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Abstract—Floating-point programs are challenging for sym-
bolic execution due to the constraint solving problem. To investi-
gate the effectiveness and limitations of the existing methods, we
conduct the first empirical study in this paper on five existing
symbolic execution methods for floating-point programs. We have
implemented the existing methods on the state-of-the-art symbolic
execution KLEE and use the real-world representative floating-
point programs as the benchmarks, which are used to evaluate
the existing methods with respect to code coverage and bug
finding. The results indicate that the existing methods comple-
ment each other in bug finding. Based on the findings of the
experimental results, we propose synergizing the existing methods
to improve symbolic execution’s effectiveness. The experimental
results demonstrate that our synergic method can detect more
bugs.

Index Terms—Symbolic Execution, Constraint Solving,
Fuzzing, Real Arithmetic, Floating Point

I. INTRODUCTION

As the mainstream representation of real numbers, floating-
point numbers are frequently used in different numerical
softwares, such as scientific computing [1] and aerospace
controllers [2]. However, manipulating floating-point numbers
is not easy. There are some famous software disasters caused
by floating point operations in history, such as Ariane 5
rocket’s self-destruction [2] and the Patriot missile’s failure
[3]. Therefore, improving the quality of floating-point pro-
grams is quite important and challenging.

Symbolic execution provides an effective method for sys-
tematically exploring a program’s path space. Recently, sym-
bolic execution has been successfully applied in many software
engineering activities, including automatic software testing [4],
[5], bug detection [6], and bug repair [7], [8], etc. However,
despite the successful applications, symbolic execution is still
challenged by two main technical problems [9], i.e., path
explosion and constraint solving. These two problems may
doom the further applications and development of symbolic
execution. The analysis of numeric programs with floating-
point operations is a well-known problem for symbolic exe-
cution because of the constraint solving challenge. Nowadays,
the existing symbolic executors mainly use bit-vector (BV)
SMT theory [10] for a precise program representation. If there
are floating-point operations, the existing symbolic executors
often use BV floating-point (BVFP) SMT theory [10] for rep-
resenting path conditions. Although the complexity of solving

BV formulas (including BVFP formulas) is NP-complete [11],
the solving procedure is time-consuming, especially for non-
linear BVFP formulas. For example, Z3 [12] (i.e., a state-of-
the-art SMT solver) needs 77 seconds for solving the following
BVFP formula in which x is a 64-bit floating-point variable1.

x3 = 27.0 (1)

The real-world BVFP constraints are more complex than
the above one, and Z3 usually produces timeout. The reason
is that BVFP SMT theory precisely encodes the floating-
point constraints into SAT problems [13] with respect to the
IEEE 754 standard [14], which may produce complex SAT
problems that are pretty hard for the underlying SAT solver,
especially for the non-linear BVFP constraints. For example, a
BVFP formula with a multiplication expression of 64-bit BV
variables may produce a SAT problem with tens of thousands
of boolean variables and clauses. However, there are usually
intensive non-linear floating-point computations in numeric
programs. Therefore, the constraint solving of the BVFP
formulas produced by symbolic execution is time-consuming
and often times out, making the symbolic execution of the
numeric programs with intensive floating-point computations
infeasible.

There are five categories of the existing approaches for the
symbolic execution of floating-point programs. The first one
is to employ BVFP SMT solvers for a precise representation
and improve the decision procedure of BVFP SMT solving
[15], [16]. The approaches of this line enjoy the precise
representation but may suffer from the scalability problem
when solving non-linear constraints. The second category uses
a real arithmetic solver to optimize the floating-point solving
[17], in which the variables are considered as real number
variables, and the formula is solved as a real arithmetic
formula. This category enjoys the efficiency of real arithmetic
SMT solving but suffers from the unsoundness with respect
to floating-point numbers. The third category utilizes fuzzing
to solve BVFP formulas [18], in which the constraint solving
problem is converted to a fuzzing problem by generating a
program according to the formula. The input crashing the
program satisfies the formula. This category leverages the

1The CPU is 2.9GHz



power of the existing fuzzing techniques but suffers from
the incompleteness problem, especially when the formula is
UNSAT. The fourth category on-the-fly converts each floating-
point operation during symbolic execution into a function
implemented by integers and bit operations [19]. Therefore,
a floating-point program is converted into one in which only
integers exist, and the existing symbolic execution tools not
supporting floating-point operations can be used. However, this
category may suffer from the path explosion problem. The last
category solves BVFP formulas in a search-based manner [20],
[21], which converts the solving problem into an optimization
problem by defining a fitness function [22] for the formula.

