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Abstract—Deep Neural Network (DNN) is a widely used deep
learning technique. How to ensure the safety of DNN-based
system is a critical problem for the research and application
of DNN. Robustness is an important safety property of DNN.
However, existing work of verifying DNN’s robustness is time-
consuming and hard to scale to large-scale DNNs. In this paper,
we propose a boosting method for DNN robustness verification,
aiming to find counter-examples earlier. Our observation is
DNN’s different inputs have different possibilities of existing
counter-examples around them, and the input with a small
difference between the largest output value and the second largest
output value tends to be the achilles’s heel of the DNN. We have
implemented our method and applied it on Reluplex, a state-of-
the-art DNN verification tool, and four DNN attacking methods.
The results of the extensive experiments on two benchmarks
indicate the effectiveness of our boosting method.

Index Terms—DNN, Robustness, Verification, Adversarial Ex-
ample, Boosting

I. INTRODUCTION

Nowadays, the research and application of deep learning
(DL) [9] have achieved tremendous progresses. Deep learning
has been widely used in many areas, including speech recog-
nition [1] [24], autonomous driving [18], image classification
[20], etc. Deep learning techniques, e.g., Deep Neural Network
(DNN) [30], play a crucial role in the products or systems in
these areas. When applied in critical areas, such as autonomous
cars [18] and airborne collision avoidance systems [15], DL-
based systems need to assure high-quality safety. However,
there already exist the cases in which DL-based systems cause
disasters, such as the one caused by Tesla car in 2016 [37].
Besides, there exist studies [29] [39] that use adversarial
examples [35] to attack DL-based systems. How to ensure
the safety of DL-based systems is challenging.

DNN is a representative DL classification technique. The
existing work of safety assurance for DNN-based systems
mainly focuses on the robustness of DNN. Existing methods
have two categories: 1) attacking methods [10] [21] [28] [25]
[4] that generate the adversarial examples [35] of a DNN and
retrain the DNN to improve the robustness; 2) defense methods
that include verifying the robustness of a DNN [17], detecting
the attacking adversarial inputs online [40], etc.

To verify the robustness of a DNN, the existing work
usually models the DNN, such as symbolic encoding [12] and
abstraction [7], and tries to verify the model via symbolic
solving or invariant checking. If the verification succeeds, the

DNN is proved to be robust; otherwise, counter-examples (or
adversarial examples) are produced. The existing verification
methods differ in the aspects including scalability, complete-
ness, etc. However, verification’s cost is usually high, and the
verification methods are difficult to scale to large DNNs. How
to improve the scalability is a key problem for verifying DNNs.

Existing studies [10] [21] [28] [25] [4] of adversarial
examples [35] indicate that most real-world DNNs tend to
have adversarial examples, i.e., they are not robust. Hence,
the verification methods usually produce counter-examples.
Then, boosting counter-example finding during the process
of verification directly improves the scalability. Most existing
DNN verification methods support only the verification of
local robustness, i.e., given an initial point p of the input
domain, prove that the neighbouring points within a limited
range δ are classified into the same type as p. Hence, the
selections of p and δ directly influence the result and the
efficiency of verification. We observe that verification tools
tend to quickly find counter-examples at some initial points.
Therefore, if we can select the right points, we can boost
finding counter-examples.

In this paper, we first prove that the outputs of a DNN
using ReLU are continuous w.r.t. the inputs. Then, based on
the continuity result, we propose a method for evaluating the
possibility of finding counter-examples around an input. The
key idea is an input whose largest and second largest outputs
are close is likely to have counter-examples around. As far
as we know, it is the first evaluation method considering this
aspect. Besides, we propose a lightweight pre-analysis to boost
finding counter-examples further. We have implemented our
boosting method and applied it on Reluplex [17], i.e., a state-
of-the-art robustness verification tool for DNN, and representa-
tive DNN attacking methods. The experimental results on two
benchmarks, i.e., ACAS-Xu [15] and MNIST [38], indicate
the effectiveness of our method.

The main contributions of this paper are as follows:
• Based the continuity property of DNN, we propose an

evaluation method for selecting the inputs around which
counter-examples tend to exist.

• We propose a pre-analysis greedy algorithm to speed up
counter-example finding further.

• We have implemented our boosting method and applied
it on Reluplex and four adversarial example generation
methods. The extensive experiments on two representa-
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tive DNN benchmarks indicate: compared with random
method, our boosting method can achieve at least an order
of magnitude time speedup in finding the same amount
of counter-examples; under the same time budget, our
method can find an order of magnitude more counter-
examples; besides, our method can averagely improve
the success rate of the methods for generating adversarial
examples by 3.2 times.

The remaining of this paper is organized as follows.
Section 2 briefly introduces the backgrounds and motivations
of our method. Section 3 proves the continuity of the DNNs
using ReLU. Section 4 presents our boosting method. Section
5 gives experimental results. Section 6 reviews the related
work, and the conclusion is drawn in Section 7.

II. PRELIMINARY AND MOTIVATION

In this section, we will briefly introduce the basic concepts
of DNN, its robustness, and the DNN verification tool Relu-
plex. Then, our boosting method will be motivated.

A. DNN

Generally, a DNN is comprised of multiple layers, wherein
each layer consists of nodes called neurons. The first and the
last layer are input layer and output layer, respectively. The
remaining layers are hidden layers. Here, we focus on the feed-
forward multi-layer neural networks [30]. For each neuron of
every layer, it is connected to each neuron of the next layer in
a forward direction with a weight. Each neuron in the hidden
layers has an incoming value and an outgoing value, which
are linked by an activation function, such as ReLU [26], tanh
[2] and sigmoid [13]. In this paper, we only consider the DNN
using ReLU activation function, i.e., max (0, x). If a DNN has
n hidden layers and the ith layer has m neurons, we use ni,j
to denote the jth neuron of the ith layer, where i ∈ {0, ..., n+
1} and j ∈ {0, ...,m − 1}. Then, we use vi,j to denote the
outgoing value of ni,j , and wk

i,j to denote the weight between
ni,j and ni+1,k.

