
Combining Symbolic Execution and Model Checking to Verify
MPI Programs

Hengbiao Yu
1∗
, Zhenbang Chen

1∗
, Xianjin Fu

1,2
, Ji Wang

1,2∗
, Zhendong Su

3
,

Jun Sun
4
, Chun Huang

1
, Wei Dong

1

1
College of Computer, National University of Defense Technology, Changsha, China

2
State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China

3
Department of Computer Science, ETH Zurich, Switzerland

4
School of Information Systems, Singapore Management University, Singapore

{hengbiaoyu,zbchen,wj}@nudt.edu.cn,zhendong.su@inf.ethz.ch,junsun@smu.edu.sg,wdong@nudt.edu.cn

ABSTRACT
Message passing is the standard paradigm of programming in high-

performance computing. However, verifying Message Passing In-

terface (MPI) programs is challenging, due to the complex program

features (such as non-determinism and non-blocking operations).

In this work, we present MPI symbolic verifier (MPI-SV), the first

symbolic execution based tool for automatically verifying MPI pro-

grams with non-blocking operations. MPI-SV combines symbolic

execution and model checking in a synergistic way to tackle the

challenges in MPI program verification. The synergy improves the

scalability and enlarges the scope of verifiable properties. We have

implemented MPI-SV
1
and evaluated it with 111 real-world MPI

verification tasks. The pure symbolic execution-based technique

successfully verifies 61 out of the 111 tasks (55%) within one hour,

while in comparison, MPI-SV verifies 100 tasks (90%). On aver-

age, compared with pure symbolic execution, MPI-SV achieves 19x

speedups on verifying the satisfaction of the critical property and

5x speedups on finding violations.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Symbolic Verification; Symbolic Execution; Model Checking; Mes-

sage Passing Inteface; Synergy

ACM Reference Format:
Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun

Sun, Chun Huang, and Wei Dong. 2020. Combining Symbolic Execution

and Model Checking to Verify MPI Programs. In ICSE ’20: ICSE ’20: 42nd
International Conference on Software Engineering , May 23-29, 2020, Seoul,

∗
The first two authors contributed equally to this work and are co-first authors. Zhen-

bang Chen and Ji Wang are the corresponding authors.

1
MPI-SV is available https://mpi-sv.github.io.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ICSE ’20, May 23-29, 2018, Seoul, South Korea
© 2020 Association for Computing Machinery.

ACM ISBN xxx-x-xxxx-xxxx-x/xx/xx. . . $15.00

https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

South Korea. ACM, New York, NY, USA, 17 pages. https://doi.org/XX.XXXX/

XXXXXXX.XXXXXXX

1 INTRODUCTION
Nowadays, an increasing number of high-performance computing

(HPC) applications have been developed to solve large-scale prob-

lems [11]. The Message Passing Interface (MPI) [78] is the current

de facto standard programming paradigm for developing HPC appli-

cations. Many MPI programs are developed with significant human

effort. One of the reasons is that MPI programs are error-prone
because of complex program features (such as non-determinism
and asynchrony) and their scale. Improving the reliability of MPI

programs is challenging [29, 30].

Program analysis [64] is an effective technique for improving

program reliability. Existing methods for analyzing MPI programs

can be categorized into dynamic and static approaches. Most ex-

isting methods are dynamic, such as debugging [51], correctness

checking [71] and dynamic verification [83]. These methods need

concrete inputs to run MPI programs and perform analysis based

on runtime information. Hence, dynamic approaches may miss

input-related program errors. Static approaches [5, 9, 55, 74] ana-

lyze abstract models of MPI programs and suffer from false alarms,

manual effort, and poor scalability. To the best of our knowledge,

existing automated verification approaches for MPI programs either

do not support input-related analysis or fail to support the analysis

of the MPI programs with non-blocking operations, the invocations

of which do not block the program execution. Non-blocking opera-

tions are ubiquitous in real-world MPI programs for improving the

performance but introduce more complexity to programming.

Symbolic execution [27, 48] supports input-related analysis by

systematically exploring a program’s path space. In principle, sym-

bolic execution provides a balance between concrete execution and

static abstraction with improved input coverage or more precise

program abstraction. However, symbolic execution based analyses

suffer from path explosion due to the exponential increase of pro-

gram pathsw.r.t. the number of conditional statements. The problem

is particularly severe when analyzing MPI programs because of par-

allel execution and non-deterministic operations. Existing symbolic

execution based verification approaches [77][25] do not support

non-blocking MPI operations.

In this work, we present MPI-SV, a novel verifier for MPI pro-

grams by smartly integrating symbolic execution and model check-

ing. As far as we know, MPI-SV is the first automated verifier that

ar
X

iv
:1

80
3.

06
30

0v
2

 [
cs

.P
L

]
 1

7
Ja

n
20

20

https://mpi-sv.github.io
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX
https://doi.org/XX.XXXX/XXXXXXX.XXXXXXX

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

supports non-blocking MPI programs and LTL [58] property verifi-

cation. MPI-SV uses symbolic execution to extract path-level models

from MPI programs and verifies the models w.r.t. the expected prop-
erties by model checking [17]. The two techniques complement

each other: (1) symbolic execution abstracts the control and data

dependencies to generate verifiable models for model checking, and

(2) model checking improves the scalability of symbolic execution

by leveraging the verification results to prune redundant paths and

enlarges the scope of verifiable properties of symbolic execution.

In particular, MPI-SV combines two algorithms: (1) symbolic

execution of non-blocking MPI programs with non-deterministic
operations, and (2) modeling and checking the behaviors of an

MPI program path precisely. To safely handle non-deterministic

operations, the first algorithm delays the message matchings of non-

deterministic operations as much as possible. The second algorithm

extracts a model from an MPI program path. The model represents

all the path’s equivalent behaviors, i.e., the paths generated by

changing the interleavings and matchings of the communication

operations in the path.We have proved that our modeling algorithm

is precise and consistent with the MPI standard [24]. We feed the

generated models from the second algorithm into a model checker

to perform verification w.r.t. the expected properties, i.e., safety
and liveness properties in linear temporal logic (LTL) [58]. If the

extractedmodel from a pathp satisfies the propertyφ,p’s equivalent
paths can be safely pruned; otherwise, if themodel checker reports a

counterexample, a violation ofφ is found. This way, we significantly

boost the performance of symbolic execution by pruning a large

set of paths which are equivalent to certain paths that have been

already model-checked.

We have implemented MPI-SV for MPI C programs based on

Cloud9 [10] and PAT [80]. We have used MPI-SV to analyze 12 real-

world MPI programs, totaling 47K lines of code (LOC) (three are

beyond the scale that the state-of-the-art MPI verification tools can

handle), w.r.t. the deadlock freedom property and non-reachability
properties. For the 111 deadlock freedom verification tasks, when

we set the time threshold to be an hour, MPI-SV can complete 100

tasks, i.e., deadlock reported or deadlock freedom verified, while

pure symbolic execution can complete 61 tasks. For the 100 com-

pleted tasks, MPI-SV achieves, on average, 19x speedups on verify-

ing deadlock freedom and 5x speedups on finding a deadlock.

The main contributions of this work are:

• A synergistic framework combining symbolic execution and

model checking for verifying MPI programs.

• A method for symbolic execution of non-blocking MPI pro-

gramswith non-deterministic operations. Themethod is formally

proven to preserve the correctness of verifying reachability prop-

erties.

• A precise method for modeling the equivalent behaviors of an

MPI path, which enlarges the scope of the verifiable properties

and improves the scalability.

• A tool for symbolic verification of MPI C programs and an ex-

tensive evaluation on real-world MPI programs.

Proc ::= var r : T | r := e | Comm | Proc ; Proc |
if e Proc else Proc | while e do Proc

Comm ::= Ssend(e) | Send(e) | Recv(e) | Recv(*) | Barrier |
ISend(e,r) | IRecv(e,r) | IRecv(*,r) | Wait(r)

Figure 1: Syntax of a core MPI language.

2 ILLUSTRATION
In this section, we first introduce MPI programs and use an example

to illustrate the problem that this work targets. Then, we overview

MPI-SV informally by the example.

2.1 MPI Syntax and Motivating Example
MPI implementations, such as MPICH [31] and OpenMPI [26], pro-

vide the programming interfaces of message passing to support

the development of parallel applications. An MPI program can be

implemented in different languages, such as C and C++. Without

loss of generality, we focus on MPI programs written in C. Let T
be a set of types, N a set of names, and E a set of expressions. For
simplifying the discussion, we define a core language for MPI pro-

cesses in Figure 1, where T ∈ T, r ∈ N, and e ∈ E. An MPI program

MP is defined by a finite set of processes {Proci | 0 ≤ i ≤ n}. For
brevity, we omit complex language features (such as the messages
in the communication operations and pointer operations) although
MPI-SV does support real-world MPI C programs.

The statement var r : T declares a variable r with type T. The
statement r := e assigns the value of expression e to variable r.
A process can be constructed from basic statements by using the

composition operations including sequence, condition and loop.

For brevity, we incorporate the key message passing operations in

the syntax, where e indicates the destination process’s identifier.

These message passing operations can be blocking or non-blocking.
First, we introduce blocking operations:

• Ssend(e): sends a message to the eth process, and the sending

process blocks until the message is received by the destination

process.

• Send(e): sends a message to the eth process, and the sending

process blocks until the message is copied into the system buffer.

• Recv(e): receives a message from the eth process, and the re-

ceiving process blocks until the message from the eth process is

received.

• Recv(*): receives a message from any process, and the receiv-

ing process blocks until a message is received regardless which

process sends the message.

• Barrier: blocks the process until all the processes have called
Barrier.
• Wait(r): the process blocks until the operation indicated by r is

completed.

A Recv(*) operation, called wildcard receive, may receive a mes-

sage from different processes under different runs, resulting in

non-determinism. The blocking of a Send(e) operation depends

on the size of the system buffer, which may differ under differ-

ent MPI implementations. For simplicity, we assume that the size

of the system buffer is infinite. Hence, each Send(e) operation

Combining Symbolic Execution and Model Checking to Verify MPI Programs

P0 P1 P2 P3
Send(1) if (x != ‘a’) Send(1) Send(1)

Recv(0)
else
IRecv(*,req);
Recv(3)

Figure 2: An illustrative example of MPI programs.

returns immediately after being issued. Note that our implemen-

tation allows users to configure the buffer size. To improve the

performance, the MPI standard provides non-blocking operations

to overlap computations and communications.

• ISend(e,r): sends a message to the eth process, and the opera-

tion returns immediately after being issued. The parameter r is
the handle of the operation.

• IRecv(e,r): receives a message from the eth process, and the

operation returns immediately after being issued. IRecv(*,r)
is the non-blocking wildcard receive.

The operations above are key MPI operations. Complex operations,

such as MPI_Bcast and MPI_Gather, can be implemented by com-

posing these key operations. The formal semantics of the core

language is defined based on communicating state machines (CSM)

[8]. We define each process as a CSM with an unbounded receiving

FIFO queue. For the sake of space limit, the formal semantics can

be referred to [91].

An MPI program runs in many processes spanned across multi-

ple machines. These processes communicate by message passing

to accomplish a parallel task. Besides parallel execution, the non-

determinism in MPI programs mainly comes from two sources:

(1) inputs, which may influence the communication through con-

trol flow, and (2) wildcard receives, which lead to highly non-

deterministic executions.

Consider the MPI program in Figure 2. Processes P0, P2 and

P3 only send a message to P1 and then terminate. For process P1,
if input x is not equal to ‘a’, P1 receives a message from P0 in

a blocking manner; otherwise, P1 uses a non-blocking wildcard

receive to receive a message. Then, P1 receives a message from

P3. When x is ‘a’ and IRecv(*,req) receives the message from

P3, a deadlock occurs, i.e., P1 blocks at Recv(3), and all the other

processes terminate. Hence, to detect the deadlock, we need to

handle the non-determinism caused by the input x and the wildcard

receive IRecv(*,req).
To handle non-determinism due to the input, a standard remedy

is symbolic execution [48]. However, there are two challenges. The

first one is to systematically explore the paths of an MPI program
with non-blocking and wildcard operations, which significantly in-

crease the complexity of MPI programs. A non-blocking operation

does not block but returns immediately, causing out-of-order com-

pletion. The difficulty in handling wildcard operations is to get all

the possibly matched messages. The second one is to improve the
scalability of the symbolic execution. Symbolic execution struggles

with path explosion. MPI processes run concurrently, resulting in

an exponential number of program paths w.r.t. the number of pro-

cesses. Furthermore, the path space increases exponentially with

the number of wildcard operations.

An MPI
Program

CSP Model Checker

Violation
PathSymbolic Executor

State Pruner

Violation

MPI-SV

Yes
No

Yes

Property

Test Case

CSP Model

No

Figure 3: The framework of MPI-SV.

2.2 Our Approach
MPI-SV leverages dynamic verification [83] andmodel checking [17]

to tackle the challenges. Figure 3 shows MPI-SV’s basic framework.