Despite the advantages of the existing methods, the ef-
fectiveness and the efficiency of these approaches for the
symbolic execution of real-world floating-point programs are
still unclear. The reasons are: 1) Many approaches are only
evaluated on the SMT benchmarks, e.g., SMTLIB2 benchmark
of BVFP category [23] [24]; 2) Different approaches are
evaluated on different tools, but they lack a common platform
for evaluation; 3) The benchmark programs in evaluation are
different, which is related to the second problem. Therefore,
to further understand the effectiveness and limitations of the
existing methods, we design an empirical study in this paper
to evaluate the existing methods’ effectiveness for real-world
floating-point programs. We select 277 programs in GNU sci-
entific library (GSL) [25] , a widely used scientific computing
library that contains intensive floating-point operations. We
have integrated or implemented the existing methods on KLEE
[4] (i.e., a state-of-the-art symbolic executor for C programs)
and evaluate the existing methods by employing them for
analyzing the benchmark GSL programs with respect to the
two critical abilities of symbolic execution, i.e., code coverage
and bug finding. To the best of our knowledge, our study is
the first empirical study for the symbolic execution of floating-
point programs.

Our empirical study finds that: 1) fuzzing-based method
achieves the best result of code coverage on real-world
floating-point programs, and the results of the methods of
the first three categories are closer and stable despite the
search strategies; 2) fuzzing-based method and real arith-
metic optimization-based method are more efficient than SMT
solving when the constraints are complex; 3) the first three
categories complement each other for bug finding. Besides, in
the last category, i.e., search-based approaches are ineffective
for analyzing real-world floating-point programs.

Based on the findings, we propose an algorithm synergizing
the first three categories. We can use BVFP solving to prove
the unsatisfiability. Besides, real arithmetic solver and fuzzing
can be used to improve scalability. Based on this observation,
we propose synergizing SMT solving and fuzzing to improve
symbolic execution’s effectiveness on floating-point programs.
Specifically, when solving a BVFP formula PC, we first
employ BVFP SMT solving to check PC’s simple part (i.e.,
the part without non-linear expressions). If PC’s simple part
is unsatisfiable, PC is unsatisfiable. Otherwise, we use the
solution S1 produced by the BVFP solver to check whether

S1 satisfies PC. If S1 does not, we use a real arithmetic solver
to solve PC. When the solver returns a rational solution R, we
convert R into a floating-point solution S2 and check whether
S2 satisfies PC. If S2 does not, we use S2 as a seed and
employ fuzzing for solving PC. The results of the experiments
on the GSL benchmark programs demonstrate our method’s
effectiveness in improving symbolic execution’s ability of bug
finding.

The main contributions of this paper are as follows.
• We carry out the first extensive study for the state-

of-the-art symbolic execution methods of floating-point
programs.

• Based on the study’s findings, we propose synergizing
BVFP SMT solving, real arithmetic solving, and fuzzing
for solving BVFP formulas, which can improve the
efficiency of BVFP constraint solving.

• We have implemented or integrated the existing methods
and our method into KLEE. Our prototype is available2,
which can be used for future research on the symbolic
execution of floating-point programs.

• Compared with the state-of-the-art methods, our synergic
method detects more bugs under both DFS and BFS.

The remainder of this paper is organized as follows. Section
II introduces the background of floating-point numbers, BV
SMT solving, and dynamic symbolic execution. Section III
shows the details of our study’s design. Section IV presents the
implementation and the evaluation results. Section VI presents
our synergy method and its evaluation result. The related work
is discussed and compared in Section VII. The last section
concludes.

II. BACKGROUND

A. Floating-point Representation

IEEE 754 [14] defines the standard of floating-point num-
bers and their operations. In principle, the standard defines
a floating-point number f by three parts: sign (S), mantissa
(M ), and exponent (E), and the number is calculated by the
three parts as follows.

(−1)S ×M × 2E (2)

S ∈ {0, 1} is f ’s first bit that denotes f ’s sign, where 0
and 1 represent that f is positive and negative, respectively.
M

def
= m0.m1m2...mn is the significand, where m0 is the

hidden bit and m1m2...mn is the fraction. Lastly, E
def
=

e− 2p−1 + 1, where p is the number of exponent bits, and e
is the biased exponent. For example, single-precision floating-
point number’s exponent and fraction components have 8 and
23 bits, respectively.

B. Bit-vector SMT solving

Modern symbolic execution engines [4]–[6] widely employ
combined theories based on bit-vector (BV) SMT theory to
model program behaviors, since it is natural for the theory to

2https://github.com/zbchen/FPSE study



represent the variables and operations of programs. Existing
solving algorithms for bit-vector SMT theory can be divided
into two categories: being eager, the approach reducing the
input BV formula to a SAT problem eagerly, and being lazy,
the approach solving a series of gradually refined abstractions
of the input BV formula. The former, making good use of
efficient SAT solvers, is often considered to be predominant
[26]. Nowadays, the state-of-the-art bit-vector solvers usually
implement the eager solving algorithm, e.g., STP [27], Z3 [12],
CVC4 [28], to name a few.

Specifically, an eager approach usually leverages bulks
of word-level rewriting rules such as term substitution and
arithmetic normalization to simplify the input BV formula,
bit-blasts the simplified formula into a SAT problem, and
employs a SAT-based decision procedure for solving. Clearly,
the efficiency of the eager approach relies heavily on the
output of bit-blasting. Unfortunately, just as the name implies,
bit-blasting will introduce a sea of boolean variables and
clauses to encode even single bit-vector operations, which
imposes a heavy burden on the SAT solver. For example, the
multiplication of two 64-bit bit-vector variables brings 20,417
boolean variables and 68,929 clauses [11]. The situation is
made even worse in the case of BVFP SMT theory, where the
standard BVFP SMT solvers also use bit-blasting to handle
floating-point operations. The encoding is much harder in
that it must take into account the restrictions of the IEEE
754 standard, rendering more complicated SAT problems that
hinder the SAT solver. As a result, people have to develop
some incomplete solving techniques for more efficient solving,
as we have clarified in Section I.