Given an input from the input layer, the DNN propagates
the values of this input from layer to layer w.r.t. the weights
and the activation function. The outgoing values of the output
layer are the results of the DNN. If the DNN is used for
classification, then a neuron in the output layer represents a
category. The output layer’s neuron with the largest outgoing
value is the classification result. Here, we focus on the DNNs
for classification task. That is, given an input x0, a well-
trained DNN N and a set of category labels {c1, c2, ..., cn},
the result label of x0 is denoted as N(x0), which belongs to
{c1, c2, ..., cn}. Besides, given an input x, we use Nd(x) to
represent V1(N, x)−V2(N, x), where V1(N, x) and V2(N, x)
are N ’s largest and second largest outgoing values in the
output layer when calculating the input x, respectively.

As an example, Figure 1 illustrates a simple DNN with only
2 hidden layers. Each layer has four neurons. Both of input
and output layers have two neurons. Then, for example, the

Fig. 1. An Example DNN.

outgoing value v1,0 of the 3rd neuron n1,0 is calculated as
follows:

v1,0 := max(0, v0,0 ∗ w0
0,0 + v0,1 ∗ w0

0,1) (1)

For the 11th neuron n3,0 in the output layer, its outgoing value
v3,0 is calculated as follows:

v3,0 := v2,0 ∗w0
2,0+ v2,1 ∗w0

2,1+ v2,2 ∗w0
2,2+ v2,3 ∗w0

2,3 (2)

B. Robustness of DNN

Robustness is an important safety property of DNN. Es-
pecially, the robustness we consider here is referred to the
adversarial robustness [16]. That is, given a well-trained DNN
and a correctly classified input x, if we modify this input by
adding some small imperceptible perturbations, then this input
should be classified to the same category as x. Robustness can
be divided into two categories: global adversarial robustness
and local adversarial robustness. In the following, we give
their formal definitions.

Definition 1. Global adversarial robustness: Given a DNN
network N and a distance δ, N is global adversarial robust-
ness iff for any two points x1 and x2 in the input space that
satisfy ||x1 − x2|| ≤ δ, then we require that N(x1) = N(x2).

However, because most DNNs have adversarial examples
[35], the global adversarial robustness is almost impossible. A
weaker version of adversarial robustness, i.e., local adversarial
robustness, is investigated by the existing DNN verification
approaches. The definition of local robustness is as follows.

Definition 2. Local adversarial robustness: Given a DNN
network N , a distance δ and an initial point x0, N is local
adversarial robustness w.r.t. x0 iff for each point x in the input
space that satisfies ||x− x0|| ≤ δ, N(x) = N(x0).

Hence, local robustness ensures the safety of the points around
the initial point. In this paper, we focus on verifying local
robustness.

Reluplex [17] is an SMT-based verification tool for DNN.
Reluplex supports the verification of safety properties, includ-
ing local robustness, global robustness, etc. Reluplex symbol-
ically encodes the DNN under verification and the properties
to verify. Then, Reluplex transforms the verification problem
into an SMT solving problem [3]. The authors of Reluplex
design a highly efficient simplex-based algorithm for solving
the verification problem of the DNNs using ReLU. Reluplex



shows a great effectiveness for verifying the ACAS-Xu DNNs
[15]. If we use Reluplex to verify the local robustness of a
DNN, the property to verify by Reluplex is the negation of
the local robustness. Hence, Reluplex will report UNSAT if the
DNN satisfies the local robustness, and SAT if the DNN does
not. When Reluplex reports SAT, i.e., an adversarial example
exists, Reluplex produces a counter-example input.

C. Motivation

We want to boost DNN verification tool’s procedure of
finding counter-examples. To verify the local robustness of
a DNN, we need to provide an initial input to the verification
tool. In principle, the initial input selection directly influences
the verification result. Hence, if we can choose the inputs
around which adversarial examples are likely to exist, we can
directly boost the counter-example finding of verification.

According to the definitions of DNN, the relation between
DNN’s input and output can be represented as a function. If
ReLU activation function is used by the DNN, we observe
that the DNN’s function is continuous, whose proof will
be presented in Section III. Then, according to robustness
definitions, for an input x, if x’s largest outgoing value of
the output layer is very close to the second largest outgoing
value, x tends to be not locally robust, i.e., small perturbations
may change the classification label of x. For example, for the
DNN in Figure 1, if v3,0 and v3,1 of an input x0 are very
close, suppose v3,0 > v3,1, i.e., Nd(x0) is small, we consider
x0 as the input around which adversarial examples are likely to
exist, because a small change to x0 may result in v3,1 > v3,0.
On the contrary, if the largest outgoing value is much bigger
than the second largest outgoing value, x tends to be robust,
because a small change of x does not change the relation of
output values.

We validate our intuition on MNIST benchmark for hand-
written digit recognition. The trained DNN’s test accuracy
is 98.02%. Figure 2 shows the images with the smallest
difference between the largest value and the second largest
value of the output layer. As shown by the figure, the images
are not clear and hard to recognize, even for human. Hence,
these images are likely to have counter-examples around.

Fig. 2. MNIST images with smallest difference value.