The inputs of MPI-SV are anMPI program and an expected property,

e.g., deadlock freedom expressed in LTL. MPI-SV uses the built-in

symbolic executor to explore the path space automatically and

checks the property along with path exploration. For a path that

violates the property, called a violation path, MPI-SV generates a

test case for replaying, which includes the program inputs, the

interleaving sequence of MPI operations and the matchings of wild-

card receives. In contrast, for a violation-free path p, MPI-SV builds

a communicating sequential process (CSP) model Γ, which repre-

sents the paths which can be obtained based on p by changing the

interleavings and matchings of the communication operations in

p. Then, MPI-SV utilizes a CSP model checker to verify Γ w.r.t. the
property. If the model checker reports a counterexample, a viola-

tion is found; otherwise, if Γ satisfies the property, MPI-SV prunes

all behaviors captured by the model so that they are avoided by

symbolic execution.

Since MPI processes are memory independent, MPI-SV will se-

lect a process to execute in a round-robinmanner to avoid exploring

all interleavings of the processes. A process keeps running until it

blocks or terminates. When encountering an MPI operation, MPI-SV

records the operation instead of executing it and doing the mes-

sage matching. When every process blocks or terminates and at

least one blocked process exists, MPI-SV matches the recorded MPI

operations of the processes w.r.t. the MPI standard [24]. The intu-

ition behind this strategy is to collect the message exchanges as

thoroughly as possible, which helps find possible matchings for the

wildcard receive operations. Consider the MPI program in Figure 2

and the deadlock freedom property. Figure 4 shows the symbolic

execution tree, where the node labels indicate process communica-

tions, e.g., (3, 1) means that P1 receives a message from P3. MPI-SV

first symbolically executes P0, which only sends a message to P1.
The Send(1) operation returns immediately with the assumption

of infinite system buffers. Hence, P0 terminates, and the operation

Send(1) is recorded. Then, MPI-SV executes P1 and explores both

branches of the conditional statement as follows.

(1) True branch (x , ‘a’). In this case, P1 blocks at Recv(0).
MPI-SV records the receive operation for P1, and starts executing P2.
Like P0, P2 executes operation Send(1) and terminates, after which

P3 is selected and behaves the same as P2. After P3 terminates, the

global execution blocks, i.e., P1 blocks and all the other processes

terminate. When this happens, MPI-SV matches the recorded oper-

ations, performs the message exchanges and continues to execute

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

the matched processes. The Recv(0) in P1 should be matched with

the Send(1) in P0. After executing the send and receive opera-

tions, MPI-SV selects P1 to execute, because P0 terminates. Then,

P1 blocks at Recv(3). Same as earlier, the global execution blocks

and operation matching needs to be done. Recv(3) is matched with

the Send(1) in P3. After executing the Recv(3) and Send(1) op-

erations, all the processes terminate successfully. Path p1 in Figure

4 is explored.

(2) False branch (x =‘a’). The execution of P1 proceeds until
reaching the blocking receive Recv(3). Additionally, the two issued
receive operations, i.e., IRecv(*,req) and Recv(3), are recorded.
Similar to the true branch, when every process blocks or terminates,

we handle operation matching. Here P0, P2 and P3 terminate, and P1
blocks at Recv(3). IRecv(*,req) should be matched first because

of the non-overtaken policy in theMPI standard [24]. There are three

Send operation candidates from P0, P2 and P3, respectively. MPI-SV

forks a state for each candidate. Suppose MPI-SV first explores the

state where IRecv(*,req) is matched with P0’s Send(1). After
matching and executing P1’s Recv(3) and P3’s Send(1), the path
terminates successfully, which generates path p2 in Figure 4.

Violation detection. MPI-SV continues to explore the remain-

ing two cases. Without CSP-based boosting, the deadlock would

be found in the last case (i.e., p4 in Figure 4), where IRecv(*,req)
is matched with P3’s Send(1) and P1 blocks because Recv(3) has

no matched operation. MPI-SV generates a CSP model Γ based on

the deadlock-free path p2 where P1’s IRecv(*,req) is matched

with P0’s Send(1). Each MPI process is modeled as a CSP pro-

cess, and all the CSP processes are composed in parallel to form

Γ. Notably, in Γ, we collect the possible matchings of a wildcard

receive through statically matching the arguments of operations in

the path. Additionally, the requirements in the MPI standard, i.e.,
completes-before relations [83], are also modeled. A CSP model

checker then verifies deadlock freedom for Γ. The model checker

reports a counterexample where IRecv(*,req) is matched with

the Send(1) in P3. MPI-SV only explores two paths for detecting
the deadlock and avoids the exploration of p3 and p4 (indicated by

dashed lines).

Pruning. Because the CSP modeling is precise (cf. Section 4),

in addition to finding violations earlier, MPI-SV can also perform

path pruning when the model satisfies the property. Suppose we

change the program in Figure 2 to be the one where the last state-

ment of P1 is a Recv(*) operation. Then, the program is deadlock
free. The true branch (x , ‘a’) has 2 paths, because the last wildcard
receive in P1 has two matchings (i.e., P2’s send and P3’s send, and
P0’s send has been matched by P1’s Recv(0)). The false branch

x ≠ 'a' x = 'a'

(0,1) (0,1) (2,1) (3,1)
(3,1) (3,1)

p1 p2 p3

p4
Deadlock(3,1)

Figure 4: The example program’s symbolic execution tree.

(x = ‘a’) has 6 paths because the first wildcard receive has 3 match-

ings (send operations from P0, P2 and P3) and the last wildcard

receive has 2 matchings (because the first wildcard receive has

matched one send operation). Hence, in total, there are 8 paths

(i.e., 2 + 3 ∗ 2 = 8) if we use pure symbolic execution. In contrast,

with model checking, MPI-SV only needs 2 paths to verify that the

program is deadlock-free. For each branch, the generated model is

verified to be deadlock-free, so MPI-SV prunes the candidate states

forked for the matchings of the wildcard receives.

Properties. Because our CSP modeling encodes the interleav-

ings of the MPI operations in the MPI processes, the scope of the

verifiable properties is enlarged, i.e., MPI-SV can verify safety and

liveness properties in LTL. Suppose we change the property to

be the one that requires the Send(1) operation in P0 should be

completed before the Send(1) operation in P2. Actually, the send
operation in P2 can be completed before the send operation in P0,
due to the nature of parallel execution. However, pure symbolic

execution fails to detect the property violation. In contrast, with

the help of CSP modeling, when we verify the model generated

from the first path w.r.t. the property, the model checker gives a

counterexample, indicating that a violation of the property exists.

3 SYMBOLIC VERIFICATION METHOD
In this section, we present our symbolic verification framework

and then describe MPI-SV’s symbolic execution method.

3.1 Framework
Given an MPI programMP = {Proci | 0 ≤ i ≤ n}, a state Sc
in MP’s symbolic execution is composed by the states of pro-

cesses, i.e., (s0, ..., sn), and each MPI process’s state is a 6-tuple

(M, Stat, PC,F ,B,R), whereM maps each variable to a concrete

value or a symbolic value, Stat is the next program statement to

execute, PC is the process’s path constraint [48], F is the flag of

process status belonging to {active, blocked, terminated}, B and

R are infinite buffers for storing the issued MPI operations not

yet matched and the matched MPI operations, respectively. We

use si ∈ Sc to denote that si is a process state in the global state

Sc . An element elem of si can be accessed by si .elem, e.g., si .F is

the ith process’s status flag. In principle, a statement execution in

any process advances the global state, makingMP’s state space
exponential to the number of processes. We use variable Seqi de-
fined inM to record the sequence of the issued MPI operations in

Proci , and Seq(Sc) to denote the set {Seqi | 0 ≤ i ≤ n} of global
state Sc . Global state Sc ’s path condition (denoted by Sc .PC) is the
conjunction of the path conditions of Sc ’s processes, i.e.,

∧
si ∈Sc

si .PC .

Algorithm 1 shows the details of MPI-SV. We use worklist to
store the global states to be explored. Initially, worklist only con-

tains Sinit , composed of the initial states of all the processes, and

each process’s status is active. At Line 4, Select picks a state from
worklist as the one to advance. Hence, Select can be customized

with different search heuristics, e.g., depth-first search (DFS). Then,

Scheduler selects an active process Proci to execute. Next, Execute
(cf. Algorithm 2) symbolically executes the statement Stati in Proci ,
and may add new states into worklist. This procedure continues
until worklist is empty (i.e., all the paths have been explored), de-

tecting a violation or time out (omitted for brevity). After executing

Combining Symbolic Execution and Model Checking to Verify MPI Programs

Algorithm 1: Symbolic Verification Framework

MPI-SV(MP,φ, Sym)
Data:MP is {Proci | 0 ≤ i ≤ n}, φ is a property, and Sym is

a set of symbolic variables

1 begin
2 worklist ← {Sinit }
3 while worklist , ∅ do
4 Sc ← Select(worklist)
5 (Mi , Stati , PCi ,Fi ,Bi ,Ri) ← Scheduler(Sc)
6 Execute(Sc ,Proci , Stati , Sym,worklist)
7 if ∀si ∈ Sc , si .F = terminated then
8 Γ ← GenerateCSP(Sc)
9 ModelCheck(Γ,φ)

10 if Γ |= φ then
11 worklist←worklist\{Sp∈worklist |Sp .PC⇒Sc .PC}
12 end
13 else if Γ ̸ |= φ then
14 reportViolation and Exit
15 end
16 end
17 end
18 end

Stati , if all the processes in the current global state Sc terminate, i.e.,
a violation-free path terminates, we use Algorithm 4 to generate a

CSP model Γ from the current state (Line 8). Then, we use a CSP

model checker to verify Γ w.r.t. φ. If Γ satisfies φ (denoted by Γ |= φ),
we prune the global states forked by the wildcard operations along

the current path (Line 11), i.e., the states in worklist whose path con-
ditions imply Sc ’s path condition; otherwise, if the model checker

gives a counterexample, we report the violation and exit (Line 14).

Since MPI processes are memory independent, we employ partial

order reduction (POR) [17] to reduce the search space. Scheduler
selects a process in a round-robin fashion from the current global

state. In principle, Scheduler starts from the active MPI process

with the smallest identifier, e.g., Proc0 at the beginning, and an MPI

process keeps running until it is blocked or terminated. Then, the

next active process will be selected to execute. Such a strategy sig-

nificantly reduces the path space of symbolic execution. Then, with

the help of CSP modeling and model checking, MPI-SV can verify

more properties, i.e., safety and liveness properties in LTL. The

details of such technical improvements will be given in Section 4.

3.2 Blocking-driven Symbolic Execution
Algorithm 2 shows the symbolic execution of a statement. Com-

mon statements such as conditional statements are handled in the

standard way [48] (omitted for brevity), and here we focus on MPI

operations. The main idea is to delay the executions of MPI opera-

tions as much as possible, i.e., trying to get all themessagematchings.

Instead of execution, Algorithm 2 records each MPI operation for

each MPI process (Lines 4&8). We also need to update buffer B
after issuing an MPI operation (Lines 5&9). Then, if Stati is a non-
blocking operation, the execution returns immediately; otherwise,

we block Proci (Line 10, excepting the Wait of an ISend operation).
When reaching GlobalBlocking (Lines 11&12), i.e., every process is

terminated or blocked, we useMatching (cf. Algorithm 3) to match

the recorded but not yet matched MPI operations and execute the

Algorithm 2: Blocking-driven Symbolic Execution

Execute(Sc ,Proci , Stati , Sym,worklist)
Data: Global state Sc , MPI process Proci , Statement Stati ,

Symbolic variable set Sym, worklist of global states
1 begin
2 switch (Stati) do
3 case Send or ISend or IRecv do
4 Seqi ← Seqi · ⟨Stati ⟩
5 si .B ← si .B · ⟨Stati ⟩
6 end
7 case Barrier or Wait or Ssend or Recv do
8 Seqi ← Seqi · ⟨Stati ⟩
9 si .B ← si .B · ⟨Stati ⟩

10 si .F ← blocked
11 if GlobalBlocking then

// ∀si ∈ Sc , (si .F = blocked ∨ si .F = terminated)
12 Matching(Sc ,worklist)
13 end
14 end
15 default:

Execute(Sc ,Proci , Stati , Sym,worklist) as normal
16 end
17 end

matched operations. Since the opportunity of matching messages

is GlobalBlocking, we call it blocking-driven symbolic execution.

