shows the elapsed time in seconds.
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Fig. 9. Results of Cov on Coreutils benchmark.
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The Y-axis shows the average number of covered lines of
106 programs in GSL benchmark. The solid lines represent
trends under BFS search strategy, while the dotted lines
represent trends under DFS search strategy. As shown in the
figure, FUSE outperforms all baselines consistently under any
search strategy. Under BFS, FUSE achieves 8x, 450x and
6.6x speedups for covering the largest number of lines using
DSE+SMT, DSE+JFS, and MCS respectively. Under DFS,
the speedups are 7.8x, 9.9x and 8x, respectively. These results
indicate that FUSE helps to improve the efficiency of dynamic
symbolic execution a lot.

Answer to RQ2: FUSE is efficient to achieve the same code
coverage. Compared with the best baseline, FUSE achieves
6.6x and 7.8x times of speedups under BFS and DFS.

3) Threat to Validity: The major threats to the validity of
our evaluation are internal and external threats. One internal
threat is the randomness in the evaluation. To ensure the
reproducibility of our evaluation, we employed deterministic
search strategies during the symbolic execution and conducted
repeated experiments. However, the inherent randomness in
fuzzing-based method is impossible to be fully removed,
which might threaten the validity. Another internal threat is
our implementation. Although we have found and fixed some
bugs in our implementation during the evaluation, there could
exist other missing bugs that damage the validity. The external
threat is that our benchmark could not represent all kinds



of programs. To address the external threat, we chose two
popular benchmarks that include diverse widely used programs
for evaluation. These benchmarks contain complex non-linear
floating-point operations and extensive system calls.

V. RELATED WORK

The mixed solving method plays a vital role in FUSE. Mixed
solving refers to combining multiple solving techniques to
solve constraints, e.g., the mixed solving method in FUSE
combines SMT solving and fuzzing. Similar to FUSE, Colos-
sus [27] designs a fuzz-based constraint solver which is also a
combination of SMT solver (named logical solver in Colossus)
and fuzz solver. However, the difference is that the combina-
tion in Colossus is at the granularity of whole path constraint,
i.e., Colossus does not split path constraints, failing to utilize
the reasoning ability provided by SMT solver to handle magic
number comparison. Hence, the mixed solving method in
FUSE is more compact and efficient. Malbug and Fraser [28]
employ constraint solver to assist the mutation process in a
search-based test generation method, which prevent the search-
based method getting stuck in local optima.

FUSE can be also regarded as a constraint solving opti-
mization method of symbolic execution. There are a number
of publications on accelerating constraint solving in symbolic
execution. KLEE [7] employs two core optimizations called
constraint independence and counter-example caching, where
the two optimizations collaborate mutually to achieve better
efficiency. Shuai et al. [19] propose to compute type and
interval information of array accesses during the symbolic
execution and pass the information to the underlying constraint
solving for boosting the array constraint solving. Liu et al.
[12] compare stack-based incremental solving approach with
cache-based approach in symbolic execution and conclude
that the former is often more effective. Speculative symbolic
execution [29] executes the program speculatively at each
branch point and ignores the check of path feasibility. Only
when the number of speculated branches reaches a threshold
is the path feasibility checked.

Besides those works on optimizing constraint solving, there
also exists the work for tackling the path explosion problem
[30]. Search strategies are the key to improving the efficiency
of path exploration. In principle, there exists no search strategy
that is the silver bullet. Besides the traditional search strategies,
i.e., DFS and BFS, many search strategies are proposed for
different targets, such as quickly improving the code coverage
[7], [31], [32], finding a specific type of bugs [13], and
finding the paths that reach a specific program point [33]
or satisfying a specific typestate property [34]. In addition,
besides specifying a target, there also exists work [35], [36]
that generates a specific search strategy for the program under
symbolic execution. Besides search strategies, there also exists
work that merges [37] paths or prunes [38] redundant paths.
The approaches of merging paths introduce disjunctions into
path conditions and need to do the tradeoff between the
complexity of constraint solving and the profits brought by
path merging. The methods of pruning paths [38]–[40] often

abstract the program with respect to the analysis’s specification
(e.g., an assertion or a typestate property) and prune the paths
that do not violate the specification or are equal to the explored
paths. FUSE is designed with respect to constraint solving and
orthogonal to the methods for the path explosion problem.

FUSE is also related to fuzzing or optimization-based
constraint solving. JFS [22] converts the constraint solving
problem of floating-point constraints into a fuzzing problem
by generating a program for a constraint. Then, it employs the
existing fuzzer (i.e., libFuzzer [41]) for solving, where the gen-
erated inputs that crash the program also satisfy the constraint.
JFS inspires our work, and our implementation is also based
on JFS. FUZZY-SAT [42] employs fuzzing to solve bit-vector
formulas and proposes several optimizations with respect to
different formula forms. Different from JFS, FUZZY-SAT does
not generate a program but mutates the initial value to search
for the solution. Compared with them, FUSE combines SMT
solving and fuzzing to solve the constraints; Besides, FUSE
supports the fuzzing of the constraints in which symbolic
method invocations exist. XSAT [43] converts the solving
of floating-point constraints into a mathematical optimization
(MO) problem by the fitness function [44] defined for the
constraint. JIGSAW [45] also generates a program for a con-
straint and converts the solving problem into a search problem.
MLBSE [46] also employs the sampling-based optimization
method to handle constraint solving and environment modeling
problems. Compared with MLBSE, FUSE synergizes fuzzing
and SMT for tackling the two problems. It is interesting to
combine MO-based approaches with fuzzing and SMT to
improve efficiency further.

FUSE can be also seen as a hybrid of symbolic execution and
fuzzing. We use fuzzing in the stage of constraint solving to
improve symbolic execution. Note that, FUSE is orthogonal to
the recently proposed hybrid testing [16], which combines two
complementary techniques: symbolic execution and fuzzing in
a top level. Fuzzing has the advantage of high throughput, low-
cost and high degree of automation but fails to cover branches
guarded by rigorous conditions. Symbolic execution is capable
of covering hard-to-reach branches but confined by scalability
problem. Hybrid testing employs fuzzing to cover easy-to-
cover paths and leaves hard branches to symbolic execution.
Up to now, researchers have proposed a number of hybrid
testing methods/systems, including Driller [16], Munch [47],
libKLUZZER [48], DigFuzz [49], Pangolin [50], SAFL [51],
etc. FUSE is mainly in the framework of symbolic execution
and can be used as a component in hybrid testing systems.

VI. CONCLUSION

This paper proposes FUSE, a framework of synergizing
symbolic execution and fuzzing by function-level selective
symbolization to address the problems of constraint solving
and environment modeling. FUSE determines complex func-
tions on-the-fly with respect to the hardness of constraint
solving and the availability of source code. The semantics
of complex function in path constraint are represented by
symbolic function invocation expressions. At last, the path



constraint is partitioned into easy and complex parts, solved
by SMT solver and fuzzing respectively. We implemented
FUSE on a concolic variant of KLEE, and performed extensive
experiments on two real-world benchmarks, i.e., GSL and
Coreutils. The experimental results show the effectiveness and
efficiency of our approach. In the future, we plan to design a
more systematical way to precisely identify complex functions.
For example, we can mark a complex function if there is an
infinite loop in the function to avoid getting trapped in the
loop.

FUSE and our experiments can be accessed at
https://github.com/zbchen/FuSE.
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