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Towards Out-of-Distribution Detection with
Divergence Guarantee in Deep Generative

Models
Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang, Zhiming Liu, Kenli Li, Hongmei Wei

Abstract—Recent research has revealed that deep generative models including flow-based models and Variational autoencoders may
assign higher likelihoods to out-of-distribution (OOD) data than in-distribution (ID) data. However, we cannot sample out OOD data from
the model. This counterintuitive phenomenon has not been satisfactorily explained. In this paper, we prove theorems to investigate the
divergences in flow-based model and give two explanations to the above phenomenon from divergence and geometric perspectives,
respectively. Our theoretical analysis inspires us to detect OOD data by Kullback-Leibler divergence between the distribution of
representations and prior. Furthermore, we decompose the KL divergence to improve our group-wise anomaly detection method and
support point-wise anomaly detection as well. We have conducted experiments on prevalent benchmarks to evaluate our method.
Experimental results demonstrate the superiority of our OOD detection method.

Index Terms—Out-of-distribution detection, flow-based model, Kullback-Leibler divergence.

F

1 INTRODUCTION

ANOMALY detection is the process of “finding patterns
in data that do not conform to expected behavior” [1].

Anomaly detection can be classified into group anomaly
detection (GAD) [2] and point-wise anomaly detection (PAD)
[1], [3]. In unsupervised learning setting, the model is
trained on a set of unlabeled data {x1, · · · ,xn} which
are drawn independently from an unknown distribution
p?. GAD is to determine whether a group of test inputs
{x̃1, · · · , x̃m}(m > 1) are drawn from p?. When m = 1,
GAD becomes PAD. Examples of GAD include discovering
high-energy particle physics, [4], anomalous galaxy clusters
in astronomy [5], [6] , unusual vorticity in fluid dynamics
[7], and stealthy attacks [2], [8]. Examples of PAD include
detecting intrusion [1], fraud [9], malware [10], and medical
anomalies [1]. In literature, the term anomaly is also referred
to as outlier, peculiarity, out-of-distribution (OOD) data, etc.
In the following, we mainly use the term OOD data as in the
most related works.

In this paper, we focus on unsupervised OOD detec-
tion using deep generative models (DGM) including flow-
based model and VAE. Recent research shows that deep
generative models (DGMs) including flow-based models
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[11], [12], VAE [13], and auto-regressive models [14], [15]
are not capable of distinguishing OOD data from training
data (or in-distribution (ID) data) according to the model
likelihood [16], [17], [18], [19], [20], [21]. For example, as
shown in Figure 1(b), and 1(c), Glow [11] assigns higher
likelihoods for SVHN (MNIST) when trained on CIFAR-10
(FashionMNIST). However, as pointed by Nalisnick et al. [20]
we cannot sample out OOD data although they are assigned higher
likelihood. Another similar phenomenon is observed in class
conditional Glow (GlowGMM), which contains a Gaussian
Mixture Model on the top layer with one Gaussian for each
class [11], [22], [23]. GlowGMM does not achieve the same
performance as prevalent discriminative models (e.g., ResNet
[24]) on FashionMNIST. This means that one component
may assign higher likelihoods for other classes. As shown
in Figure 7 in the supplementary material, these centroids
are closer than we imagine. However, we always sample out
images of the correct class from the corresponding component.

Nalisnick et al. explain the above phenomenon by the
discrepancy of the typical set and high probability density
regions of the model distribution [20]. They propose using
typicality test to detect OOD data. However, their explana-
tion and method fail on problems where the likelihoods of
ID and OOD data coincide (e.g., CIFAR-10 vs CIFAR-100,
CelebA vs CIFARs).

In this paper, we try to answer the following two
questions:

• Q1: Why cannot sample out new data similar to OOD
data set in flow-based model? We need a unified answer
to this question whenever OOD data have lower, higher,
or coinciding likelihoods.

• Q2: How to detect OOD data using flow-based model
and VAE without supervision?

We start our research from the sampling process. Flow-
based model constructs diffeomorphism from visible space
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Fig. 1. Distribution of likelihoods of ID data set (train and test) and OOD data set. (a) and (b) show the normalized histogram of log p(z) and log p(x)
on Glow trained on FashionMNIST, respectively. (c) shows the normalized histogram of log p(x) on Glow trained on CIFAR-10. (d) shows that log p(x)
of OOD data can be manipulated by adjusting the contrast of images. SVHN-HIGH-CONTRAST and SVHN-GRAY are SVHN with adjusted contrast
by a factor of 2.0 and 0.3, respectively.

to latent space. Each input data point is mapped to a unique
representation in latent space. So we should ask why we
cannot sample out the representations of OOD data from
prior. In this paper, we first answer Q1 and then propose a
unified OOD detection method.

The contributions of this paper are:
1) We prove several theorems to investigate the diver-

gences in flow-based model. Based on these theorems,
we attempt to provide a theoretical guarantee for OOD
detection method.

2) We give two answers to Q1 from two perspectives. The
first answer reveals the large divergence between the
distribution of representations of OOD data and the
prior. The second answer states that the representations
of OOD data locate in specific directions.

3) Our answer to Q1 prompts us to perform GAD accord-
ing to the Kullback-Leibler (KL) divergence between
the distribution of representations and prior. However,
estimating KL divergence is hard when OOD data set is
arbitrary. Luckily, we observe that, for a wide range of
problems, the representations of OOD data set in flow-
based model follow a Gaussian-like distribution. This
allows us to use the fitted Gaussian in KL divergence
estimation and makes the whole method easy to perform.
We also find that the same criterion works even better
when the representations of OOD data set do not follow
Gaussian-like distribution.

4) Furthermore, we decompose the KL divergence between
the distribution of representations and prior to improve
GAD method and support PAD. We split representations
into multiple groups to implement our improvement.
We also devise a splitting strategy that can leverage the
local pixel dependence of representations.

5) We conduct experiments to evaluate our method. The
results demonstrate the effectiveness, robustness, and
generality of our method. For GAD, our method
achieves near 100% AUROC for almost all the problems
encountered in the experiments and is robust against
data manipulations. On the contrary, the state-of-the-art
(SOTA) GAD method is not better than random guessing
on challenging problems and can be attacked by data
manipulation in almost all cases. For PAD, our method
also outperforms the baseline.

The remaining part of this paper is organized as follows.
Section 2 gives the background and proposes data manip-
ulations to attack the SOTA methods. Section 3 presents

our theoretical analysis to answer Q1. Section 4 shows the
details of our OOD detection method. Section 5 reports
evaluation results. Section 6 discusses more details of our
method. Section 7 discusses related work. Finally, Section 8
concludes.

2 PROBLEM SETTINGS

2.1 Background
Flow-based generative model constructs diffeomorphism f
from visible space X to latent space Z [11], [12], [25], [26].
The model uses a series of diffeomorphisms implemented by
multilayered neural networks

x
f1←→ h1

f2←→ h2 . . .
fn←→ z (1)

like flow. The whole bijective transformation f(x) = fn ◦
fn−1 · · · f1(x) can be seen as encoder, and the inverse
function f−1(z) is used as decoder. According to the change
of variable rule, the probability density function of the model
can be formulated as

log pX(x) = log pZ(f(x)) + log

∣∣∣∣det
∂z

∂xT

∣∣∣∣
= log pZ(f(x)) +

∑n

i=1
log

∣∣∣∣∣det
∂hi
∂hTi−1

∣∣∣∣∣
(2)

where x = h0, z = hn,
∂hi
dhTi−1

is the Jacobian of fi, det is the
determinant.

Here prior pZ(z) is chosen as tractable density function.
For example, the most popular prior is standard Gaussian
N (0, I), which makes log pZ(z) = −(1/2)×

∑
i z

2
i + C (C

is a constant). After training, one can sample noise ε from
prior and generate new samples f−1(ε).

Variational Autoencoder (VAE) is directed graphical
model approximating the data distribution p(x) with
encoder-decoder architecture. The probabilistic encoder
qφ(z|x) approximates the unknown intractable posterior
p(z|x). The probabilistic decoder pθ(x|z) approximates
p(x|z). In VAE, the variational lower bound of the marginal
likelihood of data points (ELBO)

L(θ, φ)

=
1

N

N∑
i=1

Ez∼qφ [log pθ(x
i|z)]−KL(qφ(z|xi)||p(z))

(3)

can be optimized using stochastic gradient descent. After
training, one can sample z from prior p(z) and use the
decoder pθ(x|z) to generate new samples.
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Fig. 2. Typical set of d-dimensional standard Gaussian is an annulus with
radius

√
d. We can encode an input x into z, rescale z to the typical

set as z′ =
√
dz/|z|, and then decode z′ as x′. The resulting image is

similar to the original one.

2.2 Attacking Likelihood
In [20], Nalisnick et al. conjecture that the counterintuitive
phenomena in Q1 stem from the distinction of high prob-
ability density regions and the typical set of the model
distribution [18], [20]. For example, Figure 2 shows the typical
set of d-dimensional standard Gaussian, which is an annulus
with a radius of

√
d [27]. When sampling from the Gaussian,

it is highly likely to get points in the typical set. Neither
the highest density region (i.e. the center) nor the lowest
density region far from the mean would be reached. Based
on this explanation, Nalisnick et al. propose using typicality
test (Ty-test in short) to detect OOD data and achieve SOTA
GAD results [20]. However, their explanation and method do
not apply to problems where OOD data reside in the typical
set of model distribution.

In the following, we show how to manipulate OOD data
set to make the likelihood distribution of ID and OOD dataset
coincide.