Matching matches the recorded MPI operations in different pro-

cesses. To obtain all the possible matchings, we delay the matching

of a wildcard operation as much as possible. We use matchN to

match the non-wildcard operations first (Line 3) w.r.t. the rules in
the MPI standard [24], especially the non-overtaken ones: (1) if two

sends of a process send messages to the same destination, and both

can match the same receive, the receive should match the first one;

and (2) if a process has two receives, and both can match a send, the

Algorithm 3: Blocking-driven Matching

Matching(Sc ,worklist)
Data: Global state Sc , worklist of global states

1 begin
2 MSW ← ∅ // Matching set of wildcard operations

3 pairn ← matchN (Sc) // Match non-wildcard operations

4 if pairn , empty pair then
5 Fire(Sc ,pairn)
6 end
7 else
8 MSW ← matchW (Sc) // Match wildcard operations

9 for pairw ∈ MSW do
10 S ′c ← fork(Sc , pairw)
11 worklist ← worklist ∪ {S ′c }
12 end
13 if MSW , ∅ then
14 worklist ← worklist \ {Sc }
15 end
16 end
17 if pairn = empty pair ∧MSW = ∅ then
18 reportDeadlock and Exit
19 end
20 end

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

P0 P1 P2
ISend(1,req1); IRecv(*,req2); Barrier;
Barrier; Barrier; ISend(1,req3);
Wait(req1) Wait(req2) Wait(req3)

Figure 5: An example of operation matching.

first receive should match the send. The matched send and receive

operations will be executed, and the statuses of the involved pro-

cesses will be updated to active, denoted by Fire(Sc , pairn) (Line
5). If there is no matching for non-wildcard operations, we use

matchW to match the wildcard operations (Line 8). For each possi-

ble matching of a wildcard receive, we fork a new state (denoted

by fork(Sc , pairw) at Line 10) to analyze each matching case. If no

operations can be matched, but there exist blocked processes, a

deadlock happens (Line 17). Besides, for the LTL properties other

than deadlock freedom (such as temporal properties), we also check

them during symbolic execution (omitted for brevity).

Take the program in Figure 5 for example. When all the pro-

cesses block at Barrier, MPI-SV matches the recorded operation

in the buffers of the processes, i.e., s0 .B=⟨ISend(1,req1),Barrier⟩,
s1 .B=⟨IRecv(*,req2), Barrier⟩, and s2 .B=⟨Barrier⟩. According to
the MPI standard, each operation in the buffers is ready to be

matched. Hence,Matching first matches the non-wildcard opera-

tions, i.e., the Barrier operations, then the status of each process be-

comes active. After that, MPI-SV continues to execute the active pro-

cesses and record issued MPI operations. The next GlobalBlocking
point is: P0 and P2 terminate, and P1 blocks at Wait(req2). The
buffers are ⟨ISend(1,req

1
),Wait(req

1
)⟩, ⟨IRecv(*,req

2
),Wait(req

2
)⟩,

and ⟨ISend(1,req
3
), Wait(req

3
)⟩, respectively. All the issued Wait

operations are not ready to match, because the corresponding

non-blocking operations are not matched. So Matching needs to

match the wildcard operation, i.e., IRecv(*,req
2
), which can be

matched with ISend(1,req
1
) or ISend(1,req

3
). Then, a new

state is forked for each case and added to the worklist.
Correctness. Blocking-driven symbolic execution is an instance

of model checking with POR. We have proved the symbolic execu-

tion method is correct for reachability properties [58]. Due to the

space limit, the proof can be referred to [91].

4 CSP BASED PATH MODELING
In this section, we first introduce the CSP [70] language. Then, we

present the modeling algorithm of an MPI program terminated

path using a subset of CSP. Finally, we prove the soundness and

completeness of our modeling.

4.1 CSP Subset
Let Σ be a finite set of events, C a set of channels, and X a set of

variables. Figure 6 shows the syntax of the CSP subset, where P
denotes a CSP process, a∈Σ, c∈C, X⊆Σ and x∈X.

P := a | P # P | P□P | P ∥
X
P | c?x→P | c!x→P | skip

Figure 6: The syntax of a CSP subset.

The single event process a performs the event a and terminates.

There are three operators: sequential composition (#), external
choice (□) and parallel composition with synchronization (∥

X
). P□Q

performs as P or Q , and the choice is made by the environment.

Let PS be a finite set of processes, □PS denotes the external choice

of all the processes in PS . P ∥
X

Q performs P and Q in an inter-

leaving manner, but P and Q synchronize on the events in X . The
process c?x → P performs as P after reading a value from channel

c and writing the value to variable x . The process c!x → P writes

the value of x to channel c and then behaves as P . Process skip
terminates immediately.

4.2 CSP Modeling
For each violation-free program path, Algorithm 4 builds a precise

CSP model of the possible communication behaviors by changing

the matchings and interleavings of the communication operations

along the path. The basic idea is to model the communication

operations in each process as a CSP process, then compose all the

CSP processes in parallel to form the model. To model Proci , we
scan its operation sequence Seqi in reverse. For each operation, we

generate its CSP model and compose the model with that of the

remaining operations in Seqi w.r.t. the semantics of the operation

and the MPI standard [24]. The modeling algorithm is efficient,

and has a polynomial time complexity w.r.t. the total length of the

recorded MPI operation sequences.

We use channel operations in CSP to model send and receive

operations. Each send operation op has its own channel, denoted

by Chan(op). We use a zero-sized channel to model Ssend opera-

tion (Line 10), because Ssend blocks until the message is received.

In contrast, considering a Send or ISend operation is completed

immediately, we use one-sized channels for them (Line 14), so the

channel writing returns immediately. The modeling of Barrier
(Line 17) is to generate a synchronization event that requires all

the parallel CSP processes to synchronize it (Lines 17&38). The

modeling of receive operations consists of three steps. The first

step calculates the possibly matched channels written by the send

operations (Lines 20&25). The second uses the external choice of

reading actions of the matched channels (Lines 21&26), so as to

model different cases of the receive operation. Finally, the refined

external choice process is composed with the remaining model. If

the operation is blocking, the composition is sequential (Line 22);

otherwise, it is a parallel composition (Line 28).

StaticMatchedChannel(opj , S) (Lines 20&25) returns the set of
the channels written by the possibly matched send operations of

the receive operation opj . We scan Seq(S) to obtain the possibly

matched send operations of opj . Given a receive operation recv in

process Proci , SMO(recv, S) calculated as follows denotes the set

of the matched send operations of recv .

• If recv is Recv(j) or IRecv(j, r), SMO(recv, S) contains Procj ’s
send operations with Proci as the destination process.

• If recv is Recv(∗) or IRecv(∗, r), SMO(recv, S) contains any pro-
cess’s send operations with Proci as the destination process.

SMO(op, S) over-approximates op’s precisely matched opera-

tions, and can be optimized by removing the send operations that

are definitely executed after op’s completion, and the ones whose

Combining Symbolic Execution and Model Checking to Verify MPI Programs

messages are definitely received before op’s issue. For example,

Let Proc0 be Send(1);Barrier;Send(1), and Proc1 be Recv(*);Barrier.
SMO will add the two send operations in Proc0 to the matching

set of the Recv(*) in Proc1. Since Recv(*) must complete before

Barrier, we can remove the second send operation in Proc0. Such
optimization reduces the complexity of the CSP model. For brevity,

we use SMO(op, S) to denote the optimized matching set. Then,

StaticMatchedChannel(opj , S) is {Chan(op) | op ∈ SMO(opj , S)}.
To satisfy the MPI requirements, Refine(P , S) (Lines 21&26) re-

fines the models of receive operations by imposing the completes-

before requirements [83] as follows:

Algorithm 4: CSP Modeling for a Terminated State

GenerateCSP(S)
Data: A terminated global state S , and

Seq(S)={Seqi | 0 ≤ i ≤ n}
1 begin
2 PS ← ∅
3 for i ← 0 . . . n do
4 Pi ← skip
5 Req ← {r | IRecv(*,r)∈Seqi∨IRecv(i,r)∈Seqi }
6 for j ←lenдth(Seqi) − 1 . . . 0 do
7 switch opj do
8 case Ssend(i) do
9 c1 ← Chan(opj) // c1’s size is 0

10 Pi ← c1!x → Pi
11 end
12 case Send(i) or ISend(i,r) do
13 c2 ← Chan(opj) // c2’s size is 1

14 Pi ← c2!x → Pi
15 end
16 case Barrier do
17 Pi ← B # Pi
18 end
19 case Recv(i) or Recv(*) do
20 C ← StaticMatchedChannel(opj , S)
21 Q ← Refine(□{c?x → skip | c ∈ C}, S)
22 Pi ← Q # Pi
23 end
24 case IRecv(*,r) or IRecv(i,r) do
25 C ← StaticMatchedChannel(opj , S)
26 Q ← Refine(□{c?x → skip | c ∈ C}, S)
27 ew←WaitEvent(opj) // opj ’s wait event

28 Pi ← (Q # ew) ∥
{ew }

Pi

29 end
30 case Wait(r) and r ∈ Req do
31 ew ← GenerateEvent(opj)
32 Pi ← ew # Pi
33 end
34 end
35 end
36 PS ← PS ∪ {Pi }
37 end
38 P ← ∥

{B}
PS

39 return P
40 end

• If a receive operation has multiple matched send operations from

the same process, it should match the earlier issued one. This is

ensured by checking the emptiness of the dependent channels.

• The receive operations in the same process should be matched

w.r.t. their issue order if they receive messages from the same

process, except the conditional completes-before pattern [83]. We

use one-sized channel actions to model these requirements.

We model a Wait operation if it corresponds to an IRecv oper-
ation (Line 30), because ISend operations complete immediately

under the assumption of infinite system buffer. Wait operations are
modeled by the synchronization in parallel processes.GenerateEvent
generates a new synchronization event ew for each Wait opera-

tion (Line 31). Then, ew is produced after the corresponding non-

blocking operation is completed (Line 28). The synchronization on

ew ensures that a Wait operation blocks until the corresponding

non-blocking operation is completed.

We use the example in Figure 5 for a demonstration. After ex-

ploring a violation-free path, the recorded operation sequences are

Seq0=⟨ISend(1,req1), Barrier, Wait(req1)⟩, Seq1=⟨IRecv(*,req2),
Barrier,Wait(req

2
)⟩, Seq2=⟨Barrier,ISend(1,req3),Wait(req3)⟩.We

first scan Seq0 in reverse. Note that we don’t model Wait(req1),
because it corresponds to ISend. We create a synchronization event

B for modeling Barrier (Lines 16&17). For the ISend(1,req1), we
model it by writing an element a to a one-sized channel chan1, and
use prefix operation to compose its model with B (Lines 12-14). In
this way, we generate CSP process chan1!a→B # skip (denoted by

CP0) for Proc0. Similarly, we model Proc2 by B # chan2!b→skip
(denoted by CP2), where chan2 is also a one-sized channel and b is

a channel element. For Proc1, we generate a single event process ew
to model Wait(req2), because it corresponds to IRecv (Lines 30-
32). For IRecv(*,req2), we first compute the matched channels

using SMO (Line 25), and StaticMatchedChannel(opj , S) contains
both chan1 and chan2. Then, we generate the following CSP process

((chan1?a→skip□chan2?b→skip) # ew) ∥
{ew }
(B # ew # skip)

(denoted by CP1) for Proc1. Finally, we compose the CSP processes

using the parallel operator to form the CSP model (Line 38), i.e.,
CP0 ∥

{B}
CP1 ∥

{B}
CP2.

CSP modeling supports the case where communications depend

on message contents. MPI-SV tracks the influence of a message dur-

ing symbolic execution. When detecting that the message content

influences the communications, MPI-SV symbolizes the content

on-the-fly.We specially handle the widely usedmaster-slave pattern
for dynamic load balancing [32]. The basic idea is to use a recursive

CSP process to model each slave process and a conditional state-

ment for master process to model the communication behaviors

of different matchings. We verified five dynamic load balancing

MPI programs in our experiments (cf. Section 5.4). The details for

supporting master-slave pattern is in Appendix A.3.

4.3 Soundness and Completeness
In the following, we show that the CSP modeling is sound and

complete. SupposeGenerateCSP(S) generates the CSP processCSPs .
Here, soundness means that CSPs models all the possible behaviors

by changing the matchings or interleavings of the communication

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

operations along the path to S , and completeness means that each

trace in CSPs represents a real behavior that can be derived from S
by changing the matchings or interleavings of the communications.

Since we compute SMO(op, S) by statically matching the argu-

ments of the recorded operations, SMO(op, S) may contain some

false matchings. Calculating the precisely matched operations of op
is NP-complete [23], and we suppose such an ideal method exists.

We use CSPstatic and CSPideal to denote the generated models

using SMO(op, S) and the ideal method, respectively. The follow-

ing theorems ensure the equivalence of the two models under the

stable-failure semantics [70] of CSP and CSPstatic ’s consistency to
the MPI semantics, which imply the soundness and completeness

of our CSP modeling method. Let T(P) denote the trace set [70] of
CSP process P , and F (P) denote the failure set of CSP process P .
Each element in F (P) is (s,X), where s ∈ T (P) is a trace, and X is

the set of events P refuses to perform after s .

Theorem 4.1. F (CSPstatic) = F (CSPideal).