Besides, we have also carried out empirical studies on Relu-
plex. We randomly select a DNN from Reluplex’s benchmark,
i.e., ACAS-Xu [15]. We use Reluplex to verify the local
robustness of randomly generated 100 inputs. Because distance
δ is also a key parameter for verification, we carried out the

experiments under 5 distances. Figure 3 shows the results.
The X-axis displays the values of different δ distances, and
Y-axis displays the values of Nd(x). Rectangle shows the
distribution of the verification results (UNSAT or SAT) under
each distance. Box plot shows the distribution of the difference
values of the inputs, and the exception points (2% to 4%) are
removed for the sake of clarity.

Fig. 3. The verification results under different distances.

As shown in Figure 3, under each distance value, Reluplex
tends to report SAT, i.e., finding a counter-example, when
the difference value is small, which validates our intuition.
Besides, during experiments, we also observe that the UNSAT
verification time is empirically much longer than that of SAT.
Hence, under the same time-budget, if we want to find more
counter-examples, we need to start with the inputs around
which it is more possible to have counter-examples. Further-
more, even for SAT cases, Reluplex’s verification costs are
high, ranging from seconds to hours. Hence, we can consider
to employ a pre-analysis (c.f., Section IV-C) to search counter-
examples before verification. If the search succeeds, we can
report the counter-example instead of continuing verification;
otherwise, we can still do the verification.

III. CONTINUITY OF DNN

In this section, we define and prove the continuity of DNN.
In mathematics, a function f is continuous if any small change
of f ’s output can be resulted by a change of f ’s input. The
formal definition is as follows.

Definition 3. The continuity of function: The function f :
D1 → D2 is continuous iff for each input x0 ∈ D1, we require
that for every ε > 0 there exists a δ > 0 such that for all
x ∈ D1: ||x− x0|| < δ ⇒ ||f(x)− f(x0)|| < ε.

In principle, a DNN can be abstracted as a function that
reveals the relation between the inputs and the outputs of
the training examples. Intuitively, we guess the function of
a DNN using ReLU is continuous. The basic idea of proving
the continuity of DNN using ReLU is to prove the continuity
of basic function first, and then prove the continuity is closed
under composition operators.

Theorem 1. The activation function ReLU, i.e., max(0, x), is
a continuous function.



Fig. 4. The framework of boosting method.

Proof 1. Given a randomly chosen input x0 from the input
domain D, for every ε > 0 and x ∈ D that satisfies ||x −
x0|| < ε (supposed that δ = ε), we want to prove ||ReLU(x)−
ReLU(x0)|| < ε. According to the function itself, we split the
proof goal into four cases.

Case.1 if x < 0 and x0 < 0, then ||ReLU(x) −
ReLU(x0)|| = 0 < ε.

Case.2 if x ≥ 0 and x0 ≥ 0, then ||ReLU(x) −
ReLU(x0)|| = ||x− x0|| < ε.

Case.3 if x < 0 and x0 ≥ 0, then ||ReLU(x) −
ReLU(x0)|| = ||x0|| < ||x0 − x|| < ε.

Case.4 if x ≥ 0 and x0 < 0, then ||ReLU(x) −
ReLU(x0)|| = ||x0|| < ||x− x0|| < ε.

In conclusion, theorem holds.

Besides, based on continuity’s definition, we can prove that
continuity property is closed under composition operators.

Theorem 2. The continuity of function composition: Given
a constant c, two continuous functions f and g, we have the
following composition function: c ∗ f , f + g and f ◦ g. All of
them are continuous.

Proof 2. Cases:
c ∗ f is continuous: As f is continuous, we have the

following that for each input x0 ∈ D1 and every ε/c > 0
there exists a δ > 0 such that for all x ∈ D1: ||x −
x0|| < δ ⇒ ||f(x) − f(x0)|| < ε/c. Furthermore, we have
||c ∗ f(x)− c ∗ f(x0)|| < c ∗ (ε/c) = ε, which implies c ∗ f is
continuous.
f + g is continuous: As f and g are continuous, we have

the following that for each input x0 ∈ D1 and every ε/2 > 0
there exist δ1 > 0 and δ2 > 0 such that for all x ∈ D1:
||x − x0|| < δ1 ⇒ ||f(x) − f(x0)|| < ε/2 and ||x − x0|| <
δ2 ⇒ ||g(x) − g(x0)|| < ε/2, respectively. We can take δ to
be min{δ1, δ2}. Then, the following is established.

DIF = ||(f(x) + g(x))− (f(x0) + g(x0))||
= ||(f(x)− f(x0)) + (g(x)− g(x0))||
< ε/2 + ε/2 = ε

Hence, f + g is continuous.
f◦g is continuous: As f : D1 → D2 is continuous, we have

the following that for each input u0 ∈ D1 and every ε > 0
there exists an ε0 > 0 such that for all u ∈ D1: ||u− u0|| <
ε0 ⇒ ||f(u)−f(u0)|| < ε. What’s more, since g : D0 → D1 is
continuous, we have the following that for each input x0 ∈ D0

wherein u0 = g(x0) and every ε0 > 0 there exists a δ > 0 such
that for all x ∈ D0: ||x − x0|| < δ ⇒ ||g(x) − g(x0)|| < ε0,

i.e., ||u− u0|| < ε0. Therefore, we can conclude that for each
input x0 ∈ D0 and every ε > 0 there exists a δ > 0 such that
for all x ∈ D0 : ||x− x0|| < δ ⇒ ||f(g(x))− f(g(x0))|| < ε,
which means f ◦ g is continuous.