M1: rescaling z to typical set of prior. We train Glow
with 768-dimensional standard Gaussian prior on FashionM-
NIST. Figure 1(a) shows the histogram of log-likelihood of
representations under prior (log p(z)). Note that log p(z) of
FashionMNIST are around−768×(0.5×ln2πe) ≈ −1089.74,
which is the log-probability of typical set of the prior [28].
Here it seems hopeful to detect OOD data by p(z) or
typicality test in the latent space [18]. However, as shown
in Figure 2, we can decode each OOD data point x as
z = f(x) and rescale z to the typical set by setting
z′ =

√
d× z/|z| (d = 768). Then we decode z′ to generate

image x′ = f−1(z′). We find that z′ corresponds to the
similar image with z. Figure 8 in supplementary material
shows some examples of f−1(z′). These results demonstrate
that flow-based model is not able to expel representations
of OOD data from the typical set of the prior. To the best of
our knowledge, we are the first to discover that the latents
rescaled to typical set of prior still can be mapped back to
legal images.

M2: adjusting contrast. Figure 1(b) shows that Glow
trained on FashionMNIST assigns higher (lower) p(x) for
MNIST (notMNIST). Ty-test can handle problems where the
expectations of p(x) of inputs and training set diverge (e.g.,
FashionMNIST vs MNIST/notMNIST) [20]. However, when
the likelihoods of ID and OOD data sets coincide, Ty-test
fails (e.g., CIFAR-10 vs CIFAR-100 on Glow, Figure 1(c)).
Nalisnick et al. also find that the likelihood distribution can

be manipulated by adjusting the variance of inputs [16].
As shown in Figure 1(d), SVHN with increased contrast by
a factor of 2.0 has coinciding likelihood distribution with
CIFAR-10 on Glow trained on CIFAR-10. So it is impossible
to detect OOD data by p(x) or typicality test on the model
distribution. In our experiments, we can manipulate the
likelihoods of OOD data set in this way for almost all
problems. See Figure 9∼12 in the supplementary material
for details. Besides, some more complicated likelihood-based
methods, e.g., likelihood ratio, can also be affected by such
manipulation (see Section 5). Similarly, in VAE, we can
also manipulate the likelihood distribution by adjusting the
contrast of input images.

In summary, we can manipulate both p(x) and p(z) of
OOD data without the knowledge of the parameters of the
model. In Section 5, we will show that our method is robust
to the above manipulations.

2.3 Problems
We use ID vs OOD to represent an OOD detection problem
and use “ID (OOD) representations” to denote represen-
tations of ID (OOD) data. According to the behavior of
OOD data set, we group OOD detection problems into two
categories:
• Category I: OOD data set has smaller or similar variance

with ID data set and tends to have higher or similar
likelihoods;

• Category II: OOD data set has larger variance than ID
data and tends to have lower likelihoods.

As shown in the subsection 2.2, it is easy to use M2 to
convert one problem from one category to another. In this
paper, we present a unified OOD detection method for both
categories.

3 THEORETICAL ANALYSIS

In subsection 3.1, we first give several theorems that help
to investigate the divergence between the distributions in
flow-based model. Then in subsection 3.2 we give answers
to Q1 from two perspectives.

3.1 Theorems
Large Divergence Guaranteed. In our analysis, we use
(h, φ)-divergence family which includes many commonly
used divergence measures in machine learning fields [29]
(e.g., the KL divergence, Jensen-Shannon divergence, and
squared Hellinger distance, see Section A in the supplemen-
tary material for details).

Theorem 1 Given a flow-based model z = f(x) with prior prZ .
Suppose that X1 ∼ pX(x), X2 ∼ qX(x), Z1 = f(X1) ∼
pZ(z) and Z2 = f(X2) ∼ qZ(z). Let Dh

φ be a (h, φ)-divergence
measure, D be a proper statistical distance metric belonging to the
(h, φ)-divergence family, and RD be the range of D.

(a) Dh
φ(pX , qX) = Dh

φ(pZ , qZ) holds [30].
(b) For any 0 < d < sup(RD), there are d′ > 0 and

ε > 0 so that D(qZ , p
r
Z) > d when D(pX , qX) > d′

and D(pZ , p
r
Z) < ε.

Proof (a) Since Dh
φ(p, q) = h(Dφ(p, q)), where Dφ(p, q)

is φ-divergence between p and q, it suffices to prove
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Dφ(pX , qX) = Dφ(pZ , qZ). It has been known that dif-
feomorphism preserves φ-divergence. See [30] for the proof.

(b) Since D is a proper statistical distance metric and satisfies
the triangle inequality, we have D(pZ , p

r
Z) +D(qZ , p

r
Z) ≥

D(pZ , qZ). For any d > 0 and ε > 0, if D(pZ , qZ) >
d+ ε = d′ and D(p, prZ) < ε, we have D(qZ , p

r
Z) > d.

Since D belongs to the (h, φ)-divergence family, from The-
orem 1a we know D(pX , qX) = D(pZ , qZ). Thus we have
Theorem 1b. �

Note. The proof of Theorem 1 relies on diffeomorphisms.
According to the Brouwer Invariance of Domain Theorem
[31], Rn cannot be homeomorphic to Rm if n 6= m . So
Theorem 1 does not apply to non-diffeomorphisms (e.g.,
vanilla VAE). The Brouwer Invariance of Domain Theorem
also implies that there is no dead neuron in flow-based model.
Otherwise, we can construct diffeomorphism from high to
low dimensional space.

Theorem 1 provides a general perspective for investi-
gating the divergences between distributions in flow-based
model. Currently, flow-based models are usually trained
by maximum likelihood estimation, which is equivalent to
minimizing the forward KL divergence KL(pX(x)||prX(x))
[26], [32], where pX(x) is the distribution of training data and
prX(x) is the model distribution. However, KL divergence is
not symmetric. The difference between forward and reverse
KL divergence of two distributions can be any large. We
cannot apply Theorem 1b on KL divergence directly.

The following theorems 2 ∼ 4 use a famous transcenden-
tal function, the Lambert W function.

Definition 1 Lambert W Function [33], [34]. The reverse
function of function y = xex is called Lambert W function
y = W (x).

When x ∈ R, W is a multivalued function with two
branches W0,W−1, where W0 is the principal branch (also
called branch 0) and W−1 is the branch −1.

Approximate symmetry of small KL divergence be-
tween Gaussians. The following Theorem 2 guarantees that
the KL divergence between two n-dimensional Gaussians
KL(N1||N2) is small when KL(N2||N1) is small.

Theorem 2 Let KL be the Kullback-Leibler divergence, ε be a
positive real number, W0 be the principal branch of the Lambert
W Function. For any n-dimensional Gaussians N (µ1,Σ1) and
N (µ2,Σ2), if KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤ ε, then

KL(N (µ2,Σ2)||N (µ1,Σ1)) ≤ (4)
1

2

{ 1

−W0(−e−(1+2ε))
− log

1

−W0(−e−(1+2ε))
− 1
}

Proof The proof is too long to be included in the same paper.
The details of the proof are presented in our work [35], which is
submitted independently to another venue.

Notes. The supremum in Inequation 4 is small when ε is
small. See Table 10 in the supplementary material for some
approximate values of the supremum. Besides, it needs strict
conditions to make Inequality 4 tight. In machine learning
practice, KL divergence is usually much smaller than the
supremum. See our proof in [35] for details.

The following Theorem 3 gives the infimum of
KL(N1||N2) when KL(N1||N2) ≥M for M > 0.

Theorem 3 Let KL be the Kullback-Leibler divergence, M > 0
be a positive real number, W−1 be the branch -1 of the Lambert W
Function. For any two n-dimensional Gaussians N (µ1,Σ1) and
N (µ2,Σ2), if KL(N (µ1,Σ1)||N (µ2,Σ2)) ≥M , then

KL(N (µ2,Σ2)||N (µ1,Σ1))

≥1

2

{
1

−W−1(−e−(1+2M))
− log

1

−W−1(−e−(1+2M))
− 1

}
(5)

Proof Theorem 3 can be derived from Theorem 2 or proved
independently. See our work [35] for the proof.

Relexed triangle inequality of KL divergence between
Gaussians. The following Theorem 4 shows that the KL
divergence between Gaussians follows a relaxed triangle
inequality.

Theorem 4 Let KL be the Kullback-Leibler divergence, W0 and
W−1 be the branches 0, -1 of the Lambert W Function, respectively.
For any three n-dimensional Gaussians N (µ1,Σ1), N (µ2,Σ2)
and N (µ3,Σ3), if KL(N (µ1,Σ1)||N (µ2,Σ2)) ≤
ε1,KL(N (µ2,Σ2)||N (µ2,Σ2)) ≤ ε2, then

KL((N (µ1,Σ1)||N (µ3,Σ3))

<ε1 + ε2 +
1

2

W−1(−e−(1+2ε1))W−1(−e−(1+2ε2)) (6)

+W−1(−e−(1+2ε1)) +W−1(−e−(1+2ε2)) + 1

−W−1(−e−(1+2ε2))

(
√

2ε1 +

√
2ε2

−W0(−e−(1+2ε2))

)2


Proof The proof is too long to be included in the same paper. See
our work [35] for details.

Most importantly, all the bounds in Theorem 2, 3, and 4
are independent of the dimension n. So these theorems can
be applied to high-dimensional problems (e.g., flow-based
model).

3.2 Why Cannot Sample Out OOD Data?

Based on the theorems we have proven, we can give two
explanations on why cannot sample out OOD data from two
perspectives.