Proof. We only give the skeleton of the proof. We first prove

T(CSPstatic) = T(CSPideal)

based on which we can prove F (CSPstatic) = F (CSPideal). The
main idea of proving these two equivalence relations is to use

contradiction for proving the subset relations. We only give the

proof of T(CSPstatic) ⊆ T (CSPideal); the other subset relations
can be proved in a similar way.

Suppose there is a trace t=⟨e1, ..., en⟩ such that t ∈ T (CSPstatic)
but t<T(CSPideal). The only difference between CSPstatic and

CSPideal is that CSPstatic introduces more channel read oper-

ations during the modeling of receive operations. Hence, there

must exist a read operation of an extra channel in t . Suppose the
first extra read is ek=ce?x , where 1 ≤ k ≤ n. Therefore, ce can-
not be read in CSPideal when the matching of the corresponding

receive operation starts, but ce is not empty at ek in CSPstatic .
Despite of the size of ce , there must exist a write operation ce !y in

⟨e1, ..., ek−1⟩. Because ⟨e1, ..., ek−1⟩ is also a valid trace inCSPideal ,
it means ce is not empty in CSPideal at ek , which contradicts

with the assumption that ce cannot be read in CSPideal . Hence,
T(CSPstatic) ⊆ T (CSPideal) holds. □

Theorem 4.2. CSPstatic is consistent with the MPI semantics.

The proof’s main idea is to prove that CSPideal is equal to the

model defined by the formal MPI semantics [91] w.r.t. the failure
divergence semantics. Then, based on Theorem 4.1, we can prove

that CSPstatic is consistent with the MPI semantics. Please refer

to [91] for the detailed proofs for these two theorems.

5 EXPERIMENTAL EVALUATION
In this section, we first introduce the implementation of MPI-SV,

then describes the research questions and the experimental setup.

Finally, we give experimental results.

5.1 Implementation
We have implemented MPI-SV based on Cloud9 [10], which is built

upon KLEE [12], and enhances KLEE with better support for POSIX

environment and parallel symbolic execution.We leverage Cloud9’s

support for multi-threaded programs. We use a multi-threaded li-

brary for MPI, called AzequiaMPI [69], as the MPI environment

model for symbolic execution. MPI-SV contains threemainmodules:

program preprocessing, symbolic execution, and model checking.

The program preprocessing module generates the input for sym-

bolic execution. We use Clang to compile an MPI program to LLVM

bytecode, which is then linked with the pre-compiled MPI library

AzequiaMPI. The symbolic execution module is in charge of path

exploration and property checking. The third module utilizes the

state-of-the-art CSP model checker PAT [80] to verify CSP models,

and uses the output of PAT to boost the symbolic executor.

5.2 Research Questions
We conducted experiments to answer the following questions:

• Effectiveness: Can MPI-SV verify real-world MPI programs effec-

tively? How effective is MPI-SV when compared to the existing

state-of-the-art tools?

• Efficiency: How efficient is MPI-SV when verifying real-world

MPI programs? How efficient is MPI-SV when compared to the

pure symbolic execution?

• Verifiable properties : Can MPI-SV verify properties other than

deadlock freedom?

5.3 Setup
Table 1 lists the programs analyzed in our experiments. All the pro-

grams are real-world open source MPI programs. DTG is a testing
program from [82]. Matmat, Integrate and Diffusion2d come

from the FEVS benchmark suite [76]. Matmat is used for matrix

multiplication, Integrate calculates the integrals of trigonometric

functions, and Diffusion2d is a parallel solver for two-dimensional

diffusion equation. Gauss_elim is anMPI implementation for gauss-

ian elimination used in [88]. Heat is a parallel solver for heat equa-

tion used in [61]. Mandelbrot, Sorting and Image_manip come

from github. Mandelbrot parallel draws the mandelbrot set for a

bitmap, Sorting uses bubble sort to sort a multi-dimensional array,

and Image_manip is an MPI program for image manipulations, e.g.,
shifting, rotating and scaling. The remaining three programs are

large parallel applications. Depsolver is a parallel multi-material

3D electrostatic solver, Kfray is a ray tracing program creating re-

alistic images, and ClustalW is a tool for aligning gene sequences.

To evaluate MPI-SV further, we mutate [46] the programs by

rewriting a randomly selected receive using two rules: (1) replace

Recv(i) with if (x>a){Recv(i)} else {Recv(*)}; (2) replace Recv(*)

with if (x>a){Recv(*)} else {Recv(j)}. Here x is an input variable, a
is a random value, and j is generated randomly from the scope of the

process identifier. The mutations for IRecv(i,r) and IRecv(*,r)
are similar. Rule 1 is to improve program performance and simplify

programming, while rule 2 is to make the communication more

deterministic. Since communications tend to depend on inputs in

complex applications, such as the last three programs in Table 1, we

also introduce input related conditions. For each program, we gen-

erate five mutants if possible, or generate as many as the number of

receives. We don’t mutate the programs using master-slave pattern
[32], i.e., Matmat and Sorting, and only mutate the static schedul-

ing versions of programs Integrate, Mandelbrot, and Kfray.

Combining Symbolic Execution and Model Checking to Verify MPI Programs

Table 1: The programs in the experiments.

Program LOC Brief Description
DTG 90 Dependence transition group

Matmat 105 Matrix multiplication

Integrate 181 Integral computing

Diffusion2d 197 Simulation of diffusion equation

Gauss_elim 341 Gaussian elimination

Heat 613 Heat equation solver

Mandelbrot 268 Mandelbrot set drawing

Sorting 218 Array sorting

Image_manip 360 Image manipulation

DepSolver 8988 Multimaterial electrostatic solver

Kfray 12728 KF-Ray parallel raytracer

ClustalW 23265 Multiple sequence alignment

Total 47354 12 open source programs

Baselines. We use pure symbolic execution as the first base-

line because: (1) none of the state-of-the-art symbolic execution

based verification tools can analyze non-blocking MPI programs,

e.g., CIVL [57, 75]; (2) MPI-SPIN [74] can support input coverage

and non-blocking operations, but it requires building models of

the programs manually; and (3) other automated tools that support

non-blocking operations, such as MOPPER [23] and ISP [83], can

only verify programs under given inputs. MPI-SV aims at cover-

ing both the input space and non-determinism automatically. To

compare with pure symbolic execution, we run MPI-SV under two

configurations: (1) Symbolic execution, i.e., applying only symbolic

execution for path exploration, and (2) Our approach, i.e., using
model checking based boosting. Most of the programs run with

6, 8, and 10 processes, respectively. DTG and Matmat can only be

run with 5 and 4 processes, respectively. For Diffusion and the

programs using the master-slave pattern, we only run them with

4 and 6 processes due to the huge path space. We use MPI-SV

to verify deadlock freedom of MPI programs and also evaluate 2

non-reachability properties for Integrate and Mandelbrot. The
timeout is one hour. There are three possible verification results:

finding a violation, no violation, or timeout. We carry out all the

tasks on an Intel Xeon-based Server with 64Gmemory and 8 2.5GHz

cores running a Ubuntu 14.04 OS. We ran each verification task

three times and use the average results to alleviate the experimental

errors. To evaluate MPI-SV’s effectiveness further, we also directly

compare MPI-SV with CIVL [57, 75] and MPI-SPIN [74]. Note that,

since MPI-SPIN needs manual modeling, we only use MPI-SV to

verify MPI-SPIN’s C benchmarks w.r.t. deadlock freedom.

5.4 Experimental Results
Table 2 lists the results for evaluating MPI-SV against pure symbolic

execution. The first column shows program names, and #Procs is
the number of running processes. T specifies whether the analyzed

program is mutated, where o denotes the original program, and mi
represents a mutant. A task comprises a program and the number

of running processes. We label the programs using master-slave
pattern with superscript “*”. ColumnDeadlock indicates whether a

task is deadlock free, where 0, 1, and -1 denote no deadlock, deadlock

0 5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

Verification time thresholds

#
C
o
m
p
l
e
t
e
d
v
e
r
i
fi
c
a
t
i
o
n
t
a
s
k
s

Symbolic execution

Our approach

Figure 7: Completed tasks under a time threshold.

and unknown, respectively. We use unknown for the case that both

configurations fail to complete the task. Columns Time(s) and
#Iterations show the verification time and the number of explored

paths, respectively, where to stands for timeout. The results where

Our approach performs better is in gray background.

For the 111 verification tasks, MPI-SV completes 100 tasks (90%)

within one hour, whereas 61 tasks (55%) for Symbolic execution.
Our approach detects deadlocks in 48 tasks, while the number of

Symbolic execution is 44. We manually confirmed that the detected

deadlocks are real. For the 48 tasks having deadlocks, MPI-SV on

average offers a 5x speedups for detecting deadlocks. On the other

hand,Our approach can verify deadlock freedom for 52 tasks, while

only 17 tasks for Symbolic execution. MPI-SV achieves an average

19x speedups. Besides, compared with Symbolic execution, Our
approach requires fewer paths to detect the deadlocks (1/55 on

average) and complete the path exploration (1/205 on average).

These results demonstrate MPI-SV’s effectiveness and efficiency.

Figure 7 shows the efficiency of verification for the two configu-

rations. The X-axis varies the time threshold from 5 minutes to one

hour, while the Y-axis is the number of completed verification tasks.

Our approach can complete more tasks than Symbolic execution
under the same time threshold, demonstrating MPI-SV’s efficiency.

In addition,Our approach can complete 96 (96%) tasks in 5minutes,

which also demonstrates MPI-SV’s effectiveness.

For some tasks, e.g., Kfray, MPI-SV does not outperform Sym-
bolic execution. The reasons include: (a) the paths contain hundreds
of non-wildcard operations, and the corresponding CSP models are

huge, and thus time-consuming to model check; (b) the number of

wildcard receives or their possible matchings is very small, and as

a result, only few paths are pruned.

Comparison with CIVL. CIVL uses symbolic execution to build

a model for the whole program and performs model checking on the

model. In contrast, MPI-SV adopts symbolic execution to generate

path-level verifiable models. CIVL does not support non-blocking

operations. We applied CIVL on our evaluation subjects. It only

successfully analyzed DTG. Diffusion2d could be analyzed after

removing unsupported external calls. MPI-SV and CIVL had similar

performance on these two programs. CIVL failed on all the remain-

ing programs due to compilation failures or lack of support for

non-blocking operations. In contrast, MPI-SV successfully analyzed

99 of the 140 programs in CIVL’s latest benchmarks. The failed

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

Table 2: Experimental results.

Program (#Procs) T Deadlock Time(s) #Iterations
Symbolic execution Our approach Symbolic execution Our approach

DTG(5)

o 0 10.12 9.02 3 1

m1 0 13.69 9.50 10 2

m2 1 10.02 8.93 4 2

m3 1 10.21 9.49 4 2

m4 1 10.08 9.19 4 2

m5 1 9.04 9.29 2 2

Matmat∗(4) o 0 36.94 10.43 54 1

Integrate(6/8/10)
o 0/0/0 78.17/to/to 8.87/10.45/44.00 120/3912/3162 1/1/1
m1 0/0/-1 to/to/to 49.94 /to/to 4773/3712/3206 32 /128/79
m2 1/1/1 9.35/9.83/9.94 9.39/10.76/44.09 2/2/2 2/2/2

Integrate∗ (4/6) o 0/0 24.18/123.55 9.39/32.03 27/125 1/1

Diffusion2d(4/6)

o 0/0 106.86/to 9.84/13.19 90/2041 1/1

m1 0/1 110.25/11.95 10.18 /13.81 90/2 1 /2
m2 0/1 3236.02/12.66 17.05 /14.38 5850/3 16/2
m3 0/0 to/to 19.26/199.95 5590/4923 16/64
m4 1/1 11.35 /11.52 11.14 /14.22 3/2 2 /2
m5 1/0 10.98/to 10.85/13.44 2/1991 2/ 1

Gauss_elim(6/8/10)
o 0/0/0 to/to/to 13.47/15.12/87.45 2756/2055/1662 1/1/1

m1 1/1/1 155.40/to/to 14.31/16.99/88.79 121/2131/559 2/2/2

Heat(6/8/10)

o 1/1/1 17.31/17.99/20.51 16.75 /19.27/22.75 2/2/2 1/1/1
m1 1/1/1 17.33/18.21/20.78 17.03 /19.75/23.16 2/2/2 1/1/1
m2 1/1/1 18.35/18.19/20.74 16.36 /19.53/23.07 2/2/2 1/1/1
m3 1/1/1 19.64/20.21/23.08 16.36/19.72/22.95 3/3/3 1/1/1
m4 1/1/1 22.9/24.73/27.78 16.4/19.69/22.90 9/9/9 1/1/1
m5 1/1/1 24.28/28.57/32.67 16.61/19.59/22.42 7/7/7 1/1/1

Mandelbrot(6/8/10)

o 0/0/-1 to/to/to 117.68 / 831.87 /to 500/491/447 9 / 9 /9
m1 -1/-1/-1 to/to/to to/to/to 1037/1621/1459 173/227/246
m2 -1/-1/-1 to/to/to to/to/to 1093/1032/916 178/136/90
m3 1/1/1 10.71/11.17/11.92 10.84/11.68/13.5 2/2/2 2/2/2