C. Dynamic Symbolic Execution

Algorithm 1 shows the main procedure of concolic testing,
which is also denoted as dynamic symbolic execution (DSE)
[29], [30]. The inputs are a program P and an initial input
I0. DSE is often implemented in a worklist manner and uses
a map W to store the branches to be explored. We use b∈̂W
to represent that branch b has a value in the map W . DSE
executes P with input I0 first. Then, the later new inputs will
lead the program to different paths. When concolic testing
executes P with input I , it also collects the path condition
PC of the current path. Based on PC, the branches to be
explored along the current path (denoted by branch(PC,W))
will be added to W . branch(PC,W) is defined as follows,
where PC =

∧
0≤i≤n Ci and bj is the branch corresponding

to ¬Cj .

{bj 7→
( ∧
0≤i<j

Ci

)
∧ ¬Cj | 0 ≤ j ≤ n} (3)

Note that only the branches not in W (Line 6) are added.
Then, after each execution, DSE selects (Line 11) a branch

b from W for generating the next input, which is expected
to steer P to the execution along b. We use V to record
the branches that have been selected. DSE then solves (Line
13) b’s path condition W[b]. If W[b] is satisfiable, DSE uses
the solution Ib as the next input to execute P . If W[b] is

Algorithm 1 Dynamic Symbolic Execution
DSE(P, I0)
Input: P is program, and I0 is the initial input

1: W,V ← ∅ //branches to be explored
2: I ← I0
3: repeat
4: PC ← ConcolicExecution(P, I,F)
5: B ← branch(PC,W)
6: W ←W ∪ {bi 7→ PCi | bi 7→ PCi ∈ B ∧ ¬(bi∈̂W)}
7: if ∀b∈̂W • b ∈ V then
8: break
9: end if

10: repeat
11: b← select(W,V)
12: V ← V ∪ {b}
13: (r, Ib)← Solve(W[b])
14: if r = SAT then
15: I ← Ib
16: end if
17: until r = SAT ∨ ∀b∈̂W • b ∈ V
18: until ∀b∈̂W • b ∈ V

1 # i n c l u d e <s t d i o . h>
2 # i n c l u d e <math . h>
3

4 i n t foo ( f l o a t a , f l o a t b , f l o a t c ) {
5 i f ( cos ( a ) > l o g ( b ) ) {
6 i f ( s i n ( a ) < l o g ( b ) ) {
7 c = c − 1 . 0 ;
8

9 i f ( c == 1 . 1 )
10 p r i n t f ( ” Never r e a c h h e r e !\ n ” ) ;
11 }
12 }
13

14 r e t u r n 0 ;
15 }

Fig. 1. A simple numerical program.

unsatisfiable or the solving returns UNKNOWN, DSE selects
the next branch from W . The branch selection (i.e., select)
determines the style of path exploration, e.g, depth-first search
(DFS) and breadth-first search (BFS). DSE continues the
iterations to explore P’s path space until all the branches have
been visited or timeout (omitted for the sake of brevity).

D. Illustration Example

Figure 1 shows a simple example program for illustration.
The program is a numerical program that contains three
symbolic floating-point variables and many invocations of
complex mathematical functions, e.g., the natural logarithm
function (log) and the trigonometric functions (sin and
cos). DSE usually needs to provide environment models for
the exploited mathematical functions to analyze the program.
Generally, the computations of these functions are imple-
mented by Taylor’s approximation series [31], where non-
linear floating-point computations exist extensively. Therefore,



when exploring these functions, the standard concolic testing
engine issues many complicated BVFP formulas that are quite
challenging for the state-of-the-art BVFP solvers (e.g., Z3 and
CVC4). Finally, the analysis gets stuck and fails to explore
the interesting part of the program. In fact, the analysis cannot
cover even the first branch in Line 5.

Many approaches have been proposed to address the above
problem. Besides improving the decision procedure directly,
the remaining approaches try to resort to real arithmetic con-
straint solving or fuzzing. Both approaches use uninterpreted
functions to abstract the behaviors of mathematical functions
when collecting path conditions. For example, suppose the
initial concrete values of symbolic variables are {a 7→ 2.0, b 7→
2.0, c 7→ 0.0} and the search strategy is DFS, DSE will
generate the following path conditions.

(1) cos(a) > log(b)
(2) cos(a) > log(b) ∧ sin(a) < log(b)
(3) cos(a) > log(b) ∧ sin(a) < log(b) ∧ c− 1.0 = 1.1

where a, b and c are 32-bit floating-point variables.