3.2.1 Divergence Perspective
Figure 3 illustrates how we can apply Theorem 1 to inves-
tigate the divergences between the following distributions:
the distributions of ID data (pX(x)) and OOD data (qX(x)),
the distributions of ID representations (pZ(z)) and OOD
representations (qZ(z)), the prior prZ(z), and the model
induced distribution prX(x) such that Zr ∼ prZ(z) and
Xr = f−1(Zr) ∼ prX(x). In the following, we first discuss
the general case. Then we conduct further analysis for one
category of problems.

1. General case. Our analysis consists of the following
steps.
• Step 1: In practice, ID and OOD datasets are sam-

pled from different distributions. Take KL divergence
KL(pX(x))||qX(x)) =

∫
pX(x) log pX(x)

qX(x) dx as an ex-
ample. When each input x belongs to only one dataset,
KL(pX(x))||qX(x)) can be considered as any large.
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Fig. 3. This figure shows the divergences between several distributions
in flow-based model, where D(p, q) is KL divergence between p and q.
1. In visible space, pX , qX and prX are unknown. The only thing we can
confirm is the (KL) divergence between pX and qX is large. 2. According
to Theorem 1, flow-based model preserves (h, φ)-divergence. So we
know the (KL) divergence between pZ and qZ is large too. 3. Flow-based
model is trained to has a small D(pZ , p

r
Z). 4. According to our analysis,

we can know D(qZ , p
r
Z) is large.

Therefore, it is natural to consider the following as-
sumption for any divergence measure.

Assumption 1 The distributions of ID and OOD data are
far from each other.

• Step 2: We can suppose the model is expressible
enough and trained by maximum likelihood estimation.
This is equal to minimizing forward KL divergence
KL(pX ||prX) [26]. According to Theorem 1, we have
KL(pX ||prX) = KL(pZ ||prZ), so KL(pZ ||prZ) is small.

• Step 3: However, KL divergence is not symmetric. It
might happens that KL(p||q) is small but KL(q||p) is
very large. Luckily, we observe in flow-based models ID
representations manifest strong normality. We perform
generalized Shapiro-Wilk test for multivariate normality
[36]. Table 1 shows the results. We can see that ID
representations always have high p-values.
Based on the above observation, we can use a Gaus-
sian Np to approximate pZ and have KL(pZ ||prZ) ≈
KL(Np||prZ). Now we can apply Theorem 2 on
KL(Np||prZ) and know that reverse KL divergence
KL(prZ ||Np) is small. Therefore, KL(prZ ||pZ) is small
too. In a nutshell, we can consider the second assump-
tion.

Assumption 2 The distribution of ID representations and
the prior are close enough.

• Step 4: Now that both the forward and reverse KL
divergence are small, we can assume pZ ≈ prZ and have
KL(qZ ||prZ) ≈ KL(qZ ||pZ). In step 1, we have known
KL(qX ||pX) = KL(qZ ||pZ) is large, so KL(qZ ||prZ)
is large too. This leads to an answer to Q1 from the
divergence perspective.

Answer 1 to Q1: The distribution of OOD repre-
sentations is far from the prior regardless of when
the likelihoods of OOD data are higher, lower, or
coinciding with that of ID data.

Notes. Both Assumption 1 and 2 are reasonable in

practice. In Step 4 we assume pZ ≈ prZ . Here we do not
require a precise approximation. This is because KL(qZ ||pZ)
is large enough in practice. Take SVHN vs CIFAR-10 for
example, each data point belongs to only one dataset. So
KL(qZ ||pZ) can be assumed any large. Such precondition
allows us to use an imprecise approximation in pZ ≈ prZ .

2. The Gaussian case. We also perform normality test on
OOD representations. The results are surprising. As shown
in Table 1, OOD representations in all Category I problems
except for SVHN vs Constant have p-values greater than
0.05. As far as we know, we are the first to observe this
phenomenon (More details are presented in section 4.1.1). In
summary, we have the following key observation.

Key observation: ID representations of flow-based
models follow Gaussian-like distribution. For Category
I problems, the representations of OOD dataset tend to
follow Gaussian-like distribution.

Using our theorems on the properties of KL divergence
between Gaussians, we can conduct further analysis when
qZ is Gassian-like. We can use a Gaussian Nq to approximate
qZ and have KL(qZ ||prZ) ≈ KL(Nq||prZ), KL(pZ ||Nq) ≈
KL(pZ ||qZ). Now we know that KL(pZ ||qZ) is large and
KL(pZ ||prZ) is small. According to the relaxed triangle
inequality in Theorem 4, KL(prZ ||Nq) must not be small.
Furthermore, we can apply Theorem 3 on KL(prZ ||Nq)
and know that KL(Nq||prZ) is large. Finally, we know
KL(qZ ||prZ) is large too.

3.2.2 Geometric Perspective
Theorem 5 decomposes forward KL divergence into two
parts. It provides a basis for further analysis.

Theorem 5 Let X ∼ p∗X(x) be an n-dimensional random vector,
Xi ∼ p∗Xi(x) be the i-th dimensional element of X . Then

KL(p∗X(x)||N (0, In)) (7)

=KL(p∗X(x)||
n∏
i=1

p∗Xi(x))︸ ︷︷ ︸
Id[p∗

X
]

total correlation

+
n∑
i=1

KL(p∗Xi(x)||N (0, 1))︸ ︷︷ ︸
Dd[p∗

X
]=

∑n
i=1

Di
d

[p∗
Xi

]

dimensional-wise KL divergence

(8)

Proof

KL(p∗X(x)||N (0, In))

=Ep∗
X

(x)

[
log
( p∗X(x)

N (0, In)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

∏n
i=1 p

∗
Xi

(x)

N (0, In)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+ Ep∗

X
(x)

[
log
( ∏n

i=1 p
∗
Xi

(x)∏n
i=1N (0, 1)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+ Ep∗

X
(x)

[ n∑
i=1

log
( p∗Xi(x)

N (0, 1)

)]
=Ep∗

X
(x)

[
log
( p∗X(x)∏n

i=1 p
∗
Xi

(x)

)]
+

n∑
i=1

Ep∗
Xi

(x)

[
log
( p∗Xi(x)

N (0, 1)

)]
=KL(p∗X(x)||

n∏
i=1

p∗Xi(x)) +

n∑
i=1

KL(p∗Xi(x)||N (0, 1))

�
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TABLE 1
Results of Generalized Shapiro-Wilk test for multivariate normality on the

representations of datasets under Glow. See Section 5.1 for the
explanation of data set names. The larger W and p are, the more

Gaussian-like the distribution is. When p ≥ 0.05, there is no evidence to
reject the normality hypothesis. In our experiments, ID representations
under all models manifest strong normality. For Category I problems, all
OOD represetations except for SVHN vs Constant manifest normality.

ID Input(ID/OOD) Category W p-value

Fa
sh

io
n. Fashion. - 0.9996 0.9479

Constant I 0.9992 0.5872
Constant-C(0.1) I 0.9995 0.9212
MNIST I 0.9985 0.0733
MNIST-C(10.0) I 0.9991 0.4114
notMNIST I 0.9989 0.2337
notMNIST-C(0.005) I 0.9993 0.6411

SV
H

N

SVHN - 0.9993 0.6227
Constant I 0.9911 9.6e-10
Constant-C(0.1) I 0.9992 0.5442
Uniform II 0.9992 0.5273
Uniform-C(0.008) II 0.9993 0.6203
CelebA II 0.9336 < 2.2e-16
CelebA-C(0.08) I 0.9993 0.6503
CIFAR-10 II 0.99429 5.7e-07
CIFAR-10-C(0.12) I 0.9995 0.8838
CIFAR-100 II 0.9528 < 2.2e-16
CIFAR-100-C(0.12) I 0.9985 0.0760
Imagenet32 II 0.8618 < 2.2e-16
Imagenet32-C(0.07) I 0.9670 < 2.2e-16

C
IF

A
R

-1
0

CIFAR-10 - 0.9995 0.9064
Constant I 0.9992 0.5512
Constant-C(0.1) I 0.9991 0.4725
Uniform I 0.70958 <2.2e-16
Uniform-C(0.02) II 0.99931 0.6964
CIFAR-100 I 0.9994 0.8426
CelebA I 0.9987 0.1390
CelebA-C(0.3) I 0.9994 0.7960
Imagenet32 I 0.9977 0.0048
TinyImagenet I 0.9995 0.3092
SVHN I 0.9989 0.2532
SVHN-C(2.0) I 0.9989 0.2547

C
el

eb
A

CelebA - 0.9992 0.6064
Constant I 0.9989 0.2605
Constant-C(0.1) I 0.9984 0.7184
Uniform II 0.9993 0.6922
Uniform-C(0.012) II 0.9992 0.5815
CIFAR-10 I 0.9992 0.5953
CIFAR-100 I 0.9990 0.3313
Imagenet32 I 0.9993 0.6410
Imagenet32-C(0.07) I 0.9992 0.5524
SVHN I 0.9991 0.4351
SVHN-C(1.8) I 0.9990 0.3600

Theorem 5 decomposes forward KL divergence into two
non-negative parts: Id is total correlation (generalized mutual
information) measuring the mutual dependence between
dimensions [37]; Dd is dimension-wise KL divergence con-
taining the divergence between the marginal distribution of
each dimension and prior. We use [p∗X ] to denote one term is
computed from p∗X .