For the DNNs using ReLU, each output value can be
calculated from input values in terms of ReLU function and
the compositions in Theorem 2. Based on the two theorems,
we can directly conclude that each output value of a DNN
using ReLU is continuous w.r.t. the input values. According to
the definitions of DNN and local robustness, an initial input
with a smaller value of Nd(x) tends to be a weak point of
the DNN, because a small change of input may cause the
change of N(x), due to the continuity conclusion. Based on
this insight, we can design a method to choose or generate
the inputs with smaller Nd(x) values; intuitively, verification
tools can quickly find counter-examples around these inputs.

IV. BOOSTING METHOD

There exist two main observations behind our boosting
method: (1) there exist adversarial examples in most DNNs;
and (2) the cost of finding counter-examples depends heavily
on the given input. Hence, to boost the verification of DNNs,
we propose a method for generating inputs that are more pos-
sible to have counter-examples around, and a greedy strategy
to search the input’s nearby space. Figure 4 shows the basic
framework of our boosting method.

A. Framework

The framework of verification contains three stages: input
generation, pre-analysis, and verification. To boost the verifica-
tion, we would like to evaluate an input’s possibility of having
counter-examples around. Hence, in the input generation stage,
we use a selective sampling method to generate the inputs that
tend to violate local robustness. After that, we perform a light-
weight pre-analysis that uses an efficient search heuristic to
find counter-examples around the input. If we find a counter-
example, we will terminate the verification and report the
counter-example; otherwise, we will use the verification tool
to verify the local robustness w.r.t. the input.

B. Input Generation

Given a DNN N , we first calculate a threshold that can
be used to evaluate inputs. Algorithm 1 shows the procedure
of computing the threshold. We randomly generate a set of
inputs, denoted as X , Algorithm 1 returns the smallest Nd(x)
where x ∈ X . It is worth pointing out that we set the size of
X to be 1000 in our experiments.



Algorithm 1: Threshold Generation
computeThreshold(N,X )
Data: a DNN N and a set of inputs X

1 begin
2 x← pop(X );
3 threshold← Nd(x);
4 while X 6= ∅ do
5 x′ ← pop(X );
6 diff ← Nd(x

′);
7 if diff < threshold then
8 threshold← diff ;

9 return threshold;

Algorithm 2: Input Generation
getInput(N, threshold, colNum)
Data: a DNN N , the threshold, and a control variable

colNum for random samplings
1 begin
2 num sampling ← 0;
3 while true do
4 if num sampling > colNum then
5 threshold← threshold ∗ 1.1;
6 num sampling ← 0;

7 x← randomSampling();
8 diff ← Nd(x);
9 if diff < threshold then

10 return x;

11 else
12 num sampling++;

The insight for input generation is that an input tends to
have counter-examples nearby if its largest output value is
close to the second largest one. Algorithm 2 takes the DNN
N , a pre-computed threshold, and a control variable colNum
as inputs, and returns an input for pre-analysis and verification.
The idea is to use threshold to evaluate a randomly generated
input, i.e., an input x is valid if Nd(x) is smaller than
threshold (Lines 8-10). Note that if we fail to find a valid
input under a given number of times, to reduce the difficulty
in generating qualified inputs, we increase the threshold
gradually, i.e., threshold← threshold ∗ 1.1 (Lines 4-6).

C. Algorithm of Finding Counter-examples

Algorithm 3 shows how to find a counter-example w.r.t.
a given input. The basic idea is to employ a greedy search
procedure to find a counter-example. The inputs contain a
DNN N , a given input x, the maximum step Lmax, and the
minimum step Lmin. We set the initial step to be Lmax/2,
and generate sample inputs by modifying each dimension of x
by step. After that, we perform the following two checks on
every sampled input. Given a sample x′: (1) if x′ is a counter-

example, we report it and exit (Lines 10-11); otherwise, (2)
if Nd(x

′) is smaller than that of the initial seed input x, we
update x to be x′ (Lines 13-17). If no counter-example is found
and the seed input has not been updated, we will reduce the
search scope, i.e., step ← step/2. Note that when step is
smaller than the minimum step, we exit directly (Lines 5-6),
i.e., the verification tool is used to verify x’s local robustness.

Algorithm 3: Algorithm of Finding Counter-examples
greedySearch(N, x, Lmax, Lmin)
Data: a DNN N , a given input x, the maximum step

Lmax, and the minimum step Lmin

1 begin
2 changed← false;
3 step← Lmax/2;
4 while true do
5 if step < Lmin then
6 return UNSAT;

7 inputs← genInputs(x, step);
8 while inputs 6= ∅ do
9 x′ ← pop(inputs);

10 if x′ is a counter-example then
11 return x′;

12 else
13 diff ← Nd(x);
14 temp← Nd(x

′);
15 if temp < diff then
16 x← x′;
17 changed← true;

18 if !changed then
19 step← step/2;

D. Discussion

In principle, boosting should achieve a tradeoff between
boosting cost and the achieved improvement in verification.
Compare with verification procedure, our boosting method is
light-weight. Hence, we prefer to generate or select weak in-
puts to achieve more improvements in verification. Besides, if
it is not feasible to generate inputs, e.g., image inputs, the input
generation method can be used as an input selecting method.
Furthermore, it is natural that our boosting method can also be
used to improve the existing methods for adversarial example
generation [10], which is also validated in our evaluation.

V. EVALUATION

In this section, we will present the evaluation of our boost-
ing method. First, we give the research questions of evaluation.
Then, the experiment setup and the results will be depicted.
Last, the threats to validity will be discussed.



A. Research Questions

We have following main research questions to evaluate:
• RQ1: how effective is the boosting method for finding

counter-examples during DNN verification?
• RQ2: how effective is the pre-analysis algorithm? How

dominant is it?
• RQ3: how effective is the threshold generation method?
• RQ4: how effective is our input selecting method for

DNN attacking methods?