Mandelbort∗ (4/6) o 0/0 68.09/270.65 12.65/13.21 72/240 2/2
Sorting∗ (4/6) o 0/0 to/to 19.18/46.19 584/519 1/1

Image_mani(6/8/10)
o 0/0/0 97.69/118.72/141.87 18.68/23.84/27.89 96/96/96 4/4/4
m1 1/1/1 12.92/15.80/15.59 14.15/ 14.53 /16.86 2/2/2 2/2/2

DepSolver(6/8/10) o 0/0/0 94.17/116.5/148.38 97.19/123.36/151.83 4/4/4 4/4/4

Kfray(6/8/10)

o 0/0/0 to/to/to 51.59/68.25/226.96 1054/981/1146 1/1/1
m1 1/1/1 52.15/53.50/46.83 53.14/69.58/229.97 2/2/2 2/2/2
m2 -1/-1/-1 to/to/to to/to/to 1603/1583/1374 239/137/21
m3 1/1/1 51.31/43.34/48.33 50.40 /71.15/230.18 2/2/2 2/2/2

Kfray∗ (4/6) o 0/0 to/to 53.44/282.46 1301/1575 1/1

Clustalw(6/8/10)

o 0/0/0 to/to/to 47.28/79.38/238.37 1234/1105/1162 1/1/1

m1 0/0/0 to/to/to 47.94/80.10/266.16 1365/1127/982 1/1/1
m2 0/0/0 to/to/to 47.71/90.32/266.08 1241/1223/915 1/1/1
m3 1/1/1 895.63/to/to 149.71/1083.95/301.99 175/1342/866 5/17/2
m4 0/0/0 to/to/to 47.49/79.94/234.99 1347/1452/993 1/1/1
m5 0/0/0 to/to/to 47.75/80.33/223.77 1353/1289/1153 1/1/1

ones are small API test programs for the APIs that MPI-SV does

not support. For the real-world program floyd that both MPI-SV

and CIVL can analyze, MPI-SV verified its deadlock-freedom under

4 processes in 3 minutes, while CIVL timed out after 30 minutes.

The results indicate the benefits of MPI-SV’s path-level modeling.

Comparison with MPI-SPIN. MPI-SPIN relies on manual mod-

eling of MPI programs. Inconsistencies may happen between an

MPI program and its model. Although prototypes exist for trans-

lating C to Promela [45], they are impractical for real-world MPI

programs. MPI-SPIN’s state space reduction treats communication

channels as rendezvous ones; thus, the reduction cannot handle the

programs with wildcard receives. MPI-SV leverages model checking

to prune redundant paths caused by wildcard receives. We applied

MPI-SV on MPI-SPIN’s 17 C benchmarks to verify deadlock free-

dom, andMPI-SV successfully analyzed 15 automatically, indicating

Combining Symbolic Execution and Model Checking to Verify MPI Programs

the effectiveness. For the remaining two programs, i.e., BlobFlow
and Monte, MPI-SV cannot analyze them due to the lack of support

for APIs. For the real-world program gausselim, MPI-SPIN needs

171s to verify that the model is deadlock-free under 5 processes,

while MPI-SV only needs 27s to verify the program automatically. If

the number of the processes is 8, MPI-SPIN timed out in 30 minutes,

but MPI-SV used 66s to complete verification.

Temporal properties.We specify two temporal safety properties

φ1 and φ2 for Integrate and Mandelbrot, respectively, where φ1
requires process one cannot receive a message before process two,

and φ2 requires process one cannot send a message before process

two. Both φ1 and φ2 can be represented by an LTL formula !a U b,
which requires event a cannot happen before event b. We verify

Integrate and Mandelbrot under 6 processes. The verification

results show that MPI-SV detects the violations of φ1 and φ2, while
pure symbolic execution fails to detect violations.

Runtime bugs.MPI-SV can also detect local runtime bugs. Dur-

ing the experiments, MPI-SV finds 5 unknown memory access out-

of-bound bugs: 4 in DepSolver and 1 in ClustalW.

6 RELATEDWORK
Dynamic analyses are widely used for analyzing MPI programs.

Debugging or testing tools [1, 36, 50, 51, 60, 71, 87] have better

feasibility and scalability but depend on specific inputs and run-

ning schedules. Dynamic verification techniques, e.g., ISP [83] and

DAMPI [84], run MPI programs multiple times to cover the sched-

ules under the same inputs. Böhm et al. [3] propose a state-space

reduction framework for the MPI program with non-deterministic
synchronization. These approaches can detect the bugs depending

on specific matchings of wildcard operations, but may still miss

inputs related bugs. MPI-SV supports both input and schedule cov-

erages, and a larger scope of verifiable properties. MOPPER [23]

encodes the deadlock detection problem under concrete inputs in

a SAT equation. Similarly, Huang and Mercer [41] use an SMT

formula to reason about a trace of an MPI program for deadlock

detection. However, the SMT encoding is specific for the zero-buffer

mode. Khanna et al. [47] combines dynamic and symbolic analy-

ses to verify multi-path MPI programs. Compared with these path

reasoning work in dynamic verification, MPI-SV ensures input

space coverage and can verify more properties, i.e., safety and live-

ness properties in LTL. Besides, MPI-SV employs CSP to enable a

more expressive modeling, e.g., supporting conditional completes-

before [83] and master-slave pattern [32].

For static methods of analyzing MPI program, MPI-SPIN [73, 74]

manually models MPI programs in Promela [38], and verifies the

model w.r.t. LTL properties [58] by SPIN [37] (cf. Section 5.4 for

empirical comparison). MPI-SPIN can also verify the consistency

between an MPI program and a sequential program, which is not

supported by MPI-SV. Bronevetsky [9] proposes parallel control

flow graph (pCFG) for MPI programs to capture the interactions be-

tween arbitrary processes. But the static analysis using pCFG is hard

to be automated. ParTypes [55] uses type checking and deductive

verification to verify MPI programs against a protocol. ParTypes’s

verification results are sound but incomplete, and independent

with the number of processes. ParTypes does not support non-

deterministic or non-blocking MPI operations. MPI-Checker [22] is

a static analysis tool built on Clang Static Analyzer [15], and only

supports intraprocedural analysis of local properties such as double

non-blocking and missing wait. Botbol et al. [5] abstract an MPI

program to symbolic transducers, and obtain the reachability set

based on abstract interpretation [18], which only supports blocking

MPI programs and may generate false positives. COMPI [53, 54]

uses concolic testing [27, 72] to detect assertion or runtime errors in

MPI applications. Ye et al. [89] employs partial symbolic execution

[68] to detect MPI usage anomalies. However, these two symbolic

execution-based bug detection methods do not support the non-

determinism caused by wildcard operations. Luo and Siegel [56]

propose a preliminary deductive method for verifying the numeric

properties of MPI programs in an unbounded number of processes.

However, this method still needs manually provided verification

conditions to prove MPI programs.

MPI-SV is related to the existingwork on symbolic execution [48],

which has been advanced significantly during the last decade [10,

12, 27, 28, 66, 72, 81, 86, 93]. Many methods have been proposed

to prune paths during symbolic execution [4, 19, 34, 43, 92]. The

basic idea is to use the techniques such as slicing [44] and interpo-

lation [59] to safely prune the paths. Compared with them, MPI-SV

only prunes the paths of the same path constraint but different

message matchings or operation interleavings. MPI-SV is also re-

lated to the work of automatically extracting session types [63] or

behavioral types [52] for Go programs and verifying the extracted

type models. These methods extract over-approximation models

from Go programs, and hence are sound but incomplete. Compared

with them, MPI-SV extracts path-level models for verification. Fur-

thermore, there exists work of combining symbolic execution and

model checking [20, 65, 79]. YOGI [65] and Abstraction-driven con-

colic testing [20] combine dynamic symbolic execution [27, 72]

with counterexample-guided abstraction refinement (CEGAR) [16].

MPI-SV focuses on parallel programs, and the verified models are

path-level. MPI-SV is also related to the work of unbounded ver-

ification for parallel programs [2, 6, 7, 85]. Compared with them,

MPI-SV is a bounded verification tool and supports the verifica-

tion of LTL properties. Besides, MPI-SV is related to the exist-

ing work of testing and verification of shared-memory programs

[13, 14, 21, 34, 35, 39, 40, 42, 49, 62, 90]. Compared with them, MPI-

SV concentrates on message-passing programs. Utilizing the ideas

in these work for analyzing MPI programs is interesting and left to

the future work.

7 CONCLUSION
We have presented MPI-SV for verifying MPI programs with both

non-blocking and non-deterministic operations. By synergistically

combining symbolic execution and model checking, MPI-SV pro-

vides a general framework for verifying MPI programs. We have

implemented MPI-SV and extensively evaluated it on real-world

MPI programs. The experimental results are promising demonstrate

MPI-SV’s effectiveness and efficiency. The future work lies in sev-

eral directions: (1) enhanceMPI-SV to support moreMPI operations,

(2) investigate the automated performance tuning of MPI programs

based on MPI-SV, (3) apply our synergistic framework to other

message-passing programs.

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

REFERENCES
[1] Allinea. 2002. Allinea DDT. http://www.allinea.com/products/ddt/. (2002).

[2] Alexander Bakst, Klaus von Gleissenthall, Rami Gökhan Kici, and Ranjit Jhala.

2017. Verifying distributed programs via canonical sequentialization. PACMPL 1,

OOPSLA (2017), 110:1–110:27.

[3] Stanislav Böhm, Ondrej Meca, and Petr Jancar. 2016. State-Space Reduction of

Non-deterministically Synchronizing Systems Applicable to Deadlock Detection

in MPI. In FM. 102–118.

[4] Peter Boonstoppel, Cristian Cadar, and Dawson Engler. 2008. RWset: attacking

path explosion in constraint-based test generation. In TACAS. 351–366.
[5] Vincent Botbol, Emmanuel Chailloux, and Tristan Le Gall. 2017. Static Analysis

of Communicating Processes Using Symbolic Transducers. In VMCAI. 73–90.
[6] Ahmed Bouajjani and Michael Emmi. 2012. Analysis of recursively parallel pro-

grams. In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012. 203–214.

[7] Ahmed Bouajjani, Constantin Enea, Kailiang Ji, and Shaz Qadeer. 2018. On the

Completeness of Verifying Message Passing Programs Under Bounded Asyn-

chrony. In Computer Aided Verification - 30th International Conference, CAV 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings, Part II. 372–391.

[8] Daniel Brand and Pitro Zafiropulo. 1983. On communicating finite-state machines.

J. ACM (1983), 323–342.

[9] Greg Bronevetsky. 2009. Communication-sensitive static dataflow for parallel

message passing applications. In CGO. 1–12.
[10] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel

symbolic execution for automated real-world software testing. In EuroSYS. 183–
198.

[11] Rajkumar Buyya and others. 1999. High performance cluster computing: archi-

tectures and systems. Prentice Hall (1999), 999.
[12] C. Cadar, D. Dunbar, and D. Engler. 2008. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. In OSDI. 209–
224.

[13] Sagar Chaki, Edmund M. Clarke, Alex Groce, Joël Ouaknine, Ofer Strichman,

and Karen Yorav. 2004. Efficient Verification of Sequential and Concurrent C

Programs. Formal Methods in System Design 25, 2-3 (2004), 129–166.

[14] Alessandro Cimatti, Iman Narasamdya, and Marco Roveri. 2011. Boosting Lazy

Abstraction for SystemCwith Partial Order Reduction. In Tools and Algorithms for
the Construction and Analysis of Systems - 17th International Conference, TACAS
2011, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings.
341–356.

[15] Clang. 2016. Clang Static Analyzer. http://clang-analyzer.llvm.org. (2016).

[16] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2000.

Counterexample-guided abstraction refinement. In CAV. 154–169.
[17] Edmund M Clarke, Orna Grumberg, and Doron Peled. 1999. Model checking. MIT

press.

[18] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified

Lattice Model for Static Analysis of Programs by Construction or Approximation

of Fixpoints. In POPL. 238–252.
[19] Heming Cui, Gang Hu, Jingyue Wu, and Junfeng Yang. 2013. Verifying systems

rules using rule-directed symbolic execution. In ASPLOS. 329–342.
[20] Przemysław Daca, Ashutosh Gupta, and Thomas A Henzinger. 2016. Abstraction-

driven Concolic Testing. In VMCAI. 328–347.
[21] Brian Demsky and Patrick Lam. 2015. SATCheck: SAT-directed stateless model

checking for SC and TSO. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015. 20–
36.

[22] Alexander Droste, Michael Kuhn, and Thomas Ludwig. 2015. MPI-checker: static

analysis for MPI. In LLVM-HPC. 3:1–3:10.
[23] Vojtěch Forejt, Daniel Kroening, Ganesh Narayanaswamy, and Subodh Sharma.