Theorem 5 can help us to investigate the forward KL
divergence further. For ID data, we have known that
KL(pZ(z)||prZ(z)) is small. According to Theorem 5, Id[pZ ]
is also small. This indicates that ID data tends to have
independent representations. On the contrary, for OOD data,
a large KL(qZ(z)||prZ(z)) allows a large Id[qZ ]. Although it
is hard to estimate Id[qZ ] [37], we can use an alternative de-
pendence measure, i.e., the most commonly used correlation
coefficient, to investigate the linear dependency.

We train Glow on FashionMNIST and test on
MNIST/notMNIST. Figure 4 shows the histogram of the non-
diagonal elements in the correlation matrix of representations.
We can see that OOD representations are more correlated. In
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Fig. 4. Glow trained on FashionMNIST, tested on MNIST/notMNIST.
Histogram of non-diagonal elements in the correlation coefficient of
representations.

fact, this happens for all the problems in our experiments.
See Figure 18 to 23 in supplementary material for more
details. We note that correlation completely characterizes
dependence only when data follows Gaussian distribution. In
last subsection, we have shown that for Category I problems,
qZ tends to be Gaussian-like.

From a geometric perspective, a high correlation between
dimensions indicates the representations of OOD data set
locate in specific directions [38]. In high dimensional space,
it is hard to obtain data on specific directions by sampling
from standard Gaussian. When OOD representations reside
in the typical set of prior, we can treat the phenomenon in
Q1 as a manifestation of the curse of dimensionality.

Furthermore, we scale the norm of OOD representations
with different factors. The decoded images also vary from
ID data to OOD data gradually. See Figure 13 in the
supplementary material for details.

Overall, this leads to the second answer to Q1.

Answer 2 to Q1: OOD representations locate in spe-
cific directions with specific norms. In high dimensional
space, it is hard to sample out data in specific directions
from prior regardless of whether these data reside in the
typical set or not.

4 ANOMALY DETECTION METHOD

In this section, we first propose a preliminary GAD method.
Then we improve the method to support small batch size
and PAD.

4.1 A Peliminary GAD Method

Answer 1 reminds us to detect OOD data by estimating
KL(p||prZ), where p is the distribution of representations of
inputs. However, when only samples are available, diver-
gence estimation is provable hard and the estimation error
decays slowly in high dimension space [39], [40], [41]. This
brings difficulty in applying existing divergence estimation
[41], [42], [43], [44], [45] to high dimensional problems with
small sample size. Luckily, as shown in Table 1, we observe
that both ID data and OOD data of Category I problems
follow Gaussian-like distribution. This provides us a facility
to estimate the KL divergence for GAD.
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Fig. 5. Glow trained on CIFAR-10. Generated images from prior (up),
fitted Gaussian from representations of OOD dataset notMNIST (down).

4.1.1 Flow-based Model
ID data. As discussed in Subsection 3.2, we can use a
Gaussian Np to approximate pZ . Here we use sample ex-
pectation µ̃ and covariance Σ̃ of representations to estimate
the parameters of Np 1. Experiments also show that we can
generate high-quality images by sampling from Np rather
than the prior. Therefore, we have

KL(pZ ||prZ)

≈KL(Np(µ̃, Σ̃)||N (µ,Σ))

=
1

2

{
log
|Σ|
|Σ̃|

+ Tr(Σ−1Σ̃) + (µ− µ̃)TΣ−1(µ− µ̃)− n
}
(9)

OOD data in Category I problems. At the very be-
ginning, we observed that the fitted Gaussin from OOD
representations contains style information of that dataset.
We train Glow on CIFAR-10 and test on notMNIST (gray-
scale images are preprocessed for consistency, see Section
5.1). Then we replace the prior with fitted Gaussian from
representations of notMNIST and generate new images.
Surprisingly, as shown in Figure 5, we find that the generated
images seem similar to notMNIST, although the images are
blurred. In this way, using a single Glow model, we can
generate images with the style of multiple OOD datasets,
including (not)MNIST, SVHN, CelebA, etc. See Figure 14∼ 16
in the supplementary material for details. Such a similar
phenomenon is also reported by [46], which is released
contemporaneously with the first edition of this paper 2.

Most importantly, these results remind us that qZ may be
also Gaussian-like to some extend. To validate this intuition,
we perform generalized Shapiro-Wilk test for multivariate
normality [47] on the representations. For each dataset, we
randomly select 2000 inputs for normality test. As shown
in Table 1, almost all OOD data sets of Category I problems
have p-values greater than 0.05. It seems that OOD data sets
“sitting inside of” the training data are also “Gaussianized”
along with the training data.

Based on this observation, we can use fitted Gaussian Nq
to approximate qZ . This allows us to use an expression to
estimate KL(qZ ||prZ).

OOD data in Category II problems. Table 1 shows
that OOD representations in Category II problems do not
follow Gaussian-like distribution. Nevertheless, we find that
Equation (9) performs even better on Category II problems.

When prZ = N (0, I), Equation (9) equals to
1

2

{
− log |Σ̃|+ Tr(Σ̃) + µ̃>µ̃− n

}
(10)

1. This is equal to using maximum likelihood estimation [32].
2. In [46], the authors only use the mean of fitted Gaussian, not

including the covariance.

where generalized variance |Σ̃| and total variation Tr(Σ̃)
both measure the dispersion of all dimensions. So the first
two items of Equation (10) compensate each other. For Cate-
gory I problems, OOD representations are less dispersed than
ID representations and have a larger − log |Σ̃|. For Category
II problems, OOD representations tend to be more dispersed,
so Tr(Σ̃) is larger. Besides, we find OOD representations
always have a larger µ̃>µ̃ than ID representations.

In fact, when OOD representations do not follow
Gaussian-like distributions, Equation (10) is a conservative
criterion. The reason is revealed by the following theorem.

Theorem 6 (see [48]) Let N1(µ1,Σ1) and N1(µ2,Σ2) be two
n-dimensional Gaussian distributions. Assume that Z ∼ PZ(z)
is an arbitrary n-dimensional continuous random variable with
mean vector µ1 and covariance matrix Σ1, then

KL(N1(µ1,Σ1)||N1(µ2,Σ2)) ≤ KL(PZ(z)||N1(µ2,Σ2))
(11)

According to Theorem 6, Equation 10 computes a
lower bound of KL(qZ ||prZ). If the criterion is large, then
KL(qZ ||prZ) must be large.

Overall, we get a preliminary answer to Q2.

A preliminary answer to Q2: Equation (10) can be
used as a unified conservative criterion for GAD due to
the following reasons.

1) For ID data, Equation (10) approximates
KL(pZ ||prZ) and should be small;

2) For OOD data whose representations follow
Gaussian-like distribution, Equation (10) approx-
imates KL(qZ ||prZ) and should be large;

3) For OOD data whose representations do not follow
Gaussian-like distribution, Equation (10) computes
the lower bound of KL(qZ ||prZ). If the lower bound
is large, then KL(qZ ||prZ) must be large.

Besides, when batch size is too small to estimate the
parameters, Equation (10) should be treated just as a statistic.
Note that Equation (10) also applies to Gaussian prior with
diagonal covariance diag(σ) and mean µ. In such a case, we
only need to normalize the data by a linear operation Z ′ =
(Z − µ)/σ while keeping KL(pZ(z)||N (µ, diag(σ))) =
KL(pZ′(z)||N (0, I)) (by Theorem 1a). This equals to us-
ing Equation (9) directly. We also emphasize that we are
not pursuing precise divergence estimation or parameter
estimation, which are proven to be hard with very small
batch sizes in high-dimensional problems.

4.1.2 VAE
It is well-known that VAE and its variations learn indepen-
dent representations [49], [50], [51], [52], [53]. In VAE, the
probabilistic encoder qφ(z|x) is often chosen as Gaussian
form N (µ(x), diag(σ(x)2)), where z ∼ qφ(z|x) is used as
sampled representation, µ(x) is used as mean representation.
The KL term in variational evidence lower bound objective
(ELBO) can be rewritten as Ep(x)[KL(qφ(z|x)||p(z))] =
I(x; z) + KL(q(z)||p(z)), where p(z) is the prior, q(z) the
aggregated posterior, and I(x; z) the mutual information
between x and z [54]. Here the termKL(q(z)||p(z)) pulls pZ
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to the Gaussian prior and encourages independent sampled
representations. We also investigate the representations in
VAE. The results show that:

1) ID representations in VAE do not always have p-value
greater than 0.05;

2) the representations of all OOD datasets do not have
p-value greater than 0.05;

3) the sampled (mean) representations of OOD datasets are
more correlated (see Figure 24∼26 in the supplementary
material).

Furthermore, there is no theoretical guarantee that
KL(qZ ||prZ) is large enough because Theorem 1 does not
apply to non-diffeomorphisms.

We also tried the SOTA φ-divergence estimation method
applicable for VAE, i.e. RAM-MC [41]. Results show RAM-
MC can also be affected by data manipulation M2 (see
Section 2.2) 3. Finally, we find that Equation (10) also works
for GAD with VAE.

4.2 Improvement

Up to now, we are still facing two challenges. Firstly, the
performance of the preliminary GAD method tends to
decrease when the batch size m is small (e.g., m = 5).
Secondly, it seems impossible to apply our theorems to PAD
because we cannot estimate the parameters from one single
data point. In this section, we improve our preliminary
method to tackle these two challenges. The key idea is
splitting representation into groups.