B. Experiment Setup

To answer the first three research questions, we have applied
our boosting method on Reluplex [17]. We choose two DNN
benchmarks, i.e., ACAS-Xu and MNIST, as our evaluation
benchmarks. The DNNs in ACAS-Xu are for autonomous
aircraft control aiming at avoiding collisions, and used by
Reluplex as the benchmark. Each DNN in ACAS-Xu has 6
hidden layers, and each layer has 50 neurons. Both of input
and output layers have 5 neurons. MNIST is commonly used
by the existing work of DNN verification [11] and automatic
test generation [25]. Based on MNIST benchmark, we train the
MNIST networks with the structure 784-100-100-10, i.e., the
input layer has 784 neurons, the output layer has 10 neurons,
and each of the two hidden layers has 100 neurons.

We randomly select three DNNs from ACAS-Xu bench-
mark, and use Reluplex to verify the local robustness of
the networks. Since distance δ (c.f., Definition 2) greatly
influences the verification result, we select five distances for
evaluation. For MNIST, we trained three networks whose test
accuracies are 0.9779, 0.9798 and 0.9769, respectively. We
choose three distances for the evaluation on MNIST networks.

We carried out each local robustness verification task in
four modes: 1) random initial input, denoted by R; 2) random
initial input plus greedy algorithm, denoted by R+G; 3)
choosing initial input, denoted by B; 4) choosing initial point
plus greedy algorithm, denoted by B+G. To answer the first
three questions, we design two experiments on ACAS-Xu
benchmark: local robustness verification in 24 hours, and
finding 50 counter-examples. For MNIST networks, we only
do local robustness verification in 24 hours.

To answer the last question, we combine our boosting
method with four representative attacking methods: FGSM
[10], JSMA [28], CW [4], and DeepFool [25]. We design
an experiment on MNIST networks in which each method
is used to generate adversarial examples for 1000 inputs.
We compare the rate of successfully generating adversarial
examples using our input selecting method and that using
random input selecting. We use tensorflow-adversarial [36] as
the implementation of these attacking methods.

All the experiments were carried out on a cloud server
with 64 cores (3.10GHz), 256GB memory and Ubuntu 16.04
operation system. Because the tasks were run in parallel, to
eliminate experimental errors, each verification task is run
three times, and we use the average results as the experimental
results. Besides, because Reluplex often needs a long time for
verification, we set the time limit of single local robustness

verification as 20 minutes for ACAS-Xu networks and 60
minutes for MNIST networks. If the time limit is reached and
no result is obtained, we stop the single run.

TABLE I
EXPERIMENTAL RESULTS ON MNIST NETWORKS.

Network δ Mode 24 hours robustness verification
#Runs #SAT1 #SAT2 Rate

1

2

R 6 0 0 0.00%
R+G 6 0 0 0.00%

B 94 91 0 96.81%
B+G 207 201 120 97.10%

6

R 3 0 0 0.00%
R+G 3 0 0 0.00%

B 45 42 0 93.33%
B+G 104 97 59 93.27%

12

R 3 0 0 0.00%
R+G 3 0 0 0.00%

B 32 23 0 71.88%
B+G 80 67 48 83.75%

2

2

R 9 0 0 0.00%
R+G 9 0 0 0.00%

B 93 89 0 95.70%
B+G 169 165 79 97.63%

6

R 3 0 0 0.00%
R+G 3 1 1 33.33%

B 46 38 0 82.61%
B+G 80 72 38 90.00%

12

R 2 0 0 0.00%
R+G 2 0 0 0.00%

B 41 35 0 85.37%
B+G 64 54 27 84.38%

3

2

R 8 1 0 12.50%
R+G 9 1 1 11.11%

B 85 84 0 98.82%
B+G 145 144 69 99.31%

6

R 3 0 0 0.00%
R+G 4 1 1 25.00%

B 44 41 0 93.18%
B+G 86 82 42 95.35%

12

R 3 0 0 0.00%
R+G 3 0 0 0.00%

B 31 20 0 64.52%
B+G 64 53 32 82.81%

C. Experimental Results

Table II and Table I show the experimental results on
ACAS-Xu and MNIST networks, respectively. In Table II, the
first column is the network index. The second column δ is
the distance value. The third column shows the experiment
mode. Then, the rest two big columns show the results of
the two experiments, i.e., 24 hours verification and finding
50 counter-examples, respectively. In the first big column,
column #Runs shows the total runs in 24 hours; column
#SAT1 shows the total number of found counter-examples;
column #SAT2 shows the total number of counter-examples
found by greedy algorithm; and column Rate shows the rate
of finding counter-examples, i.e., #SAT1/#Runs. In the second
big column, column #Runs shows the total number of runs
for finding 50 counter-examples; column #SAT2 shows the
total number of counter-examples found by greedy algorithm;



TABLE II
EXPERIMENTAL RESULTS ON ACAS-XU NETWORKS.