2014. Precise predictive analysis for discovering communication deadlocks in

MPI programs. In FM. 263–278.

[24] MPI Forum. 2012. MPI: A Message-Passing Interface Standard Version 3.0. http:

//mpi-forum.org. (2012).

[25] Xianjin Fu, Zhenbang Chen, Yufeng Zhang, Chun Huang, Wei Dong, and Ji Wang.

2015. MPISE: Symbolic Execution of MPI Programs. In HASE. 181–188.
[26] Edgar Gabriel, Graham E Fagg, George Bosilca, Thara Angskun, Jack J Dongarra,

Jeffrey M Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

Lumsdaine, and others. 2004. Open MPI: Goals, concept, and design of a next

generation MPI implementation. In EuroMPI. 97–104.
[27] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-

mated random testing. In PLDI. 213–223.
[28] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. 2008. Automated

Whitebox Fuzz Testing. In NDSS.

[29] Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krishnamoorthy,

Ignacio Laguna, Richard A. Lethin, Koushik Sen, Stephen F. Siegel, and Armando

Solar-Lezama. 2017. Report of the HPCCorrectness Summit Jan 25-26, 2017,Wash-

ington, DC. https://science.energy.gov/~/media/ascr/pdf/programdocuments/

docs/2017/HPC_Correctness_Report.pdf. (2017).

[30] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur,

William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg

Bronevetsky. 2011. Formal analysis of MPI-based parallel programs. Commun.
ACM (2011), 82–91.

[31] William Gropp. 2002. MPICH2: A new start for MPI implementations. In EuroMPI.
7–7.

[32] William Gropp, Ewing Lusk, and Anthony Skjellum. 2014. Using MPI: Portable
Parallel Programming with the Message-Passing Interface. The MIT Press.

[33] William Gropp, Ewing Lusk, and Rajeev Thakur. 1999. Using MPI-2: Advanced
features of the message-passing interface. MIT press.

[34] Shengjian Guo, Markus Kusano, Chao Wang, Zijiang Yang, and Aarti Gupta.

2015. Assertion guided symbolic execution of multithreaded programs. In FSE.
854–865.

[35] Shengjian Guo, MengWu, and ChaoWang. 2018. Adversarial symbolic execution

for detecting concurrency-related cache timing leaks. In Proceedings of the 2018
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena
Vista, FL, USA, November 04-09, 2018. 377–388.

[36] Tobias Hilbrich, Joachim Protze, Martin Schulz, Bronis R de Supinski, and

Matthias S Müller. 2012. MPI runtime error detection with MUST: advances

in deadlock detection. In SC. 30.
[37] Gerard J Holzmann. 1997. The model checker SPIN. IEEE Transactions on Software

Engineering (1997), 279–295.

[38] Gerard J. Holzmann. 2012. Promela manual pages. http://spinroot.com/spin/

Man/promela.html. (2012).

[39] Jeff Huang, Charles Zhang, and Julian Dolby. 2013. CLAP: recording local ex-

ecutions to reproduce concurrency failures. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA,
June 16-19, 2013. 141–152.

[40] Shiyou Huang and Jeff Huang. 2016. Maximal causality reduction for TSO and

PSO. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016, part
of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016.
447–461.

[41] Yu Huang and Eric Mercer. 2015. Detecting MPI Zero Buffer Incompatibility by

SMT Encoding. In NFM. 219–233.

[42] Omar Inverso, Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro

Parlato. 2015. Lazy-CSeq: A Context-Bounded Model Checking Tool for Multi-

threaded C-Programs. In 30th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2015, Lincoln, NE, USA, November 9-13, 2015. 807–812.

[43] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. 2013. Boosting concolic

testing via interpolation. In FSE. 48–58.
[44] Ranjit Jhala and Rupak Majumdar. 2005. Path slicing. In PLDI. 38–47.
[45] Ke Jiang and Bengt Jonsson. 2009. Using SPIN to model check concurrent algo-

rithms, using a translation from C to Promela. In MCC 2009. 67–69.
[46] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software

testing?. In FSE. 654–665.
[47] Dhriti Khanna, Subodh Sharma, César Rodríguez, and Rahul Purandare. 2018.

Dynamic Symbolic Verification of MPI Programs. In FM.

[48] J.C. King. 1976. Symbolic execution and program testing. Commun. ACM (1976),

385–394.

[49] Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. 2018. Synchronizing the

Asynchronous. In 29th International Conference on Concurrency Theory, CONCUR
2018, September 4-7, 2018, Beijing, China. 21:1–21:17.

[50] Bettina Krammer, Katrin Bidmon, Matthias S Müller, and Michael M Resch. 2004.

MARMOT: An MPI analysis and checking tool. Advances in Parallel Computing
(2004), 493–500.

[51] Ignacio Laguna, Dong H. Ahn, Bronis R. de Supinski, Todd Gamblin, Gregory L.

Lee, Martin Schulz, Saurabh Bagchi, Milind Kulkarni, Bowen Zhou, Zhezhe Chen,

and Feng Qin. 2015. Debugging high-performance computing applications at

massive scales. Commun. ACM 58, 9 (2015), 72–81.

[52] Julien Lange, Nicholas Ng, Bernardo Toninho, and Nobuko Yoshida. 2018. A

static verification framework for message passing in Go using behavioural types.

In Proceedings of the 40th International Conference on Software Engineering, ICSE
2018, Gothenburg, Sweden, May 27 - June 03, 2018. 1137–1148.

[53] Hongbo Li, Zizhong Chen, and Rajiv Gupta. 2019. Efficient Concolic Testing of

MPI Applications. In Proceedings of the 28th International Conference on Compiler
Construction (CC 2019). 193–204.

[54] Hongbo Li, Sihuan Li, Zachary Benavides, Zizhong Chen, and Rajiv Gupta. 2018.

COMPI: Concolic Testing for MPI Applications. In 2018 IEEE International Parallel
and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21-25, 2018. 865–874.

http://www.allinea.com/products/ddt/
http://clang-analyzer.llvm.org
http://mpi-forum.org
http://mpi-forum.org
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
https://science.energy.gov/~/media/ascr/pdf/programdocuments/docs/2017/HPC_Correctness_Report.pdf
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/Man/promela.html

Combining Symbolic Execution and Model Checking to Verify MPI Programs

[55] Hugo A. López, Eduardo R. B. Marques, Francisco Martins, Nicholas Ng, César

Santos, Vasco Thudichum Vasconcelos, and Nobuko Yoshida. 2015. Protocol-

based verification of message-passing parallel programs. In OOPSLA. 280–298.
[56] Ziqing Luo and Stephen F. Siegel. 2018. Towards Deductive Verification of

Message-Passing Parallel Programs. In 2nd IEEE/ACM International Workshop on
Software Correctness for HPC Applications, CORRECTNESS@SC 2018, Dallas, TX,
USA, November 12, 2018. 59–68.

[57] Ziqing Luo, Manchun Zheng, and Stephen F. Siegel. 2017. Verification of MPI

programs using CIVL. In EuroMPI. 6:1–6:11.
[58] Zohar Manna and Amir Pnueli. 1992. The temporal logic of reactive and concurrent

systems - specification. Springer.
[59] Kenneth L. McMillan. 2005. Applications of Craig Interpolants inModel Checking.

In TACAS. 1–12.
[60] Subrata Mitra, Ignacio Laguna, Dong H. Ahn, Saurabh Bagchi, Martin Schulz,

and Todd Gamblin. 2014. Accurate application progress analysis for large-scale

parallel debugging. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11,
2014. 193–203.

[61] MatthiasMüller, Bronis de Supinski, GaneshGopalakrishnan, Tobias Hilbrich, and

David Lecomber. 2011. Dealing with MPI bugs at scale: Best practices, automatic

detection, debugging, and formal verification. http://sc11.supercomputing.org/

schedule/event_detail.php?evid=tut131, (2011).

[62] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gérard Basler, Pira-

manayagamArumugaNainar, and IulianNeamtiu. 2008. Finding and Reproducing

Heisenbugs in Concurrent Programs. In 8th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings. 267–280.

[63] Nicholas Ng and Nobuko Yoshida. 2016. Static deadlock detection for concurrent

go by global session graph synthesis. In Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016.
174–184.

[64] Flemming Nielson, Hanne R Nielson, and Chris Hankin. 2015. Principles of
program analysis. Springer.

[65] Aditya V Nori, Sriram K Rajamani, SaiDeep Tetali, and Aditya V Thakur. 2009.

The YOGI Project: Software property checking via static analysis and testing. In

TACAS. 178–181.
[66] Corina S. Pasareanu, Peter C. Mehlitz, David H. Bushnell, Karen Gundy-Burlet,

Michael R. Lowry, Suzette Person, and Mark Pape. 2008. Combining unit-level

symbolic execution and system-level concrete execution for testing NASA soft-

ware. In Proceedings of the ACM/SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 2008, Seattle, WA, USA, July 20-24, 2008. 15–26.

[67] Wojciech Penczek, Maciej Szreter, Rob Gerth, and Ruurd Kuiper. 2000. Improving

Partial Order Reductions for Universal Branching Time Properties. Fundam.
Inform. (2000), 245–267.

[68] David A. Ramos and Dawson R. Engler. 2015. Under-Constrained Symbolic

Execution: Correctness Checking for Real Code. In SEC. USENIX Association,

49–64.

[69] Juan A. Rico-Gallego and Juan Carlos Díaz Martín. 2011. Performance Evaluation

of Thread-Based MPI in Shared Memory. In EuroMPI. 337–338.
[70] Bill Roscoe. 2005. The theory and practice of concurrency. Prentice-Hall.
[71] Victor Samofalov, V. Krukov, B. Kuhn, S. Zheltov, Alexander V. Konovalov, and J.

DeSouza. 2005. Automated Correctness Analysis of MPI Programs with Intel(r)

Message Checker. In PARCO. 901–908.
[72] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing

engine for C. In Proceedings of the 10th European Software Engineering Conference
held jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2005, Lisbon, Portugal, September 5-9, 2005. 263–272.

[73] Stephen F. Siegel. Model Checking Nonblocking MPI Programs. In VMCAI.
[74] Stephen F. Siegel. 2007. Verifying Parallel Programs with MPI-Spin. In PVM/MPI.

13–14.

[75] Stephen F. Siegel, Manchun Zheng, Ziqing Luo, Timothy K. Zirkel, Andre V.

Marianiello, John G. Edenhofner, Matthew B. Dwyer, and Michael S. Rogers. 2015.

CIVL: the concurrency intermediate verification language. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015. 61:1–61:12.

[76] Stephen F Siegel and Timothy K Zirkel. 2011. FEVS: A functional equivalence

verification suite for high-performance scientific computing. Mathematics in
Computer Science (2011), 427–435.

[77] Stephen F. Siegel and Timothy K. Zirkel. 2011. TASS: The Toolkit for Accurate

Scientific Software. Mathematics in Computer Science (2011), 395–426.
[78] Marc Snir. 1998. MPI–the Complete Reference: The MPI core. Vol. 1. MIT press.

[79] Ting Su, Zhoulai Fu, Geguang Pu, Jifeng He, and Zhendong Su. 2015. Combining

symbolic execution and model checking for data flow testing. In ICSE. 654–665.
[80] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards flexible

verification under fairness. In CAV. 709–714.
[81] Nikolai Tillmann and Jonathan de Halleux. 2008. Pex-White Box Test Generation

for .NET. In TAP. 134–153.

[82] Sarvani Vakkalanka. 2010. Efficient dynamic verification algorithms for MPI
applications. Ph.D. Dissertation. The University of Utah.

[83] Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008. Dy-

namic Verification of MPI Programs with Reductions in Presence of Split Opera-

tions and Relaxed Orderings. In CAV. 66–79.
[84] Anh Vo, Sriram Aananthakrishnan, Ganesh Gopalakrishnan, Bronis R De Supin-

ski, Martin Schulz, and Greg Bronevetsky. 2010. A scalable and distributed

dynamic formal verifier for MPI programs. In SC. 1–10.
[85] Klaus von Gleissenthall, Rami Gökhan Kici, Alexander Bakst, Deian Stefan, and

Ranjit Jhala. 2019. Pretend synchrony: synchronous verification of asynchronous

distributed programs. PACMPL 3, POPL (2019), 59:1–59:30.

[86] Xinyu Wang, Jun Sun, Zhenbang Chen, Peixin Zhang, Jingyi Wang, and Yun Lin.

2018. Towards optimal concolic testing. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018. 291–302.

[87] Rogue Wave. 2009. TotalView Software. http://www.roguewave.com/products/

totalview. (2009).