4.2.1 Splitting Dimensions into Groups

The factorizability of standard Gaussian allows us to inves-
tigate representations in groups. Intuitively, if z ∼ N (0, I),
then each dimension group of z follows N (0, I); Otherwise,
it is unlikely that each part of z followsN (0, I). Thus, we can
split one single z into multiple subvectors and investigate
these subvectors separately. This also generates multiple
samples from one data point artificially. Formally, we split
random vector Z into k l-dimensional (k = n/l) subvectors
Z̄1, . . . , Z̄k. We note the marginal distribution of Z̄i as pZ̄i(z)
(1 ≤ i ≤ k). Then we can use the following Theorem 7 to
decomposes KL(pZ(z)||N (0, In)) further.

Theorem 7 Let X ∼ p∗X(x) be an n-dimensional random vector.
We note X = X̄1 . . . X̄k where X̄i ∼ p∗

X̄i
(x) be the i-th l-

dimensional (k = n/l) subvector of X , X̄ij ∼ p∗
X̄ij

(x) be the
j-th element of X̄i. Then,

KL(p∗X(x)||N (0, In))

=KL(p∗X(x)||
k∏

i=1

p∗X̄i(x))︸ ︷︷ ︸
Ig [p∗

X
]

+

k∑
i=1

KL(p∗X̄i(x)||N (0, Il))︸ ︷︷ ︸
Dg [p∗

X
]=

∑k
i=1 Dig [p∗

X̄i
]

(12)

=KL(p∗X(x)||
k∏

i=1

p∗X̄i(x))︸ ︷︷ ︸
Ig [p∗

X
]

+

k∑
i=1

KL(p∗X̄i(x)||
l∏

j=1

p∗X̄ij (x))︸ ︷︷ ︸
Il[p
∗
X

]=
∑k
i=1 Ii

d
[p∗
X̄i

]

3. This does not prove that RAM-MC is not applicable to general-
purpose divergence estimation.

+

n∑
i=1

KL(p∗Xi(z)||N (0, 1))︸ ︷︷ ︸
Dd[p∗

X
]

(13)

Proof We can use the similar deduction in Theorem 5 and get
Equation (12).

KL(p∗X(x)||N (0, In))

=Ep∗X(x)

[
log
( p∗X(x)∏k

i=1 p
∗
X̄i

(x)

∏k
i=1 p

∗
X̄i

(x)

N (0, In)

)]
=Ig[p

∗
X ] +Dg[p

∗
X ]

Then we apply Theorem 5 on each Di
g[p
∗
X̄i

] and have

KL(p∗X̄i(x)||N (0, Il))

=KL(p∗X̄i(x)||
l∏

j=1

p∗X̄ij (x)) +
l∑

j=1

KL(p∗X̄ij (x)||N (0, 1))

(14)
Finally, combining Equation (12) and 14 we can obtain Equation
(13). �

In Equation (12), Ig is the generalized mutual informa-
tion between dimension groups [37]. Dg is group-wise KL
divergence. Furthermore, in Equation (13) Dg is decomposed
as Il +Dd, where Il is the generalized mutual information
inside each group, Dd is dimension-wise KL divergence
which also occurs in Equation (7). Combining Equation (7)
and 13, we have Id = Ig + Il and Dg = Il +Dd. Compared
with Equation (7), Equation 12 distributes more divergence
into the second part. When k = n, Equation (12) is equal to
Equation (7).

Applying Theorem 7 on pZ and qZ , we get

KL(pZ ||prZ) = Ig[pZ ] +Dg[pZ ] = Ig[pZ ] +
k∑
i=1

Di
g[pZ̄i ]

KL(qZ ||prZ) = Ig[qZ ] +Dg[qZ ] = Ig[qZ ] +
k∑
i=1

Di
g[qZ̄i ]

where pZ̄i , qZ̄i are the marginal distributions of subvectors
of ID and OOD representations, respectively. In Section 3, we
have known

Ig[qZ ] +Dg[qZ ] > Ig[pZ ] +Dg[pZ ] (15)

Since Ig[pZ ]+Dg[pZ ] is small, we can assume that Ig[pZ ] < ε.
To make Equation (15) hold, it suffices that Dg[qZ ] >
Dg[pZ ] + ε. If the splitting strategy (see Section 4.2.2) dis-
tributes more divergence toDg[qZ ] in Equation (12), it is high
likely that Dg[qZ ] > Dg[pZ ]. Therefore, we can use Dg as the
criterion to detect OOD data. The remaining problems are
how to estimate Dg and how to choose a splitting strategy.

Estimating Dg . For ID data, we treat each representation
as k data points sampled from a mixture of distributions
pZ̄m(z) = (1/k)

∑k
i=1 pZ̄i(z) where pZ̄i(1 ≤ i ≤ k) is

very close to N (0, Ik). Thus, we can use a single Gaussian
NZ̄s to approximate each pZ̄i . Therefore, Dg[pZ ] can be
approximated as

Dg[pZ ] =
k∑
i=0

KL(pZ̄i(z)||N (0, Il))

≈ k ×KL(NZ̄s ||N (0, Il)) = k ×Dg[pZ̄s ]

(16)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2021 9

Now we can plug Equation (10) in Equation 16, except that
each representation z is treated as k samples of pZ̄m .

For OOD data, we cannot use a single Gaussian to
approximate qZ̄m(z) = (1/k)

∑k
i=1 qZ̄i(z) when qZ̄i(z) are

far from each other or qZ is not Gaussian-like. Nevertheless,
we still can use Equation (10) as a statistic measuring the
dispersion and deviation.

Finally, splitting representations not only makes PAD
possible but also improve GAD performance because it
increases the batch size artificially.

4.2.2 Splitting Strategy: Leveraging Local Pixel Dependence
Our aim is to use Dg (Equation (16)) for OOD detection.
When choosing the splitting strategy, we have the following
two principles.

1) We should retain enough intragroup dependence in
Il[qZ ] to make Dg[qZ ] > Dg[pZ ] + ε;

2) When the batch size is too small to estimate parameters,
Equation (10) should still be a qualified statistic for OOD
detection.

Take the Glow model for example, a representation z has
shape (H ×W × C) where H,W,C are the height, width,
and the number of channels of z, respectively. The most
natural choices are:

1) S1: split z as H ×W C-dimensional vectors;
2) S2: split z as C (H ×W )-dimensional vectors.
S1 retains inter-channel dependence into Dg while S2 retains
pixel dependence into Dg .

In Glow, the representation has shape (4× 4× 48). The
number of channels is much larger than the size of one
channel. Our analysis of the correlation matrix also indicates
that more divergence occurs between channels than that
between pixels. So it seems that S1 tends to have a larger
Il[qZ ].

However, we find S2 is better than S1 especially when the
batch size is small. The reason is that representations have
simpler inter-channel dependence than pixel dependence
as like natural images [55]. We split a single z into k
subvectors z1, . . . ,zk. Then we treat z1, . . . ,zk as samples of
one random vector Z̄m with multimodal distribution. If the r-
th element Z̄i,r and s-th element Z̄i,s are strongly correlated
for all 1 ≤ i ≤ k, we can say that Z̄m,r and Z̄m,s are
also strongly correlated. More generally, if Z̄1, . . . , Z̄k have
the similar dependence structure, Z̄m would also has the
similar dependence structure. Based on this intuition, we find
that OOD representations manifest local pixel dependence.
For example, we test CIFAR-10 and Imagenet32 on Glow
trained on SVHN. For each OOD dataset, we visualize
the correlation between pixels. As shown in Figure 27 in
supplementary material, we find for almost all channels
each pixel always has stronger correlation with its neighbors.
Therefore, we can say that Z̄1, . . . , Z̄k tend to have a similar
dependence structure. This means that using strategy S2
tends to has a larger result when calculating Equation (10).
On the contrary, when using strategy S1 we cannot observe
a similar dependence structure between channels. Therefore,
S2 is more suitable for PAD. The above analysis also applies
to GAD with small batch size (2 ∼ 5).

Besides, we have also tried other splitting strategies.
Evaluation results show that S2 is the most stable and best
one.

Algorithm 1 Anomaly Detection method (KLODS )
1: Input: f(x): a well-trained flow-based model or the en-

coder of VAE using Gaussian prior N (µ, diag(σ)); X =
{x1, · · · ,xm}(m ≥ 1): a batch of inputs; (H,W,C): the
shape of representations. t: threshold

2: Z̄ = ∅
3: for i = 1 to m do
4: zi = f(xi)

5: z′i =
zi − µ
σ

6: split z′i as C (H × W )-dimensional subvectors
z′i,1 . . . z

′
i,C

7: Z̄ = Z̄ ∪ {z′i,1, . . . ,z′i,C}
8: end for
9: compute sample covariance Σ̃ and sample mean µ̃ of Z̄

10: c = (1/2)
{
− log |Σ̃|+ tr(Σ̃) + µ̃>µ̃− n

}
11: if c > t then
12: return “X is OOD data”
13: else
14: return “X is ID data”
15: end if

Overall, we get an answer to Q2.

Answer to Q2: We use Dg (computed by Equation
(16) and (10)) as a unified criterion for both GAD and
PAD for flow-based models.

4.3 Algorithm
Algorithm 1 shows the details of our OOD detection method.
Given inputs X = {x1, · · · ,xm}(m ≥ 1), we compute the
representations of each zi = f(xi) and split normalized
z′i = (zi − µ)/σ as C (H × W )-dimensional subvectors.
Then we collect all the subvectors as Z̄ and use Equation
(10) as the criterion. If c is greater than a threshold t, the
input is determined as OOD data. Otherwise, the input is
determined as ID data. Algorithm 1 becomes PAD when
m = 1. We name our method as KLODS for KL divergence-
based Out-of-Distribution Detection with Splitted representations.