Network δ Mode 24 hours robustness verification Finding 50 counter-examples
#Runs #SAT1 #SAT2 Rate #Runs #SAT2 Time(mins) Rate

1

0.01

R 244 38 0 15.71% 348 0 2374.67 14.35%
R+G 259 37 21 14.14% 324 22 1934 15.42%

B 361 320 0 88.56% 58 0 196.33 86.21%
B+G 512 441 198 86.20% 55 22 116.67 91.46%

0.025

R 81 13 0 16.53% 221 0 3914 22.62%
R+G 77 18 9 22.94% 250 29 4364.67 20.03%

B 184 175 0 95.46% 52 0 473 96.77%
B+G 326 317 193 97.14% 51 32 230.67 97.40%

0.05

R 35 13 0 36.54% 167 0 6810.33 29.94%
R+G 41 13 7 31.71% 167 27 6577.33 29.94%

B 168 165 0 98.02% 52 0 463 95.54%
B+G 342 333 234 97.37% 50 35 124.33 100%

0.075

R 34 13 0 39.60% 134 0 6370.67 37.31%
R+G 31 11 6 36.96% 155 34 855.67 32.33%

B 133 129 0 96.98% 54 0 855.67 92.59%
B+G 348 343 228 98.66% 51 33 196.33 98.68%

0.1

R 30 13 0 42.70% 107 0 5078.67 46.73%
R+G 34 16 11 45.63% 124 26 5510.33 40.43%

B 117 111 0 95.14% 55 0 952.67 90.91%
B+G 356 349 251 97.94% 50 35 129 100%

2

0.01

R 177 7 0 3.77% 1472 0 12236 3.40%
R+G 189 8 5 4.23% 1186 32 9124.33 4.21%

B 387 368 0 95.26% 52 0 195.33 96.15%
B+G 751 729 536 97.07% 51 36 101 98.04%

0.025

R 37 3 0 19.05% 517 0 19804 9.68%
R+G 43 3 1 7.03% 711 15 24127.67 7.03%

B 200 195 0 97.67% 51 0 388.33 97.40%
B+G 711 710 546 99.81% 50 38 101.67 100%

0.05

R 24 2 0 9.72% 508 0 27158.33 9.84%
R+G 24 2 1 6.94% 600 23 37091.67 8.33%

B 93 81 0 87.41% 59 0 1068 84.75%
B+G 353 341 280 96.60% 52 41 236.33 96.77%

0.075

R 20 2 0 10.00% 475 0 31644.33 10.53%
R+G 22 4 1 16.67% 338 19 22922.33 14.78%

B 66 52 0 78.89% 63 0 1452.33 78.95%
B+G 258 244 202 94.45% 53 41 306 94.94%

0.1

R 22 4 0 16.92% 350 0 24253.33 14.29%
R+G 23 5 2 21.74% 287 24 19539.33 17.42%

B 39 23 0 59.48% 81 0 2988 61.98%
B+G 216 202 169 93.36% 56 40 577 89.29%

3

0.01

R 175 30 0 16.92% 296 0 2564 16.91%
R+G 222 26 9 11.58% 446 17 3053 11.22%

B 249 241 0 96.92% 52 0 303 96.77%
B+G 509 504 251 99.08% 50 24 143 99.34%

0.025

R 63 12 0 19.05% 268 0 6158.33 18.63%
R+G 73 19 9 26.48% 194 24 3938.67 25.73%

B 85 84 0 99.61% 50 0 861.67 100%
B+G 187 183 95 97.51% 52 25 422.67 96.77%

0.05

R 29 8 0 27.27% 185 0 9280.33 27.08%
R+G 31 8 3 25.81% 264 19 13169.67 18.94%

B 73 71 0 96.36% 51 0 1038.33 97.40%
B+G 185 184 113 99.10% 50 30 406.33 99.34%

0.075

R 27 9 0 32.50% 157 0 8646.33 31.78%
R+G 28 10 5 35.71% 147 24 7931.33 33.94%

B 57 53 0 92.40% 54 0 1428.67 93.17%
B+G 163 159 94 97.75% 51 29 464.67 98.68%

0.1

R 29 14 0 47.13% 115 0 6037.67 43.60%
R+G 28 12 6 42.35% 122 24 6404.33 40.87%

B 55 50 0 90.85% 55 0 1445.67 90.91%
B+G 117 111 65 94.32% 53 31 615 94.34%
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Fig. 5. The numbers of counter-examples on ACAS-Xu networks.

(a) Network 1 (b) Network 2 (c) Network 3

Fig. 6. The speedups for finding 50 counter-examples on ACAS-Xu networks.

column Time(mins) shows the time needed for finding 50
counter-examples in minutes. In Table I, each column has the
same meaning of the column with the same name in Table II.

1) Boosting method’s effectiveness for DNN verification:
As indicated by Tables II&I, for each case, B+G finds more
counter-examples in 24 hours. Meanwhile, for finding 50
counter-examples, B+G needs the minimum time for verifying
ACAS-Xu networks. These global results indicate the effec-
tiveness of our boosting method.

For ACAS-Xu benchmark, Figure 5 shows the total numbers
of counter-examples in 24 hours of different networks under
different distances. As shown by the figure, B+G finds the
largest amount of counter-examples on all distances. In aver-
age, compared with R, R+G and B, B+G can find 22.3, 19.8
and 1.9 times more counter-examples in 24 hours on ACAS-
Xu networks. Figure 6 shows the time speedups for finding 50
counter-examples on each ACAS-Xu network under different
distances, and the baseline is the time under R mode. As
shown by the figure, R and R+G have a competitive efficiency.
Both of B and B+G can significantly boost finding 50 counter-
examples. The speedups of B range from 4.2 to 62.7, and
the speedups of B+G range from 9.8 to 194.2. Besides, the
speedups are different on different networks. Compared with
R, R+G and B, B+G has the average 23.1, 20.6 and 2.1 time
speedups, respectively.

Figure 7 shows the rates of finding counter-examples under
different distances on ACAS-Xu benchmark. As shown by the
figure, the rates of B+G and B are higher than those of R
and R+G. In average, the rates of B+G, B, R+G and R are
96.47%, 91.90%, 25.14%, 23.73%, respectively. It indicates

Fig. 7. Rate of finding counter-examples on ACAS-Xu networks.

that our boosting method significantly improves the rate of
finding counter-examples.