III. STUDY DESIGN

A. Selected Methods

As introduced in Section I, there are five categories of
the existing methods for the symbolic execution of floating-
point programs. We briefly introduce each category’s selected
method and the enhancements we have done for it for our
empirical study.

1) BVFP SMT theory based method (denoted by BVFP):
This category precisely represents the floating-point operations
in the program by BVFP SMT theory [11]. The advancement
of BVFP solving [15], [16] directly improve the symbolic
execution’s effectiveness. However, the existing BVFP solvers
are still limited for the symbolic execution of real-world
programs. As shown by the illustration program in Figure 1,
a call to an elementary function in math.h (e.g., sin or
cos) may produce very complex BVFP constraints because
the function’s implementation uses intensive floating-point
computations. We select Z3 [12] as the solver for this category.

2) Real arithmetic solving based optimization (denoted
by RSO): This category employs real arithmetic constraint
solving [17] to optimize BVFP constraint solving, which
considers the BVFP formula as a real arithmetic formula
and employs a real arithmetic solver to get a solution in
rational numbers. Then, the solution is converted to floating-
point values. The approaches of this line utilize the ability
of real arithmetic solver to improve the solving’s efficiency,
e.g., the real arithmetic formula x3 = 27 can be solved
in 0.15 seconds by Z3 (Z3 also supports real arithmetic
formulas). However, the real arithmetic solver is not sound
for BVFP formulas. In case the floating-point values of the
rational solution do not satisfy the floating-point formula, the
existing approaches search the nearby floating-point values
for the solution, which may be inefficient in practice. On
the other hand, if the real solver proves the unsatisfiability
of the formula, the BVFP formula may be satisfiable, e.g.,

associativity does not hold for floating-point numbers but holds
for real numbers. Besides, the scalability problem still exists
when solving complex non-linear real arithmetic formulas
and UNSAT formulas. Furthermore, these approaches can not
support the non-arithmetic operations (e.g., bit operations) due
to the ability of the real arithmetic solver.

In our study, we have implemented the RSO method in
[17] and enhanced it by employing dReal [32] as the real
arithmetic solver, which is efficient and supports most ele-
mentary functions in math.h. Moreover, we collect the path
conditions with uninterpreted functions supported by dReal.
Besides, our enhancement supports the solving of the formulas
with multiple variables. We also employ fuzzing to facilitate
the solution searching in case the real number solution does
not satisfy the formula.

3) Fuzzing based method (denoted by FUZZ): This cat-
egory employs fuzzing for solving BVFP formulas [18]. The
approaches of this line convert a solving problem into a
fuzzing problem of a program and ensure that the input
crashing the program satisfies the BVFP constraints. Fuzzing is
effective for solving the constraints with a large solution space.
For example, the following BVFP formula can be solved by
fuzzing in 1 second.

x3 ≥ 27 (4)

However, fuzzing’s performance becomes poor when the so-
lution space is small. Besides, when the BVFP formula is
larger and more complex, the fuzzing may also fail to find the
solution. We use JFS [18] in our study.

4) Integer simulation based conversion method (denoted
by ISC): This category’s key idea is to convert a floating-point
program into one with only integer operations. Specifically,
they replace each floating-point operation with a method in-
vocation where the method simulates the operation by integer
and bit operations. For example, for the subtraction operation
a − b of two 32-bit floating-point numbers, the replacing
function Fsub takes two integer inputs whose binary values
are the same as those of a and b. Then, Fadd implements
the subtraction’s requirements in IEEE 754 standard by bit
operations, e.g., mantissa alignment, and normalization. We
select the method in [19] for the study, whose implementation
is based on KLEE. Hence, the replacements of the floating-
point operations are carried out on-the-fly. More specifically,
we use SoftFloat [33] as the simulation library, which is also
suggested by the experimental results in [19].

5) Search based method (denoted by Search): There exist
many approaches in this category. The basic idea is to define
a fitness function F [22] with respect to the satisfiability of
the constraint. Function F’s inputs are the variables in the
constraint, and the roots of F = 0 are the solutions for the
constraint. Hence, the satisfiability problem is converted to
a problem of root calculation that the existing optimization
techniques can solve [34], [35]. We use the method in XSat
[20] and its implementation goSAT [21] in our study. Given a



path condition PC =
∧

0≤i≤n Ci and bj , where Ci = ei ./i
e′i, PC’s fitness function F(~x) is defined as follows [21].

F(~x) def
=

∑
0≤i≤n

d (./i, ei, e
′
i) (5)

where,

d (≤, e1, e2)
def
= e1 ≤ e2 ? 0 : |e1 − e2|

d (<, e1, e2)
def
= e1 < e2 ? 0 : |e1 − e2|+ 1

d (≥, e1, e2)
def
= e1 ≥ e2 ? 0 : |e1 − e2|

d (>, e1, e2)
def
= e1 > e2 ? 0 : |e1 − e2|+ 1

d (==, e1, e2)
def
= |e1 − e2|

d (6=, e1, e2)
def
= e1 6= e2 ? 0 : 1

goSAT supports the formula with only floating-point variables.
However, in practice, path conditions may contain both BVFP
and BV constraints. Hence, we also extend the fitness function
definition to BV constraints.