Without splitting represetations (line 6), Algorithm 1
can be used only for GAD. We call the algorithm without
splitting representations as KLOD. Experimental results show
that KLOD needs a larger batch size to achieve the same
performance as KLODS for GAD.

5 EXPERIMENTS

We conduct experiments to evaluate the effectiveness, robust-
ness, and generality of our OOD detection method.

5.1 Experimental Setting
Benchmarks. We evaluate our method with prevalent bench-
marks in deep anomaly detection research [16], [17], [20],
[56], [57], [58], including MNIST [59], FashionMNIST [60],
notMNIST [61], CIFAR-10/100 [62], SVHN [63], CelebA [64],
TinyImageNet [65], and ImageNet32 [66]. We also construct
unnatural images as OOD data. Constant consists of images
with all pixels equal to the same constant C ∼ U{0, 255}.
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Uniform consists of images with each pixel sampled indepen-
dently from U{0, 255}. We also use the mixtures of different
data sets as OOD data in GAD problems.

We use different dataset compositions falling into Category
I and II problems. For example, CIFAR-10 vs SVHN falls
into Category I and SVHN vs CIFAR-10 falls into Category II.
All datasets are resized to 32 × 32 × 3 for consistency. For
grayscale datasets of size 28× 28× 1, we replicate channels
and pad zeros around the image. We use S-C(k) (k ≥ 0) to
denote dataset S with adjusted contrast by a factor k. See
Figure 28 in the supplementary material for examples. The
size of each test dataset is fixed to 10,000 for comparison.

Models. For flow-based model, we use OpenAI’s open-
source implementation of Glow [67] with 768-dimensional
standard Gaussian as prior except for CIFAR-10. For CIFAR-
10, we use model checkpoint released by the authors of [20],
[68] for fairness. The prior has learned mean and diagonal
covariance. For VAE, we train convolutional VAE and use
sampled representation for all problems. See Section C in the
supplementary material for more details.

Metrics. We use threshold-independent metrics: area
under the receiver operating characteristic curve (AUROC)
and area under the precision-recall curve (AUPR) to evaluate
our method [69]. We treat OOD data as positive data. For
GAD, each dataset is shuffled and then divided into groups
of size m. We compute AUROC and AUPR according to the
portion of groups determined as OOD data.

Baselines. As far as we know, before this submission,
there exist five methods that handle OOD data with higher
likelihood in flow-based model under unsupervised setting.

1) WAIC [18]. In [20], Nalisnick et al. state that they were
not able to replicate the results of WAIC. We also do not
use WAIC as baseline.

2) typicality test in latent space [18]. In Section 2.2 we have
shown typicality test in latent space can be attacked by
data manipulation.

3) typicality test in model distribution (Ty-test) [20]. Ty-test
is the only GAD method among the five methods. We
use it as the baseline for GAD. Since Ty-test outperforms
all other methods compared in [20], we do not use more
baselines for GAD.

4) input complexity compensated likelihood [70]. We use
this method as the baseline for PAD.

5) likelihood ratios [71]. In [70], Serrà et al. interpret their
method as a likelihood-ratio test statistic and achieve
better performance than method 5. Therefore, method
5 can be seen as an instance of method 4. Besides, the
authors of method 5 did not report results on flow-based
models. So we do not use method 5 as the baseline.

We run each method 5 times and show “mean±std” for
each problem.

5.2 Experimental Results

5.2.1 GAD Results
KLODS on Unconditional Glow. Table 2 shows the results
of KLODS on Glow trained on FashionMNIST, SVHN,
CIFAR-10, CelebA and tested on OOD datasets. We can
see that our method ourperforms the baseline. Specially, we
adjust the contrast of OOD data set to make the likelihood
distributions of ID and OOD data coincide. For these kinds

of problems, the performance of Ty-test degenerates severely.
On the contrary, our method is much more robust against
data manipulation. As reported by [20], CelebA vs CIFAR-
10/100 is challenging for Ty-test. Our method can achieve
100% AUROC with batch size 10. We should point out
that, although CelebA vs CIFAR-10/100 is not solved by
the baseline method, our experimental results on CelebA
vs others may be not fair for Ty-test. It is hard to make
the likelihood distributions of CelebA train and test split
fit well on the official Glow model 4 (see Figure 12 in
the supplementary material for details). In principle, if the
train and test split of ID data have coinciding likelihood
distributions, the AUROC of Ty-test should not be less than
around 50%. On the contrary, our GAD method is not affected
by possible underfitting or overfitting.

Besides, KLODS outperforms Ty-test when batch size
is smaller (i.e., 2 ∼ 4). See Table 11 in the supplementary
material for details. Without splitting representations, KLOD
needs a larger batch size than KLODS but still outperforms
Ty-test. The results of KLOD are omitted.

CIFAR-10 vs CIFAR-100 is one of the most challenging
problems for Ty-test. KLOD and KLODS only achieve around
70% AUROC when batch size reaches 200. We argue the
main reason is the model fails to capture the distribution
of CIFAR-10 as other data sets As shown in Figure 29 in
the supplementary material, the model does not succeed to
generate meaningful images. Thus, D(pZ , p

r
Z) is not small

enough and our theoretical analysis does not fit well in this
situation. Currently, we are not aware of any unconditional
flow-based model that can generate high-quality CIFAR-
10-like images. we argue that it is meaningless to require
an OOD detection method to achieve strong results on a
failed generative model. In such a case, even the model itself
generates “OOD data” that differ from the training set.

Robustness. The results presented above have demon-
strated the robustness of our method against data manipula-
tion method M2. KLODS achieves the same performance
under M1 except that a slightly larger batch size (+5)
is needed for CIFAR-10-related problems. The results are
omitted for brevity.

GAD on GlowGMM. We train GlowGMM on Fashion-
MNIST. For each component, we use learnable mean µi
and diagonal covariance diag(σ2

i ). We treat each class as ID
data and the rest classes as OOD data. As shown in Table 3,
KLODS can achieve near 100% AUROC for all cases when
batch size is 25. On the contrary, Ty-test is worse than random
guessing in most cases.

It is clear that likelihood under each component is also
not qualified for OOD detection. See Section D in the
supplementary material for more details. Recent works have
improved the accuracy of conditional Glow on classification
problems [23], [72]. However, as long as GlowGMM does not
achieve 100% classification accuracy, the question proposed
in Section 1 remains.

Generating OOD images using GlowGMM. In Section
4.1, we have shown that unconditional Glow can generate
blurred images like OOD data set with fitted Gaussian. In
GlowGMM, we can generate high-quality OOD images with

4. We stop training after 2,000 epochs.
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TABLE 2
GAD Results of KLODS on Glow with batch sizes 5 and 10.

ID↓ OOD↓
Batch size→ m=5 m=10
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

. Constant 100.0±0.0 100.0±0.0 42.1±0.3 42.1±0.2 100.0±0.0 100.0±0.0 41.7±0.5 41.9±0.2
MNIST 99.8±0.0 99.8±0.0 97.6±0.1 95.8±0.5 100.0±0.0 100.0±0.0 99.7±0.1 99.6±0.1
MNIST-C(10.0) 100.0±0.0 100.0±0.0 88.2±0.3 81.8±0.2 100.0±0.0 100.0±0.0 95.8±0.5 93.5±1.2
notMNIST 100.0±0.0 100.0±0.0 77.5±0.3 74.6±0.4 100.0±0.0 100.0±0.0 87.1±0.2 85.4±0.4
notMNIST-C(0.005) 100.0±0.0 100.0±0.0 25.0±0.6 35.8±0.2 100.0±0.0 100.0±0.0 23.8±0.4 35.5±0.1

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 100.0±0.0 100.0±0.0 13.5±0.5 33.0±0.1 100.0±0.0 100.0±0.0 11.1±0.5 32.6±0.1
CelebA 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 99.7±0.0 99.7±0.0 50.7±0.7 47.0±0.3 100.0±0.0 100.0±0.0 55.2±0.4 49.1±0.3
CIFAR-10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.12) 97.0±0.2 97.4±0.2 31.6±0.5 37.9±0.2 99.3±0.1 99.4±0.1 25.0±0.3 35.6±0.1
CIFAR-100 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.12) 96.9±0.1 97.3±0.1 35.3±0.5 39.4±0.2 98.9±0.3 99.0±0.3 27.2±0.8 36.3±0.2
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 97.8±0.1 98.1±0.1 48.4±0.3 48.2±0.1 100.0±0.0 100.0±0.0 42.5±0.3 44.1±0.1

C
IF

A
R

-1
0

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.02) 100.0±0.0 100.0±0.0 11.5±0.0 32.9±0.0 100.0±0.0 100.0±0.0 9.3±0.0 32.5±0.0
CelebA 99.2±0.1 99.4±0.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.3) 84.3±0.3 84.4±0.4 28.4±0.5 36.7±0.2 94.5±0.3 94.7±0.3 23.5±0.5 35.2±0.1
ImageNet32 90.0±0.2 92.1±0.1 99.2±0.1 99.3±0.1 95.0±0.4 96.2±0.2 100.0±0.0 100.0±0.0
ImageNet32-C(0.3) 72.0±0.3 72.6±0.4 40.9±0.4 43.2±0.2 74.3±0.6 74.8±0.8 32.0±0.7 38.5±0.3
SVHN 97.6±0.2 97.8±0.2 98.6±0.1 98.4±0.1 99.8±0.0 99.8±0.0 99.9±0.1 99.9±0.1
SVHN-C(2.0) 100.0±0.0 100.0±0.0 33.5±0.4 61.0±0.2 100.0±0.0 100.0±0.0 27.2±0.5 58.2±0.1