As shown in Table I, B+G performs even better on MNIST
benchmark. On MNIST networks, using random method (R)
fails to find any counter-examples in most cases, even with
greedy algorithms (R+G). The reason is MNIST networks
have a large number of input variables, i.e., 784, which makes
symbolic solving time-consuming. However, B and B+G have
the average rates of 86.91% and 91.51%, respectively. It indi-
cates that our boosting method greatly improves the efficiency
of finding counter-examples in MNIST network verification.



Answer to RQ1: Our boosting method can significantly
improve the efficiency of finding counter-examples in
DNN local robustness verification. In average, the rate of
finding counter-examples using our method is more than
90% on ACAS-Xu and MNIST networks.

2) Effectiveness and dominance of pre-analysis method:
We also inspect the effectiveness and dominance of pre-
analysis method, i.e., the greedy algorithm. Table III shows
the experimental results on ACAS-Xu networks. Column
(#SAT1

X+G-#SAT1
X)/#SAT1

X shows the effectiveness of the
greedy algorithm on modes R and B. Column #SAT2/#SAT1

shows the dominance of the greedy algorithm.

TABLE III
THE EFFECTIVENESS AND DOMINANCE OF GREEDY ALGORITHM ON

ACAX-XU NETWORKS.

Network δ
(#SAT1

X+G - #SAT1
X)/#SAT1

X #SAT2/#SAT1

R B R+G B+G

1

0.01 -4.35% 37.92% 56.36% 44.79%
0.025 32.50% 80.61% 49.06% 60.84%
0.05 2.63% 101.62% 56.41% 70.24%

0.075 -15.00% 166.58% 52.94% 66.38%
0.1 23.66% 214.11% 70.21% 71.99%

2

0.01 20.00% 97.92% 66.67% 73.53%
0.025 0.00% 263.14% 22.22% 76.97%
0.05 -28.57% 320.58% 40.00% 82.19%

0.075 83.33% 366.24% 36.36% 82.92%
0.1 36.36% 776.81% 40.00% 83.80%

3

0.01 -13.48% 108.84% 36.36% 49.87%
0.025 61.11% 116.60% 44.83% 52.01%
0.05 0.00% 159.91% 37.50% 61.71%

0.075 15.38% 201.90% 50.00% 59.12%
0.1 -12.20% 122.82% 47.22% 58.73%

As indicated by the table, using only greedy algorithm
without choosing the initial points does not always find
more counter-examples. However, the greedy algorithm greatly
improves the numbers of counter-examples when choosing the
initial inputs. Besides, compared with random mode, greedy
is more dominant under the mode of choosing initial inputs.
As indicated by Table I, these results are also valid on MNIST
networks. Hence, we can have the following answer for RQ2.

Answer to RQ2: The greedy algorithm is more effective
and dominant when the initial input choosing is employed.

3) Effectiveness of threshold generation method: In prin-
ciple, a DNN should has a specific difference threshold.
Hence, we want to inspect the effectiveness of our threshold
generation method. We compare the rates of finding counter-
examples of our threshold generation method (denoted by
Minimum) and that of the method uses the mean and the
standard deviation, which generates the threshold to be the
mean minus the standard deviation (denoted by Average). We
randomly selected two DNNs from ASAC-Xu benchmark. For
each one, we try to find 100 counter-examples. We generate the

threshold from 100 randomly generated inputs, and colNum,
i.e., collision number (c.f. Algorithm 2), is set to 1000.

TABLE IV
RESULTS OF TWO METHODS FOR GENERATING THRESHOLDS ON

ACAS-XU NETWORKS.

Network Method #Runs Time(s) Rate
1 Minimum 101 14620 98.36%
1 Average 107 18172 93.46%
2 Minimum 107 21079 96.77%
2 Average 119 29870 85.71%

Table IV shows the results. Compared with Average
method, Minimum needs less time for finding 100 counter-
examples, and achieves a higher rate of finding counter-
examples, which explains why we use Minimum method.
However, when the cost of generating a random input is high,
Minimum method may not be better than Average method.
In addition, there may exist other complicated threshold gen-
eration methods that are better than ours. However, since our
method’s cost is low and the rate of finding counter-examples
is also pretty high, we believe we have achieved a balance.

Answer to RQ3: Our threshold generation method is more
effective than the average method.

4) Effectiveness for DNN attacking methods: We also in-
spect the effectiveness of our input selecting method for
boosting the existing DNN attacking methods. Table V shows
the results. Column eps shows the noise added to the input
for each perturbation step. Column epo shows how many
perturbation steps are used for adversarial generation. Column
RateR shows the rate of successfully generating adversarial
examples using random input selecting. Column RateB shows
that using our input selecting method.

TABLE V
EXPERIMENTAL RESULTS OF BOOSTING DNN ATTACHING METHODS.

Method eps epo RateR RateB

FGSM

0.01 6 7.06% 58.50%
0.01 8 10.50% 63.67%
0.01 10 21.70% 68.70%
0.02 6 41.61% 65.66%
0.02 8 77.13% 92.12%
0.02 10 92.22% 93.34%

JSMA

1.0 10 16.50% 55.94%
1.0 20 43.13% 71.82%
1.0 30 70.88% 86.46%
2.0 10 15.45% 44.70%
2.0 20 51.74% 72.74%
2.0 30 66.20% 79.51%

CW

0.001 50 14.09% 48.77%
0.001 100 17.01% 64.43%
0.001 200 9.21% 57.36%
0.002 50 21.94% 66.10%
0.002 100 45.59% 73.19%
0.002 200 34.92% 69.23%

DeepFool
none 1 5.47% 56.10%
none 2 40.33% 91.73%
none 3 90.28% 93.35%



As shown by the table, our input selecting method can
improve the rate in all cases. In average, we can improve the
success rate of generating adversarial examples by 3.2 times.
Especially, when eps and epo are smaller, it is difficult for
existing attacking methods to generate adversarial examples;
while our input selecting method can achieve a better improve-
ment in this situation.