[88] Ruini Xue, Xuezheng Liu, Ming Wu, Zhenyu Guo, Wenguang Chen, Weimin

Zheng, Zheng Zhang, andGeoffrey Voelker. 2009. MPIWiz: subgroup reproducible

replay of MPI applications. ACM Sigplan Notices (2009), 251–260.
[89] Fangke Ye, Jisheng Zhao, and Vivek Sarkar. 2018. Detecting MPI usage anom-

alies via partial program symbolic execution. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis,
SC 2018, Dallas, TX, USA, November 11-16, 2018. 63:1–63:5.

[90] Liangze Yin, Wei Dong, Wanwei Liu, Yunchou Li, and Ji Wang. 2018. YOGAR-

CBMC: CBMCwith Scheduling Constraint Based Abstraction Refinement - (Com-

petition Contribution). In Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki,
Greece, April 14-20, 2018, Proceedings, Part II. 422–426.

[91] Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun,

Chun Huang, and Wei Dong. 2020. Combining Symbolic Execution and Model

Checking to Verify MPI Programs. CoRR abs/1803.06300 (2020). arXiv:1803.06300

http://arxiv.org/abs/1803.06300

[92] Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong. 2018.

Symbolic verification of regular properties. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -
June 03, 2018. 871–881.

[93] Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. 2015.

Regular property guided dynamic symbolic execution. In ICSE. IEEE Press, 643–

653.

A APPENDIX
A.1 Semantics of the Core MPI Language
Auxiliary Definitions. Before giving theMPI language’s seman-

tics, we give some auxiliary definitions. Given an MPI program

MP = {Proci | 0 ≤ i ≤ n}, send(dst) and recv(src) denoteMP’s
send and receive operations

2
, respectively, where dst∈{0, . . . ,n}

and src∈{0, . . . ,n}∪{∗}. op(MP) represents the set of all the MPI

operations inMP, rank(α) is the process identifier of operation α ,
and isBlocking(α) indicates whether α is a blocking operation.

Definition A.1. MPI Process State. An MPI process’s state is a

tuple (M, Stat,F ,B,R), whereM maps a variable to its value, Stat
is the next program statement to execute, F is the flag of process

status and belongs to the set {active, blocked, terminated}, B and

R are infinite buffers to store the issued MPI operations not yet

matched and the matched MPI operations, respectively.

An element elem of a process state s can be accessed by s .elem,

e.g., s .F is the status of s . The behavior of a process can be regarded

as a sequence of statements, andwe use index(α) to denote the index
of operation α in the sequence. An MPI program’s global state S is

composed by the states of the MPI processes, i.e., S = (s0, . . . , sn).
An MPI program’s semantics is a labeled transition system defined

below.

2send(dst) and recv(src) can denote both blocking and unblocking operations, and we

omit the r eq parameter for non-blocking ones for the sake of simplicity.

http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://sc11.supercomputing.org/schedule/event_detail.php?evid=tut131
http://www.roguewave.com/products/totalview
http://www.roguewave.com/products/totalview
http://arxiv.org/abs/1803.06300
http://arxiv.org/abs/1803.06300

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

si .F=active

S
issue(si .Stat)−−−−−−−−−−−→(...,si [update(F,si .Stat),B .push(si .Stat)], ...)

⟨ISSUE⟩ ∀i ∈[0,n],si .F=blocked∧(∃α ∈si .B,α=Barrier)
S

B−→(s0[update(F,α),B .pull (α)], ...,sn [update(F,α),B .pull (α)])
⟨B⟩

∃α ∈si .B,∃β ∈sj .B,r eady(α,si)∧r eady(β,sj)∧match(α,β)∧C(α,si ,β,sj)

S
SR/SR∗−−−−−−−→(...,si [update(F,α),B .pull (α)], ...,sj [update(F,β),B .pull (β)], ...)

⟨SR⟩ si .F=blocked∧∃α ∈si .B,(α=Wait∧r eady(α,si))
S

W−−→(...,si [update(F,α),B .pull (α)], ...)
⟨W⟩

Figure 8: Transition Rules of MPI operations

Definition A.2. Labeled Transition System. A labeled transi-

tion system (LTS) of an MPI programMP is a quadruple (G, Σ,→
,G0), where G is the set of global states, Σ denotes the set of actions

defined below,→⊆ G × Σ×G represents the set of transitions, and

G0 is the set of initial states.

Actions. The action set Σ is {B,W , SR, SR∗} ∪ {issue(o) | o ∈
op(MP)}, where B represents the synchronization of Barrier,W
is the execution of Wait operation, SR denotes the matching of mes-

sage send and deterministic receive, SR∗ represents the matching

of message send and wildcard receive, and issue(o) stands for the
issue of operation o.

Transition Rules. We first give some definitions used by the

transition rules. We use ready(α , si) ∈ {True, False} defined as

follows to indicate whether operation α is ready to be matched in

state si w.r.t. the MPI standard [24], where β ∈ si .B represents that

operation β is in the buffer B of process state si and k ∈ {0, . . . ,n}.
• If α is Wait(r), α can be matched if the waited operation has

been matched, i.e., ∃β∈R, (β= ISend(k,r)∨β=IRecv(k,r)∨
β=IRecv(*,r)).
• If α is send(k), α can be matched if there is no previously

issued send(k) not yet matched, i.e., ¬(∃β∈si .B, index(β)
< index(α) ∧ β = send(k)).
• If α is recv(k), α can be matched if the previously issued

recv(k) or recv(∗) has been matched, which can be formal-

ized as ¬(∃β∈si .B, index(β) < index(α) ∧ (β = recv(k)∨ β =
recv(∗))).
• If α is recv(∗), α can be matched if the previously issued

recv(∗) has beenmatched, i.e.,¬(∃β∈si .B, index(β) < index(α)∧
β = recv(∗)). It is worth noting the conditional completes-before
pattern [83], i.e., operation IRecv(k,r) followed by a recv(∗),
and the recv(∗) can complete first when the matched message

is not from k . We will give a condition later to ensure such

relation.

Suppose α and β are MPI operations, match(α , β) represents
whether α and β can be matched statically, and can be defined as

match
′(α , β)∨match

′(β,α), wherematch
′(α , β) is ((α , β)=(send(dst),

recv(src)) ∧ (dst=src ∨ src = ∗). We use si [ops] to denote the up-

dates of the process state si with an update operation sequence ops .
The operation update(F ,α) updates the process status w.r.t. α as

follows.

update(F,α)=

F :=active F=blocked ∧ isBlocking(α)
F :=blocked F=active ∧ isBlocking(α)
F :=F otherwise

B.push(α) represents adding MPI operation α to buffer B, while
B.pull(α) represents removing α fromB and adding α to R. We use

Stat ′ to denote the statement next to Stat . We use C(α , si , β, sj) =

C1(α , si , β, sj) ∧C1(β, sj ,α , si) to define the conditional completes-

before relation requirement, where C1(α , si , β , sj) is ¬(∃β ′ ∈ sj .B,
(β=IRecv(*,r)∧β ′=IRecv(i,r')∧ready(β ′, sj)∧match(α , β ′))).

Figure 8 shows four transition rules for MPI operations. For the

sake of brevity, we omit the transition rules of local statements,

which only update the mappingM and the next statement Stat to
execute. Rule ⟨ISSUE⟩ describes the transition of issuing an MPI

operation, which requires the issuing process to be active. After
issuing the operation, the process status is updated, the next state-

ment to execute becomes Stat ′ (omitted for the sake of spaces), and

the issued operation is added to the buffer B. Rule ⟨SR⟩ is about
matchings of message send and receive. There are three required

conditions to match a send to a receive: (1) both of them have

been issued to the buffer B and are ready to be matched; (2) opera-

tion arguments are matched, i.e.,match(α , β); (3) they comply with

the conditional completes-before relation, i.e., C(α , si , β, sj). After
matching, the matched operations will be removed from buffer B
and added to buffer R, and the process status is updated. Rule ⟨B⟩
is for barrier synchronization, which requires that all the processes

have been blocked at the Barrier. After barrier synchronization,
operation Barrier will be moved from buffer B to buffer R and all

the processes become active. Rule ⟨W⟩ is for Wait operation, which
requires the corresponding non-blocking operation has been fin-

ished. After executing Wait operation, the process becomes active
and the Wait operation will be removed from buffer B and added

to buffer R.

A.2 Correctness of Symbolic Execution for MPI
Programs

Round-robin schedule and blocking-driven symbolic execution is

an instance of model checking with POR preserving reachability

properties. Next, we prove the correctness of symbolic execution

method for verifying reachability properties.

Definition A.3. Reachability Property. A reachability property

φ of anMPI programMP can be defined as follows, where assertion(S)
represents an assertion of global state S , e.g., deadlock and asser-

tions of variables.

γ ::= true | γ ∨ γ | ¬γ | assertion(S)
φ ::= EF γ | ¬φ

EF γ returns true iff there exists anMP’s state that satisfies the
formula γ .

We use S
a−→ S ′ to represent the transition (S,a, S ′) in the tran-

sition set and enabled(S) to denote the set of enabled actions at

global state S , i.e., enabled(S)={a | ∃S ′ ∈ G, S a−→ S ′}. If S a−→ S ′,
we use a(S) to represent S ′. Instead of exploring all the possible

states, MPI-SV only executes a subset of enabled(S) (denoted as

Combining Symbolic Execution and Model Checking to Verify MPI Programs

E(S)) when reaching a state S . According to the workflow of MPI

symbolic execution, we define E(S) below, where
• minIssue(S) = min{rank(o) | issue(o) ∈ enabled(S)} is the
minimum process identifier that can issue an MPI operation.

• minRank(S) = min{ranka (b) | b ∈ enabled(S) ∧ b , SR∗}
is the minimum process identifier of enabled non-wildcard

actions. When b is SR, ranka (b) is the process identifier of the
send; when b isW , ranka (b) is the process identifier of the
Wait operation.

E(S)=


{issue(o)} i f issue(o)∈enabled (S)∧rank (o)=minIssue(S)
{B } i f B∈enabled (S)
{W } i f W ∈enabled (S)∧ranka (W)=minRank(S)
{SR } i f SR∈enabled (S)∧ranka (SR)=minRank(S)
enabled (S) otherwise

When issue(o) is enabled in state S , we will select the enabled issue
operation having the smallest process identifier as E(S), which is in

accordance with round-robin schedule. Remember that blocking-

driven matching delays the matching of wildcard receive (SR∗) as
late as possible. If B is enabled, we use {B} as E(S); else, we will
use the deterministic matching (W or SR) having smallest process

identifier (we selectW in case ranka (W)=ranka (SR)); otherwise,
we use the enabled set as E(S), i.e., ∀a∈enabled(S), a=SR∗.
Definition A.4. Independence Relation (I ⊆ Σ×Σ). For S ∈ G
and (a,b) ∈ I, I is a binary relation that if (a,b) ∈ enabled(S) then
a ∈ enabled(b(S)), b ∈ enabled(a(S)), and a(b(S)) = b(a(S)).

The dependence relationD ⊆ Σ× Σ is the complement of I, i.e.,
(a,b) ∈ D, if (a,b) < I. Given an MPI programMP, whose LTS
model isM = (G, Σ,→,G0), an execution trace T = ⟨a0, . . . ,an⟩ ∈
Σ∗ ofMP is a sequence of actions, such that ∃Si , Si+1 ∈ G, Si ai−−→
Si+1 for each i ∈ [0,n] and S0 ∈ G0. We use r(T) to represent the

result state ofT , i.e., Sn+1, andT ∈ M to representT is an execution

trace ofMP.
Definition A.5. Execution equivalence ≡ ⊆ Σ∗ × Σ∗ is a reflexive
and symmetric binary relation such that (1) ∀ a,b ∈ Σ, (a,b) ∈
I ⇒ ⟨a,b⟩ ≡ ⟨b,a⟩. (2) ∀ T ,T ′ ∈ Σ∗, T ≡ T ′ if there exists a

sequence ⟨T0, . . . ,Tk ⟩ that T0=T , Tk=T ′, and for every i<k, Ti =
u · ⟨a,b⟩ · v, Ti+1=u · ⟨b,a⟩ · v , where (a,b)∈I, u,v∈Σ∗, and u · v
is the concatenation of u and v .

Given an MPI programMP, supposeMP’s semantic model is

M and the E(S) based model is M ′, once E(S) satisfies conditions
C1 and C2, then for every execution trace T , if T∈M∧T<M ′, there
exists an execution trace T ′ inM ′ that T≡T ′ [67].

C1. ∀ a ∈ E(S), if (a,b) ∈ D, then for every trace S0
a0−−→ S1

a1−−→
, . . . ,

ak−−→ Sk
β
−→ Si+1, there exists ai ∈ E(S), where 0 ≤ i ≤ k .

C2. On every cycle inM ′, there exists at least one node S that

E(S) = enabled(S).
Before proving our selection of E(S) satisfies C1 and C2, we first

give a theorem to show the independence relation of co-enabled

actions.

Theorem A.1. Given action a ∈ {issue(o),B,W , SR} and action b,
for S ∈ G, if a,b ∈ enabled(S), then (a,b) ∈ I.