C
el

eb
A

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.012) 100.0±0.0 100.0±0.0 36.2±0.7 39.6±0.2 100.0±0.0 100.0±0.0 30.9±0.7 37.9±0.2
CIFAR-10 99.6±0.0 99.6±0.0 7.2±0.2 31.4±0.0 100.0±0.0 100.0±0.0 1.7±0.1 30.8±0.0
CIFAR-100 99.8±0.0 99.8±0.0 9.5±0.3 31.8±0.1 100.0±0.0 100.0±0.0 2.9±0.2 30.9±0.0
ImageNet32 100.0±0.0 100.0±0.0 78.1±0.4 85.6±0.3 100.0±0.0 100.0±0.0 83.9±0.4 89.6±0.2
ImageNet32-C(0.07) 100.0±0.0 100.0±0.0 35.8±0.3 43.5±0.4 100.0±0.0 100.0±0.0 30.2±0.2 40.1±0.5
SVHN 100.0±0.0 100.0±0.0 78.7±0.3 73.3±0.9 100.0±0.0 100.0±0.0 86.6±0.8 83.3±1.4
SVHN-C(1.8) 100.0±0.0 100.0±0.0 3.5±0.2 31.0±0.0 100.0±0.0 100.0±0.0 0.5±0.1 30.7±0.0

TABLE 3
GAD results on GlowGMM trained on FashionMNIST.

Batch size m=25
Method KLODS Ty-test
Metrics AUROC AUPR AUROC AUPR
class 0 vs rest 100.0±0.0 100.0±0.0 5.4±1.6 31.2±0.3
class 1 vs rest 100.0±0.0 100.0±0.0 15.7±2.4 33.4±4.9
class 2 vs rest 100.0±0.0 100.0±0.0 0.5±0.5 30.7±0.0
class 3 vs rest 99.9±0.1 99.9±0.1 89.6±2.5 91.3±2.3
class 4 vs rest 100.0±0.0 100.0±0.0 0.7±0.6 30.7±0.0
class 5 vs rest 100.0±0.0 100.0±0.0 64.2±1.4 66.4±2.9
class 6 vs rest 99.9±0.1 99.9±0.1 0.0±0.0 30.7±0.0
class 7 vs rest 100.0±0.0 100.0±0.0 31.4±2.8 46.6±3.3
class 8 vs rest 100.0±0.0 100.0±0.0 0.4±0.5 30.7±0.0
class 9 vs rest 100.0±0.0 100.0±0.0 69.0±3.6 76.0±1.7

fitted Gaussian from OOD representations. See Section D in
the supplementary material for more details.

Mixture of OOD data sets. We also use the mixture of
two data sets as one OOD data set. In such problems, we can
treat samples from multiple distributions as from a mixture
of distributions. Table 4 shows the results of KLODS when
OOD data set is a mixture of two of the three data sets:
SVHN, CelebA, and CIFAR-10. We randomly choose 5,000
samples from each data set and get 10,000 samples in total.
Our method outperforms the baseline significantly.

GAD on VAE. We train convolutional VAE with 8-/16-
/32-dimensional latent space on FashionMNIST, SVHN, and
CIFAR-10, respectively. The latent space is too small, so
we did not split representations and only use KLOD in

experiments. As shown in Table 5, KLOD achieves 98.8%+
AUROC when m = 25 for almost all problems. CIFAR-10
vs CIFAR-100 is also the most difficult problem on VAE.
KLOD needs a batch size 150 to achieve 98%+ AUROC.
See Table 13 in the supplementary material for details.
Nevertheless, KLOD still outperforms Ty-test. Again, Ty-
test can be attacked by data manipulations M2. As pointed
out by existing work, for vanilla VAE the reconstruction
probability is not a reliable criterion for OOD detection [73].

5.2.2 PAD Results

We use the SOTA PAD method applicable to flow-based
model [70] as the baseline. In [70], the authors modify the
official Glow model by using zero padding and removing
ActNorm layer. In principle, the baseline method should not
be affected by such modification to models. Since the authors
did not release their model checkpoint, we reimplement the
baseline method using the original Glow model [68]. We
also use FLIF [74] as the compressor which is considered
as the best compressor in [70]. However, we find that the
baseline method did not reach the performance reported in
[70]. In [70], the authors did not explain why they modified
the official model. We are not aware of why the performance
of baseline degenerates on the official Glow model.

CIFAR-10 vs Others. Table 6 shows PAD results on
CIFAR-10 vs others. Compared with the results reported
in [70], our method outperforms the baseline method only
on CIFAR-10 vs TinyImageNet. Compared with the reimple-
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TABLE 4
GAD Results of KLODS on Glow with batch size 5 and 10. For SVHN, CIFAR-10, and CelebA, we choose one data set as ID data and the mixture of

the other two data sets as OOD data.

ID↓ OOD ↓
Batch size→ m=5 m=10
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

SVHN CelebA+CIFAR-10 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10 SVHN+CelebA 98.2±0.2 98.5±0.2 60.8±0.3 64.4±0.5 99.8±0.0 99.9±0.0 52.8±1.0 58.1±1.1

CelebA SVHN+CIFAR-10 100.0±0.0 100.0±0.0 20.7±0.2 34.9±0.1 100.0±0.0 100.0±0.0 11.8±0.5 32.3±0.1

TABLE 5
GAD results of KLOD on VAE.

ID↓ OOD↓
Batch size→ m=10 m=25
Method→ KLOD Ty-test KLOD Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

. MNIST 99.7±0.1 99.5±0.2 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
MNIST-C(0.4) 99.8±0.0 99.8±0.0 39.1±0.7 40.5±0.3 100.0±0.0 100.0±0.0 37.6±1.9 39.8±0.7
notMNIST 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

SV
H

N

CelebA 92.2±0.6 82.3±1.1 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.7) 86.2±0.9 76.5±1.5 39.9±1.2 41.2±0.5 100.0±0.0 100.0±0.0 47.4±1.5 44.3±0.7
CIFAR-10 90.9±1.3 81.3±2.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.4) 77.6±8.8 69.9±1.3 49.8±0.6 45.8±0.3 99.7±0.2 99.6±0.3 58.8±0.9 50.2±0.4
CIFAR-100 90.4±0.4 80.3±0.6 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.4) 80.5±1.0 73.2±1.8 40.3±0.8 40.7±1.3 99.8±0.0 99.8±0.0 40.5±0.4 41.3±0.2
Imagenet32 89.3±8.6 80.1±1.5 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Imagenet32-C(0.3) 74.6±0.6 67.8±0.7 27.9±1.0 36.5±0.3 99.0±0.0 99.0±0.0 27.9±1.0 36.5±0.3

ID ↓ OOD↓ Batch size m=25 m=50

C
IF

A
R

-1
0

CelebA 99.1±0.4 99.1±0.4 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.7) 94.2±0.6 93.8±0.8 42.3±1.1 42.8±0.6 100.0±0.0 100.0±0.0 39.3±2.0 41.1±1.0
Imagenet32 54.0±1.9 53.4±0.7 99.8±0.1 99.8±0.1 94.0±0.6 94.0±0.5 100.0±0.0 100.0±0.0
Imagenet32-C(0.8) 77.4±1.4 77.3±1.8 47.8±1.5 48.0±1.5 98.8±0.5 98.9±0.4 46.4±1.7 46.8±1.2
SVHN 91.8±1.5 91.1±2.3 99.8±0.0 99.8±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
SVHN-C(1.5) 94.2±1.5 91.1±2.3 60.0±1.7 61.4±1.7 100.0±0.0 100.0±0.0 53.6±2.7 55.7±1.6

mentation on official Glow model, our method outperforms
the baseline for most cases.

TABLE 6
PAD results (AUROC) on Glow trained on CIFAR-10. S [70]: baseline
method results reported by [70]. The notation (D) means the method

implemented using the model checkpoints released by DeepMind.

OOD S [70] S(D) KLODS
Constant 100.0 100.0 98.9
Uniform 100.0 100.0 100.0
CelebA 86.3 62.1 85.2
SVHN 95.0 80.7 82.6
TinyImageNet 71.6 56.3 83.9
CIFAR-100 73.6 50.9 54.1

SVHN vs Others. In [70], although the authors claim
that the baseline method can detect OOD data with more
complexity than ID data (roughly Category II problems), they
did not evaluate their method on such problems thoroughly.
Table 7 shows the results on SVHN vs others. All problems
in the top half of Table 7 are Category II problems. KLODS
can achieve 98.8%+ AUROC and outperforms the baseline.
The bottom half of Table 7 shows the results of OOD data
with lower contrast (complexity). For these several problems,
KLODS is comparable with the baseline.

CelebA vs others. We have also conducted experiments
on CelebA vs others, which are not evaluated in [70] either.
As shown in Table 8, KLODS outperforms the baseline. We
notice that KLODS does not always achieve high AUROC in
all cases. We think the reason is similar to that for CIFAR-10
vs CIFAR-100. The likelihoods of the train and test split of
CelebA do not fit well. This means that KL(pZ ||prZ) is not
small enough. Unlike on GAD, KLODS on PAD is affected
by the possible underfitting or overfitting on CelebA.