Answer to RQ4: Our input selecting method can improve
the effectiveness of attacking methods. In average, our
method can improve the success rate of generating ad-
versarial examples by 3.2 times.

D. Threats to Validity

The threads to the validity of our work are mainly external.
The external threats come from the following two aspects: 1)
The selection of the verification tool and the benchmark DNN
networks; however, Reluplex is not scalable to support large
networks, which is the reason of why we use ASAC-Xu and
MNIST networks; besides, if we randomly choose five ACAS-
Xu networks, the main results do not change. 2) The selected
attacking methods are limited. We plan to apply our boosting
method on more verification tools, benchmark networks and
attacking methods in the future.

VI. RELATED WORK

Our work is related to the existing work of DNN attacking
and defense, including verification, testing, adversarial exam-
ple generation, etc.

Existing DNN verification work can be divided into two
categories: symbolic encoding based methods and abstraction
based methods. Reluplex [17] is a representative work in the
first category. Reluplex converts DNN’s verification problems
to an SMT solving problems. As far as we know, global
robustness verification is not supported by Reluplex’s current
implementation. DeepSafe [11] proposes to cluster inputs to
form input regions, and then use Reluplex to verify whether
the regions are safe or not via local robustness verification.
Similar to Reluplex, DLV [14] also translates the verification
problem of DNN to an SMT solving problem, and aims to
verify robustness. DLV also needs an initial input to be given.
AI2 [7] is a representative work in the second category. AI2

[7] uses abstract interpretation [6] to verify the robustness
of DNN. Using different abstract domains, AI2 abstracts the
calculations and compositions in DNN, aiming to achieve a
tradeoff between precision and scalability. ReluVal [41] also
uses interval abstract domain to verify DNNs to improve the
scalability of robustness verification. The approaches in the
first category face scalability problem, especially on large-
scale DNNs; however, they precisely encode the DNNs to
verify, and the found counter-examples are real. On the other
hand, the methods in the second category have a better
scalability, but may suffer from false alarms. Compared with
these verification work, our method is complementary, and can

be combined with any verification work that supports local
robustness verification.

There are also many existing work of testing DNNs. Ex-
isting work includes testing criteria [29] [33] [22], automatic
test generation [29] [39] [27], test case measurement [23],
etc. The basic idea is to apply the existing software testing
techniques on DNN testing and propose new testing techniques
specially for DNN testing. DeepXplore proposes neuron cov-
erage to measure DNN testing, and ultilizes differential test-
ing [42] and gradient descent [19] to automatically generate
new inputs from existing inputs, aiming to improve neuron
coverage and find adversarial examples. DeepTest focuses on
the automatic testing of the DNNs in autonomous driving.
DeepTest proposes a set of transformations specially designed
for autonomous driving to generate new test cases. DeepTest
considers that using the transformations can improve the neu-
ron coverage of the DNN, and leverages metamorphic testing
[5] to address test oracle problem. DeepConcolic [34] provides
a concolic testing [8] [31] framework to automatically test
DNN for improving different kinds of coverages and finding
adversarial examples. DeepGauge [22] proposes a set of multi-
granularity testing criteria for DNN to evaluate the testing
adequacy; in [33], an MC/DC inspired coverage criterion
is proposed. DeepMutation [23] is a DNN mutation testing
technique to evaluate the adequacy of DNN test cases. A set
of mutation rules are proposed at different aspects of DNN,
such as training code and model. TensorFuzz [27] provides a
coverage guided fuzzing framework for testing DNN to find
errors. How to combine our boosting method with the existing
testing approaches is interesting and left to the future work.

To attack DNNs or improve the robustness of DNN,
there exists many work for generating adversarial examples.
L-BFGS [35] is the first method for generating adversarial
examples. FGSM [10] uses gradient update for generating
adversarial examples. FGSM can generate an adversarial
example from an input by just one update; hence, FGSM
is pretty efficient. DeepFool [25] utilizes Newton’s iteration
algorithm to generate a new input from a given one, aiming
to change the output with least updates. Compared with
FGSM, DeepFool has a higher probability of successfully
generating adversarial examples but also a higher cost. JSMA
[28] constructs a Jacobian matrix of given input, and mod-
ifies the input part that significantly influences output. CW
[4] provides an optimization-based attack method to defeat
existing adversarial detection methods. Interestingly, there also
exists a one-pixel attacking method [32] that modifies just
one pixel of an image to generate an adversarial example.
Our boosting method complements to the existing adversarial
example generation methods. Our method can be used to
select an input around which adversarial examples are more
likely to exist. Beside attacking methods, there also exists
work of detecting adversarial examples. The authors in [43]
propose feature squeezing as a general framework to detect
adversarial examples, and propose two squeezing instances
for image classification. Besides, in [23], mutation testing is
used to detect adversarial examples, and the key observation



is adversarial examples are more sensitive to perturbations.

VII. CONCLUSION

Existing DNN verification work suffers the scalability prob-
lem. In this paper, we focus on local robustness verification,
and want to boost the finding of counter-examples during DNN
verification. We propose a boosting method that generates the
inputs around which there tend to exist counter-examples. Be-
sides, we have proposed a greedy algorithm as a pre-analysis
before verification to generate counter-examples. We have
implemented our boosting method and carried out extensive
experiments on representative benchmarks. The experimental
results indicate the effectiveness of our method. The future
work mainly lies in more extensive evaluations on verification
or attacking tools and other DNN benchmarks.
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