B. Benchmark Construction

We use GNU Scientific Library (GSL) [25] as benchmark in
the evaluation. The version is 2.7. On the one hand, GSL is a
well-known numerical library written in C, providing various
useful facilities, including basic mathematical functions, statis-
tics, and sorting. As a result, GSL is widely integrated by many
real-world scientific computing applications such as QtiPlot
[36], and LabPlot [37]. Intuitively, the implementations of
GSL’s facilities rely heavily on floating-point operations, espe-
cially non-linear operations like floating-point multiplication.
For example, trigonometric functions in GSL are implemented
by Taylor’s approximation series [31], bringing many non-
linear floating-point computations. Thereby, it is challenging
for symbolic execution to analyze GSL’s code. On the other
hand, many existing studies on floating-point program analysis
also take GSL as their benchmark, including some research
targeted at symbolic execution [38], [39]. Hence, we believe
GSL is representative for our evaluation, which can reveal the
abilities of different approaches.

In our evaluation, we only analyzed the public APIs under
the specfunc folder, in which the majority of APIs have
at least one parameter with a primitive type. The reason is
that the state-of-the-art symbolic execution tools usually con-
cretize variables with non-primitive type, i.e., pointer variables.
Therefore, we manually construct a driver for each API to
enable the dynamic symbolic execution. The driver assigns
initial concrete values to the API’s parameters, symbolizes
them, and invokes the API. In total, we collected 277 programs
to construct the benchmark. The total number of lines of code
is 30,397.

C. Research Question

We design the following research questions to evaluate
different methods:
• RQ1: How effective are the five methods mentioned

above in improving symbolic execution’s ability of path

exploration? The number of covered lines can evaluate
the effectiveness.

• RQ2: How efficient are the five methods achieving the
same number of covered lines?

• RQ3: How many bugs are found by each method?

D. Experimental Setup

To answer RQ1 and RQ2, we use two deterministic search
strategies (i.e., DFS and BFS) to conduct the experiments. For
each program in the benchmark, the analysis time is 1 hour.
The timeout for constraint solving is 30 seconds. We believe
such a relatively large timeout is reasonable for the evaluation.
To answer RQ3, we further add an online exception check
for each floating-point operation. The symbolic execution tool
will generate a new path to check the possible exception at
each floating-point operation. In this paper, we focus on the
following four common exceptions of floating-point programs:
• Overflow: If the absolute value of the computed result is

greater than the largest representable floating-point value,
then overflow occurs.

• Underflow: If the absolute value of the computed result
is smaller than the smallest representable floating-point
value, then underflow occurs.

• Divide-by-Zero: If a non-zero floating-point number is
divided by zero, then divide-by-zero exception occurs.

• Invalid: If zero is divided by zero, it is invalid.
We suggest the readers refer to the IEEE 754 standard [14] for
more detailed definitions. Finally, we conducted experiments
on all five baselines.

All experiments were conducted on a 104-core server with
Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50GHz CPU
and 194GB of memory. The operating system is Ubuntu 18.04.
We conducted all the experiments three times to eliminate the
randomness, and the experimental results are average values.

IV. IMPLEMENTATION AND RESULTS

A. Implementation

We have built a customized concolic execution engine based
on KLEE [4] version 2.3. We wrap the solutions of path
constraints as seeds and use the seeds as the initial concrete
values of concolic execution. No other modifications were
performed. We have integrated different backend constraint
solvers for the above five methods, as clarified in Sec III.
Specifically, the version of Z3 is 4.6.2.

B. Experimental Results

This section gives the experimental results of our evaluation.
The answers to the above research questions are as follows.

1) Results of RQ1: The number of covered lines directly
reflects the ability of path exploration, which indicates the
effectiveness of symbolic execution. Figure 2 and Figure 3
show the global results of covered lines under BFS and DFS,
respectively. Let us omit Synergy for the moment in this
section. The X-axis displays the names of studied methods,
and the Y-axis shows the number of the covered lines of
code (cLoC). The figure shows that the average results of the



BVFP FUZZ RSO ISC Search Synergy
0

100

200

300

400
#c

Lo
C

Fig. 2. The results of code coverage under BFS.
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Fig. 3. The results of code coverage under DFS.

first four methods are similar under BFS. However, Search’s
results are worse. On average, BVFP, FUZZ, RSO, ISC and
Search cover 54, 55, 51, 56, and 21 lines of code (LoC),
respectively. Besides, FUZZ has more exception results, which
is caused by FUZZ’s randomness. Under DFS, the results of
the first three methods are similar and better than the last two.

Because some benchmarks are in the same source code
file, we collect the covered lines of each file to inspect
the results in more detail. Figure 4 and Figure 5 show the
results. The X-axis shows files located in the specfunc
folder, where each file contains a collection of APIs with the
same functionality. For instance, log (i.e., the abbreviation
of gsl_sf_log.h) is consisted of 5 APIs and implements
many complex logarithmic functions. In total, there are 30 files
with various functionalities. The Y-axis shows the log value
of the number of cLoC.