Proof. We only prove the case that a is issue(o). The proofs for
the other three cases are similar.Whena=issue(o) anda,b∈enabled(S),
b can be issue(o′),W , SR, or SR∗ w.r.t. the transition rules.

(1) b=issue(o′). Suppose rank(o)=i , rank(o′)=j, then i,j. Since
an issued operation can only block its process, we can have b ∈
enabled(a(S)) anda ∈ enabled(b(S)). In addition, a(b(S)) = b(a(S)) =
(. . . , si [update(F, o), Stat :=Stat ′, B .push(o)], . . . , sj [update(F,o′),
Stat :=Stat ′, B .push(o′)], . . .). Hence, (a,b)∈I.
(2)b=W . Suppose rank(o)=i , ranka (W)=j , then i,j . Since issue(o)

can only block process i andW can only make process j active,
b∈enabled(a(S)) and a∈enabled(b(S)). In addition, a(b(S))=b(a(S))=
(. . . , si [update(F, o), Stat :=Stat ′, B .push(o)], . . ., sj [update(F,
Wait), B .pull (Wait)], . . .). Hence, (a,b)∈I.
(3) b=SR∨b=SR∗. Suppose b=(p,q), rank(o)=i , rank(p)=j1, and

rank(q)=j2. For i,j1∧i,j2: issue(o) only updates the state si , and
ready(p, sj1) and ready(q, sj2) will not be affected. On the other

hand, b cannot make process i blocked. Hence b∈enabled(a(S)) and
a∈enabled(b(S)). Then, a(b(S))=b(a(S))=(. . ., si [update(F,o), Stat
:=Stat ′, B .push(o)], . . . , sj1 [update(F, p), B .pull (p)], . . .,
sj2 [update(F, q), B .pull (q)], . . .). For i=j1: since issue(o) and b are

co-enabled, index(o)>index(p) and p is non-blocking. Due to the

condition index(o)>index(p), issue(o) has no effect on ready(p, sj1).
On the other hand, since p is non-blocking, b cannot make process i

blocked. Hence b∈enabled(a(S)) and a∈enabled(b(S)). Additionally,
sincep is non-blocking, a(b(S))=b(a(S))=(. . . , si [update(F ,o), Stat
:=Stat ′,B.pull(p),B.push(o)],. . ., sj2 [update(F ,q),B.pull(q)],. . .).
For i=j2, the proof is similar. Hence (a,b)∈I. □

Theorem A.2. E(S) preserves the satisfaction of global reachability
properties.

Proof. We first prove the E(S) satisfies condition C1 and C2,
respectively.

C1: ∀ a ∈ E(S), if (a,b) ∈ D, then for every trace S0
a0−−→ S1

a1−−→
, . . . ,

ak−−→ Sk
b−→ Si+1, there exists ai ∈ E(S), where 0 ≤ i ≤ k .

Case 1: E(S) = enabled(S), C1 holds because a0 ∈ E(S).
Case 2: E(S) , enabled(S). In this case, E(S) contains only

one element, and can be issue(o), B,W , or SR. Assume C1 does

not hold, i.e., ai , a. According to Theorem A.1, (a,ai) ∈ I and

a ∈ enabled(Si). Because a,b ∈ enabled(Sk), (a,b) ∈ I, which
conflicts with the premise that (a,b) ∈ D. Hence C1 holds.

C2: Since there is no cycle in the labeled transition system of

MPI programs, C2 holds.

Since E(S) ⊆ enabled(S), M ′ is a sub model of M . Assume E(S)
does not preserve the satisfaction of global reachability property φ.
According to Definition A.3, if φ is EF γ , i.e., there exists a state S in

M that satisfiesγ , but no state inM ′ satisfyingγ . Since E(S) satisfies
C1 and C2, suppose the execution trace to S isT , i.e., r(T) = S , then
there must exist an equivalent execution trace T ′ ∈ M ′. Obviously,
commuting independent actions cannot change the result state, so

r(T ′) = S , which conflicts with the assumption. If φ is ¬EF γ , i.e.,
each state in M does not satisfy γ , but there exists a state in M ′

satisfying γ , which conflicts with M ′ is a sub model of M . Hence

the theorem holds.

□

A.3 Support of Master-Slave Pattern
In real-world MPI programs, communications may depend on mes-

sage contents, which makes the behavior more complicated. For

Hengbiao Yu, Zhenbang Chen, Xianjin Fu, Ji Wang, Zhendong Su, Jun Sun, Chun Huang, and Wei Dong

example, suppose a message content is stored in variable x , fol-
lowed by “if (x > 10) Send(0); else Send(1)". The general way to

handle the situation where communications depend on the message

contents is to make the contents symbolic. MPI-SV make x to be

symbolic once it detects that there exist communications depending

on x , so that MPI-SV does not miss a branch. Master-slave pattern

is a representative situation and has been widely adopted to achieve

a dynamic load balancing [33]. The verification of the parallel pro-

grams employing dynamic load balancing is a common challenge.

In the pattern, the master process is in charge of management, i.e.,
dispatching jobs to slave processes and collecting results. On the

other hand, the slave processes repeatedly work on the jobs and

send results back to the master process until receiving the message

of termination. Figure 9 is an example program. Following shows

an example program.

P0 P1 P2
Send(1); while(true) do { while(true) do {
Send(2); Recv(0); Recv(0);
while (...) do { if (...) if (...)
Recv(*,r); break; break;
Send(r.src) Send(0); Send(0);
} } }
...

Figure 9: An example program using master-slave pattern.

P0 is the master process, and the remaining processes are slaves.

P0 first dispatches one job to each slave. Then, P0 will iteratively re-
ceive a job result from any slave (Recv(*,r)) and dispatch a new job

to the slave process whose result is just received, i.e., Send(r.src),
where r is the status of the receive and r.src denotes the process

identifier of the received message. Each slave process iteratively

receives a job (Recv(0)), completes the job (omitted for brevity) and

sends the job result to P0 (Send(0)). The if condition becomes true

when the received message is for termination. The total number of

jobs is controlled by the while loop in P0. After all the jobs have
been completed, P0 will notify all the slave processes to exit. The

communication behavior of master-slave pattern is highly dynamic,

i.e., the destination of the job send operation depends on the match-

ing of the wildcard receive in the master process. In principle, if

there are n dynamically dispatched jobs form slaves, there exists

mn
cases of dispatching jobs. MPI-SV supports master-slave pattern

as follows.

Recognition. We recognize the master-slave pattern automati-

cally during symbolic execution. More precisely, to recognize the

master process, we check whether the process identifier of a re-

ceived message of a wildcard receive (Recv(*,r)) is used as the

destination of a send operation, i.e., Send(r.src). We call such

a wildcard receive schedule receive. Then, we locate the cor-

responding slave processes w.r.t. the matchings of the schedule
receive, i.e., a process is a slave if its message can match the

schedule receive.
Modeling the master process. We allocate a global variable

label for each schedule receive to decide the destination pro-

cess of the next job. In addition to the operations for modeling

normal wildcard receive operations, i.e., using external choice of

the matched channel readings, we write the read value from the

matched channel to label . For example, suppose Chan1 and Chan2
are the matched channels of a schedule receive, we model it by

Chan1?label → Skip□Chan2?label → Skip. Considering that a

send operation in slave processes is modeled by writing the slave’s

process identifier to the channel, we can use the value of label to
decide the destination of the next job.

Modeling the slave process.We use recursive CSP process to

model a slave’s dynamic feature, i.e., repeatedly receiving a job and

sending the result back until receiving the termination message. To

model the job receive operation in a slave process, we use a guard

expression [label == i] before the channel reading of the receive
operation, where label is the global variable of the corresponding
schedule receive and i is the slave process’s identifier. Notably,
the guard expression will disable the channel reading until the

inside condition becomes true, indicating that the slave process

cannot receive a new job unless its result has just been received by

the master.

We need to refine the algorithms of symbolic execution and

CSP modeling to support master-slave pattern. We have already

implemented the refinement in MPI-SV. The support of master-

slave pattern demonstrates that MPI-SV outperforms the single

path reasoning work [23, 41].

A.4 Proof of CSP Modeling’s Soundness and
Completeness

Theorem 4.1 F (CSPstatic) = F (CSPideal).

Proof. We first prove T(CSPstatic) = T(CSPideal), based on

which we can prove F (CSPstatic) = F (CSPideal).
First, we prove T(CSPstatic)⊆T (CSPideal) by contradiction.

Suppose there exists a trace t=⟨e1, ..., en⟩ such that t∈T (CSPstatic)
but t<T(CSPideal). The only difference between CSPstatic and

CSPideal is that CSPstatic introduces more channel read oper-

ations during the modeling of receive operations. Hence, there

must exist a read operation of an extra channel in t . Suppose the
first extra read is ek=ce?x , where 1≤k≤n. Therefore, ce cannot
be read in CSPideal when the matching of the corresponding re-

ceive operation starts, but ce is not empty at ek in CSPstatic . De-
spite of the size of ce , there must exist a write operation ce !y in

⟨e1, ..., ek−1⟩. Because ⟨e1, ..., ek−1⟩ is also a valid trace inCSPideal ,
it means ce is not empty in CSPideal at ek , which contradicts

with the assumption that ce cannot be read in CSPideal . Hence,
T(CSPstatic) ⊆ T (CSPideal) holds.

Then, we prove T(CSPideal)⊆T (CSPstatic) also by contradic-

tion. Suppose there exists a trace t=⟨e1, ..., em⟩ that t∈T (CSPideal)
but t<T(CSPstatic). Because SMO(opj , S) is a superset of the pre-
cisematching set ofopj , t cannot be a terminated trace. So,CSPideal
blocks at em . Because t < T(CSPstatic), there must exist a channel

read operation cm?x that is enabled at em in CSPstatic , i.e., cm
is not empty. Hence, there must exist a write operation cm !y in

⟨e1, ..., em−1⟩. Because ⟨e1, ..., em−1⟩ is valid in both of CSPstatic
and CSPideal , cm?x is also enabled at em in CSPideal , which con-

tradicts with the assumption that CSPideal blocks. Hence, we can
have T(CSPideal)⊆T(CSPstat ic), and T(CSPstatic)=T(CSPideal)
holds.

Next, we can prove F (CSPstatic) = F (CSPideal) in a similar

way. Suppose there exists (s,X) in CSPstatic but (s,X) < CSPideal .

Combining Symbolic Execution and Model Checking to Verify MPI Programs

It means there exists an event e in X that is refused by CSPstatic
at s , but enabled by CSPideal at s . Because there is no internal

choice in the CSP models, we have s ·⟨e⟩<T(CSPstatic) [70] and
s ·⟨e⟩∈T (CSPideal), which conflicts with T(CSPstat ic)=T(CSPideal).
The contradiction of the case in which (s,X)<CSPstatic but (s,X)∈
CSPideal can be proved similarly.

Finally, F (CSPstatic) = F (CSPideal) is proved. □

Theorem 4.2 CSPstatic is consistent with the MPI semantics.

Proof. If the global state of generating CSPstatic is Sc , then we

can get anMPI programMPp from the sequence set Seq(Sc), where
each process Proci ofMPp is the sequential composition of the op-

erations in Seqi . Suppose the LTSmodel ofMPp isMp , and the LTS

after hiding all the issue(o) actions in Mp is M̂p . Then, CSPstatic
is consistent with the MPI semantics iff {(Mt (s),Ms (X)) | (s,X) ∈
F (CSPstatic)} is equal to {(T ,X)|T∈M̂p∧X⊆Ms (Σ)\enabled(r(T))},
where Σ is the event set of CSPstatic ,Mt (s) andMs (X) maps the

events in the sequence t and the set X to the corresponding actions

in MPI semantics, respectively. This can be shown by proving that

Algorithms 4 with a precise SMO ensures all the completes-before
relations of MPI semantics (cf. semantic rules in Figure 8). The

relations between send operations and those between receive oper-

ations (including conditional completes-before relation) are ensured

by Refine(P , S). The communications of send and recv operations

are modeled by CSP channel operations and process compositions.

The requirements of Wait and Barrier operations are modeled by

the process compositions defined in Algorithm 4. Hence, we can

conclude that CSPideal is consistent with the MPI semantics. Then,

by Theorem 4.1, we can prove CSPstatic is consistent with the MPI

semantics. □

	Abstract
	1 Introduction
	2 Illustration
	2.1 MPI Syntax and Motivating Example
	2.2 Our Approach

	3 Symbolic Verification Method
	3.1 Framework
	3.2 Blocking-driven Symbolic Execution

	4 CSP Based Path Modeling
	4.1 CSP Subset
	4.2 CSP Modeling
	4.3 Soundness and Completeness

	5 Experimental Evaluation
	5.1 Implementation
	5.2 Research Questions
	5.3 Setup
	5.4 Experimental Results

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Semantics of the Core MPI Language
	A.2 Correctness of Symbolic Execution for MPI Programs
	A.3 Support of Master-Slave Pattern
	A.4 Proof of CSP Modeling's Soundness and Completeness