On average, BVFP, FUZZ, RSO, ISC and Search cover
494, 510, 473, 515 and 190 LoC per file under BFS, respec-
tively. As show by the figures, BVFP, FUZZ, RSO, ISC and
Search achieve the best result in 11, 12, 9, 13, 0 files under
BFS, respectively. As for the DFS strategy in Figure 5, the
five methods cover 454, 464, 435, 345, and 193 lines of code
per file on average, respectively, and achieve the best results in
12, 13, 10, 4, 0 files, respectively. These results are consistent
with the global results shown in Figure 2 and Figure 3.

As indicated by these results, we can observe that the

first three methods are stable under both DFS and BFS.
ISC’s result is better under BFS than that under DFS. ISC
achieves the best result under BFS but performs worse than
the first three under DFS. The reason is that ISC generates
more inputs because of the conversions for floating-point
operations. The path conditions under BFS are simpler than
those under DFS. Under BFS, ISC can successfully generate
more inputs considering more boundary conditions, resulting
in better coverage. However, under DFS, ISC may be stuck
in the floating-point simulation methods.

As shown by these results for code coverage, we have the
following findings.

Finding 1: Under the same time limit, FUZZ achieves
the global best result for code coverage. Compared with
BVFP, the average improvement is not significant. Search
performs worst for real-world floating-point programs.

Finding 2: The results of BVFP, FUZZ and RSO are
stable and closer under both DFS and BFS.

2) Results of RQ2: Besides effectiveness, we want to
inspect the efficiency of the methods. The efficiency of a
method can be evaluated by the time budget of achieving
the same number of covered lines. Figure 6 shows the trends
of the number of covered lines under BFS. Similar to the
results of RQ1, under BFS strategy, FUZZ and ISC have a
better efficiency compared with BVFP. FUZZ achieves 1.18x
speedups for covering the largest number of lines of code
under BVFP. In addition, besides ISC, BVFP is more efficient
at the beginning within the first 10 minutes (because the
constraints are simpler at the beginning) and becomes slower
between 10 and 30 minutes because the constraints become
more complex (but still competitive). After 30 minutes, BVFP
becomes better again and has a similar performance to FUZZ,
because the constraints under BFS are simpler.

Figure 7 shows the trends of the number of covered lines
under DFS. In the beginning, the trends are similar to those
under BFS. After 10 minutes, BVFP’s efficiency is worse
than FUZZ and RSO. It is because the constraints under
BFS become longer, on which BVFP SMT solving is limited.
On average, FUZZ and RSO achieve 4.62x and 3x speedups
compared with BVFP, respectively.

Finding 3: Under BFS, BVFP’s efficiency is competitive
compared with FUZZ and RSO. Under DFS, FUZZ and
RSO are more efficient than BVFP. Search’s efficiency
is the worst.

3) Results of RQ3: Besides code coverage, we also inspect
the ability of bug finding. Table I and Table II give the results
of the bugs found by different methods. Here, we only report
the results on four common floating-point exceptions in the
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Fig. 4. Results of the covered lines under BFS.
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Fig. 6. Trends of covered lines in GSL evaluation under BFS.

TABLE I
NUMBER OF BUGS FOUND BY DIFFERENT METHODS UNDER BFS.

Methods Overflow Underflow Invalid Div-Zero All
BVFP 303 955 4 13 1275
FUZZ 459 1488 6 9 1962
RSO 522 1324 4 7 1857
ISC 262 271 5 17 555

Search 1 108 0 8 117
Synergy 557 1576 4 13 2150

benchmark programs. The last columns of the tables show the
total number of bugs found.

As shown by the tables, FUZZ detects most bugs under both
DFS and BFS. RSO ranks second. Although ISC achieves
the best code coverage under BFS, its effectiveness on bug
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Fig. 7. Trends of covered lines in GSL evaluation under DFS.

TABLE II
NUMBER OF BUGS FOUND BY DIFFERENT METHODS UNDER DFS.

Methods Overflow Underflow Invalid Div-Zero All
BVFP 257 594 3 11 865
FUZZ 399 1097 5 12 1513
RSO 436 994 4 12 1446
ISC 75 110 0 9 194

Search 2 108 0 8 118
Synergy 429 1209 5 8 1651

finding is limited, whose reason is that ISC has a larger path
space caused by the conversion. Besides, the effectiveness of
different types of bugs is different. For example, RSO is better
for detecting overflows. The reason is that the real arithmetic
based approach is more natural for checking overflow excep-



tions. In addition, Search is very limited for bug detection.
Note that the detected bugs may be false positives due to no
assumption of the calling context.

Finding 4: FUZZ and RSO detect more bugs under
both DFS and BFS. Besides, BVFP, FUZZ and RSO are
complementary for bug finding.

C. Threats to Validity

There are internal and external threats to validity. One of the
internal threats is the possible path divergence in our dynamic
symbolic execution engine. For example, when analyzing real-
world programs, paths may diverge due to concretizations
and changing environments. Although we have chosen de-
terministic search strategies during the symbolic execution,
path divergence indeed brings some randomness, which might
threaten the validity of our work. Another internal threat is
our implementation. We ask two senior developers to review
the source code to reduce the threat. Besides, we have tested
our implementation extensively on hundreds of programs.

The external threats are two folds. One is the represen-
tativeness of our benchmark. Although we have constructed
a benchmark from a real-world floating-point computation
library, the benchmark programs may be limited. The other
one is the selected tools of the five existing methods. For
example, we use Z3 as the solver for the BVFP method and
JFS for the FUZZ method. We plan to conduct more extensive
evaluations of more representative tools (e.g., Bitwuzla [16])
on more benchmark programs in the future.

V. SYNERGY METHOD

Based on the findings of our empirical study, we propose
synergizing the first three methods. Algorithm 2 gives the
details of our synergic constraint solving. The input is a path
constraint PC. The output is (r, S) where r can be SAT,
UNSAT or UNKNOWN. If r is SAT, S is the map that gives
the solution value for each variable in PC. Note that PC is
a bit-vector formula in which both floating-point expressions
and integer expressions may exist; Besides, symbolic method
invocations may exist, e.g., sin(x). The algorithm’s key
idea is to combine BVFP SMT solving, real arithmetic SMT
solving, and fuzzing-based solving to improve the efficiency
of solving path condition PC.

The algorithm first extracts the simple atomic constraints
from PC, where an atomic constraint is simple (i.e.,
simple(Ci)) if Ci satisfies the following two conditions.
• Ci does not contain non-linear floating-point operations.
• Ci does not contain any symbolic method invocations.

Note that here we consider non-linear integer operations as
simple operations. Then, the algorithm uses a BVFP solver
to solve PCs. If PCs is unsatisfiable, it implies that PC
is unsatisfiable and the algorithm returns UNSAT (Line 4);
Otherwise, the algorithm checks whether the solution Ss

satisfies PC (denoted by Ss |= PC). If Ss satisfies PC, we

Algorithm 2 Constraint Solving
Solve(PC)
Input: PC =

∧
0≤i≤n Ci is a path constraint.

Output: (r, S), where r is the solving result and S is the
solution map if r is SAT.

1: PCs ←
∧
{Ci | 0 ≤ i ≤ n ∧ simple(Ci)}

2: (rs, Ss)← BVFP Solve(PCs)
3: if rs = UNSAT then
4: return (UNSAT, ∅)
5: end if
6: if Ss |= PC then
7: return (SAT, Ss)
8: end if
9: (PCi, PCf )← Separate(PC)

10: PCa ← Abstract(PCf )
11: (rr, Sr)← REAL Solve(PCa)
12: if rr = SAT ∧ FP(Sr) |= PCf then
13: return (SAT, Ss ↓ PCi ∪ FP(Sr))
14: end if
15: seed← 0
16: if rr = SAT ∧ FP(Sr) 6|= PCf then
17: seed← FP(Sr)
18: end if
19: (rf , Sf )← Fuzzing Solve(PCf , seed)
20: return (rf , Ss ↓ PCi ∪ Sf )

find a solution and return (Line 7); Otherwise, the solving
procedure continues.

Then, the algorithm separates PC into two parts (Line 9):
PCi and PCf , where PCi contains the atomic constrains
with only integer expressions and the variables in PCi do not
appear in PCf . Hence, PCi is a part of PCs and Ss satisfies
PCi. The algorithm only needs to solve PCf . The key idea is
to consider PCf as a real number formula and solve PCf by
a real arithmetic solver. However, because the real solver does
not support some elementary arithmetic functions, we need
to abstract PCf first (Line 9). Specifically, the abstraction
(i.e., Abstract(PCf )) in our implementation considers the
following cases.
• We abstract ceil(x) by introducing a new real number

variable y and the constraints x ≤ y ≤ x+ 1.
• Similar to ceil(x), floor(x) is abstracted as fol-

lows.
x− 1 ≤ y ≤ x

• We consider each variable in PCf as a real number
variable and add the constraints of the maximum and
minimum values for the variable’s data type. For example,
we add the following constraints for an integer variable
x.

INT_MIN ≤ x ≤ INT_MAX

For the abstract formula PCa, we employ the real arithmetic
solver (REAL Solve(PCa) at Line 11) to solve it. If PCa

is satisfiable, we convert its real number solution Sr to the



floating-point solution (denoted by FP(Sr)). Then, if FP(Sr)
satisfies PCf , we find a solution to merge it with the solution
for PCi (Line 13), where Ss ↓ PCi represents Ss’s part of the
variables in PCi. If FP(Sr) does not satisfy PCf , we employ
fuzzing-based solver and use FP(Sr) as the seed for solving
PCf (Line 19). Here, the intuition is that the fuzzer would be
more efficient in finding the solution by starting from FP(Sr).
Besides, if the real arithmetic solver returns UNSAT, we also
use the fuzzing-based solver to solve PCf because of the real
arithmetic solver’s unsoundness.

For example, for the formula cos(a) > log(b) ∧ sin(a) <
log(b) of the illustration example, our algorithm utilizes dReal
to get a real number solution, but its floating-point solution
does not satisfy the formula; Then, based on JFS by seeding
the floating-point solution, our algorithm can successfully get
a solution. Besides, for the unsatisfiable formula (3) of the
illustration example, our algorithm avoids the fruitless search
of fuzzing with the help of the SMT solving technique. We
get the following partition in the first step.

cos(a) > log(b) ∧ sin(a) < log(b)︸ ︷︷ ︸
complex

∧ c− 1.0 = 1.1︸ ︷︷ ︸
simple

Firstly, our approach invokes an SMT solver to decide the
satisfiability of the simple part. In this case, the simple part
is unsatisfiable, which can be decided by the SMT solver
efficiently. Note that all variables in the formulas have the
type of Float32. The loss of precision during the 32-bit
floating-point computation leads to unsatisfiability. Therefore,
we can determine that the whole formula is unsatisfiable as
well.

Experimental Results. As shown in the figures and tables
in Section IV, Synergy achieves competitive code coverage
results under both DFS and BFS. For bug finding, Synergy
achieves the best result under both DFS and BFS.

Our synergy algorithm is competitive on code coverage
and can detect more bugs than the existing methods.

Discussion. Our solving algorithm is sound. To tackle the
problem of the real arithmetic solver’s unsoundness, we em-
ploy the fuzzing-based solver in any case of the real arithmetic
solver’s result, and the fuzzing-based solver is sound. Besides,
although we abstract the floating-point formula (Line 10 in
Algorithm 2), we check the validity of the solution with respect
to the original path condition PCf , and the fuzzing-based
solving is also for PCf . On the other hand, our solving
algorithm may produce UNKNOWN due to the limits of the
real arithmetic solver and the fuzzing-based solving, especially
when the constraints are too complex.

VI. RELATED WORK

Our work is related to the constraint solving of floating-
point formulas. There are already significant advancements for
the existing BVFP SMT solvers, including Z3 [12], MathSAT

[15] and Bitwuzla [16], etc. However, these solvers are still
limited for the symbolic execution of real-world floating-point
programs because the BVFP constraints are too complex for
these solvers to solve. Furthermore, our work is related to the
work of real arithmetic SMT solving. Our implementation is
based on dReal [32], which supports solving the real number
constraints with non-linear arithmetic expressions and many
elementary arithmetic functions. XSat [20] also provides a
method for solving floating-point constraints in a search-based
manner, i.e., converting the solving problem to a mathematical
optimization problem, which then can be solved by the existing
sampling methods, such as MCMC [34], [35]. Similar idea is
also adopted in MLBSE [40] [21] . Our method provides a
framework for synergizing these different constraint solving
approaches for better symbolic execution of floating-point
programs.

Our work also involves optimizing constraint solving dur-
ing symbolic execution. KLEE [4] uses simplification and
cache to reduce the constraint’s complexity and solving times,
respectively. Green [41] also suggests using cache for op-
timization and proposes to share the solving results across
different programs and analysis tasks. Liu et al. [42] proposes
utilizing the mechanism of incremental constraint solving
during symbolic execution and carries out an empirical study,
which suggests employing stack-based incremental constraint
solving during symbolic execution. KLEE-Array [43] elim-
inates array constraints produced by symbolic execution by
representing the array operations of the program with non-
array expressions. Hence, the constraints issued by symbolic
execution do not have array expressions, which improves
the constraint solving’s efficiency. Another optimization line
is to couple symbolic executor and constraint solver more
tightly. Zhang et al. [38] propose to use the partial solutions
during constraint solving to generate multiple test inputs by
solving once. Chen et al. [44] propose to online synthesize a
solving strategy for the program under symbolic execution to
improve the solving’s efficiency. Shuai et al. [45] collect the
information of array operations during symbolic execution and
pass the information to the array constraint solver to remove
the redundant array axioms during constraint solving, which
improves the efficiency of array constraint solving.

Our work is orthogonal to the approaches tackling the path
explosion problem of symbolic execution. There are two lines
of the existing approaches. The first line’s approaches propose
different search strategies for symbolic execution under dif-
ferent backgrounds, including improving code coverage [46],
reaching a program location [47], exploring specific paths [48],
etc. All these approaches utilize the information calculated by
dynamic or static analysis to guide symbolic execution towards
finishing the specific tasks in different backgrounds as soon
as possible. The other line is to prune the redundant paths
of symbolic execution, which complements the first line’s
approaches. The approaches of this line abstract the states
of symbolic execution with respect to different properties,
such as reachability [47] and regular properties [49]. Then,
the redundant paths classified by the abstraction, e.g., non-



reachable or non-violating paths, can be pruned safely, directly
improving symbolic execution’s scalability.

VII. CONCLUSION

We have conducted the first empirical study for the symbolic
execution of floating-point programs. We study five state-
of-the-art methods. The study’s results indicate that SMT,
fuzzing, and real arithmetic solving-based methods comple-
ment each other in bug finding. Based on the finding, we
propose a synergic method to further improve the symbolic
execution of floating-point. Furthermore, the experimental
results indicate that our synergic method detects more bugs.

Our artifact and implementation are available at
https://github.com/zbchen/FPSE study.
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