TABLE 7
PAD results on Glow trained on SVHN. S: baseline [70]. We order the

problems roughly according to the complexity of OOD data sets. The top
four OOD data sets are more complex than SVHN and fall in Category II.
The rest OOD data sets are simpler than SVHN and fall in Category I.

OOD S(D) KLODS
AUROC AUPR AUROC AUPR

Si
m

pl
e
←
→

C
om

pl
ex Uniform 100.0 100.0 100.0 100.0

ImageNet32 78.7 88.1 99.9 99.9
CelebA 83.1 86.7 100.0 100.0
CIFAR-10 43.8 52.7 98.9 99.1
CIFAR-100 44.9 56.0 98.8 99.9
CelebA-C(0.08) 81.4 76.7 82.2 80.8
CIFAR-10-C(0.12) 75.3 70.6 72.5 71.7
CIFAR-100-C(0.12) 75.2 72.1 75.3 75.3
Imagenet32-C(0.07) 99.6 99.7 99.8 99.8
notMNIST 100.0 100.0 99.6 99.7
Constant 100.0 99.9 99.7 99.3

TABLE 8
PAD results (AUROC) on Glow trained on CelebA. S: baseline [70].

OOD S(D) KLODS
AUROC AUPR AUROC AUPR

Constant 98.0 92.2 100.0 100.0
Uniform 91.0 82.7 100.0 100.0
ImageNet 16.5 36.0 100.0 100.0
CIFAR-10 55.0 54.3 69.0 67.9
CIFAR-100 53.2 54.8 72.3 71.8
SVHN 83.9 71.8 94.7 95.0

6 DISCUSSION

Normality of representations. The normality of ID and OOD
representation facilitates our theoretical analysis and imple-
mentation in OOD detection algorithm on flow-based model.
In our experiments, we find that the normality of OOD
representation is a widely existing phenomenon under flow-
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based model. We observe even representation of random
noise has a p-value greater than 0.05. We are investigating the
underlying reason. Most importantly, our method performs
even better on Category II problems although the criterion
computes the lower bound of the KL divergence.

Both Flow-based model and VAE are trained to minimize
KL divergence between pZ and prior. It seems natural that
ID representations should follow Gaussian-like distribution.
However, we did not observe such a phenomenon in VAE.
In our experiments, we find that not all ID representations
in VAE have p-values greater than 0.05. All OOD repre-
sentations in VAE do not follow Gaussian-like distribution.
We should note that our method on VAE does not have a
divergence guarantee as that in flow-based model..

In principle, we can construct latents following any dis-
tribution and decode these latents to construct an OOD data
set. Such data manipulation can be seen as an attack on the
normality of representations. Note that, such manipulation
does not make our OOD detection method fail necessarily.

Limitations. This work is an attempt to detect OOD
data with divergence guarantee for flow-based model. The
properties of flow-based model allow us to conduct deeper
analysis. Our work has the following three limitations.

The first limitation is that our method requires the model
to capture the distribution of training data. Modeling data
is a long-standing goal of unsupervised learning [32]. There
are two possible solutions to handle CIFAR-10 vs CIFAR-
100. The first one is to improve the model. Up to now, we
have not tried more advanced flow-based models [75], [76].
We are not aware of any unconditional flow-based model
that can model CIFAR-10 satisfactorily. The second possible
solution is to use a more sensitive criterion to estimate KL
divergence or dependence. For example, our answer 2 to Q1
reminds us to use the sample correlation of representations
for GAD. We have tried to use the standard deviation of
the set of non-diagonal elements of the correlation matrix as
the criterion for GAD. Experimental results show that such
criterion achieves 90+% AUROC on CIFAR-10 VS CIFAR-100
with batch size 250, although it needs a larger batch size than
KLODS on other problems. We leave this direction as future
work.

Besides, when applied to PAD, KLODS sets higher
demands on the model. For example, KLODS is affected
by the discrepancy of the likelihoods of train and test splits
on CelebA vs others.

The second limitation is that PAD performance may
decrease when OOD data set has very low contrast (e.g.,
SVHN vs CelebA-C(0.08). Nevertheless, our method is still
better than the baseline.

Finally, Ty-test applies to flow-based model, VAE, and
auto-regressive model. Our method applies to models which
learn independent or disentangled representations [50], [51],
[52], [77], [78], [79], [80], not including auto-regressive model.

Models. We did not conduct more experiments on flow-
based models with various architectures as well as other
training methods. For VAE, our method is affected by the
model architecture and training method. A high-dimensional
latent space may contain nearly dead neurons. This may
reduce the performance of our method. We did not conduct
experiments on other VAE variations, e.g., β-VAE [80], Factor-
VAE [50], β-TCVAE [51], and DIP-VAE [52]. These variations

add more regularization strength on disentanglement and
hence have more independent representations than vanilla
VAE [53]. We also did not conduct PAD on VAE because the
VAE models used in our experiments are small. We have not
enough latent variables to split into multiple groups. In the
future, we will conduct experiments on larger VAE models
and variations.

7 RELATED WORK

OOD Detection. In [2], Toth et al. give a survey on GAD
methods and a list of real-world GAD applications. In [3],
Chalapathy et al. survey a wide range of deep learning-based
GAD and PAD methods. In [81], Pang et al. also review the
deep learning-based anomaly detection methods. According
to the availability of supervision information, OOD detection
can be classified into three categories: supervised setting,
semi-supervised setting, and unsupervised setting. In this
paper, we focus on unsupervised OOD detection using flow-
based model, so we mainly compare with methods in the
same category.

Generally, it seems straightforward to use model like-
lihood p(x) (if any) of a generative model to detect OOD
data [2], [82]. However, these methods fail when OOD data
have higher or similar likelihoods. Choi et al. propose using
the Watanabe-Akaike Information Criterion (WAIC) to detect
OOD data [18]. WAIC penalizes points that are sensitive
to the particular choice of posterior model parameters.
However, Nalisnick et al. [20] point out that WAIC is not
stable. Choi et al. also propose using typicality test in the
latent space to detect OOD data. Our results reported in
section 2.2 demonstrate that typicality test in the latent space
can be attacked. Sabeti et al. propose detecting anomaly
based on typicality [83], but their method is not suitable for
DGM. Nalisnick et al. propose using typicality test on model
distribution (Ty-test) for GAD [20]. Ren et al. propose to use
likelihood ratios for OOD detection [71]. Serrà et al. propose
using likelihood compensated by input complexity for OOD
detection [70]. Before this writing, [20] and [70] are the SOTA
GAD and PAD methods applicable to flow-based models
under unsupervised setting, respectively. We use them as the
baselines in our experiments.

OOD detection can be improved with the help of an aux-
iliary outlier data set. Schirrmeister et al. improve likelihood-
ratio-based method by the help of a huge outlier data set
(80 Million Tiny Imagenet) [84]. The method in [84] is not
purely unsupervised learning due to the exposure to outliers
in training as like [58]. Besides, the huge outlier data set
includes almost all the image classes in the testing phase. We
did not compare with such methods due to different problem
settings.

Theoretical Analysis. Previous works [26], [85] analyze
the training objective of flow-based model in KL divergence
form. We apply the property of diffeomorphism to inves-
tigate the divergences between distributions in flow-based
models for OOD detection. We also propose new theorems
on the properties of KL divergence between Gaussians for
further analysis. Existing research has explored the upper
bound of KL divergence in different settings [86], [87], [88],
[89]. To the best of our knowledge, we are not aware of
similar work on the properties of KL divergence between
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Gaussians. Theorem 2, 3 and 4 can be used as basic theorems
in information theory and machine learning fields.

In principle, GMM can approximate a target density better
than a single Gaussian [90]. We have tried to use GMM model
to estimate Dg (see Subsection 4.2) but find GMM is worse.
We think the reasons are twofold: a) In our problems, Dg[pZ ]
is Gaussian-like. It is not appropriate to use GMM for ID
data. b) The batch size is too small to estimate the parameters
of GMM.

Local pixel dependence. In [91], Kirichenko et al. reshape
the representations of flow-based models to original input
shape and analyze the induction biases of flow-based model.
Their work reveals the reshaped representation manifests
local pixel dependence. Our theoretical analysis from the
divergence perspective allows strong dependence for OOD
data. We also show that the representations with raw shape
also manifest local pixel dependence.

Classification of problems. We classify OOD problems
into Category I and II according to the variance of data sets.
This criterion is roughly similar to the complexity used in
[70]. See Figure 30 in the supplementary material for details.

8 CONCLUSION

In this paper, we prove theorems to investigate the diver-
gences in flow-based models. Based on these theorems,
we answer the question of why cannot sample out OOD
data from two perspectives. We observe the normality of
ID representations and OOD representations in flow-based
model for a wide range of problems. Our theoretical analysis
and key observation inspire us to perform GAD by KL
divergence. We decompose the KL divergence further to
improve our method and support PAD as well. Experimental
results demonstrate our method can achieve very strong
AUROC for all GAD problems and robust against data
manipulations. On the contrary, the SOTA GAD method
performs not better than random guessing for challenging
problems and can be attacked by data manipulation in almost
all cases. For PAD, our method also outperforms the baseline.
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APPENDIX A
DIVERGENCE

In our theorem, we use φ-divergence (also called f -
divergence) defined by:

Definition 2 (φ-divergence) The φ-divergence between two
densities p(x) and q(x) is defined by

Dφ(p, q) =

∫
φ(p(x)/q(x))q(x)dx, (17)

where φ is a convex function on [0,∞) such that φ(1) = 0. When
q(x) = 0, 0φ(0/0) = 0 and 0φ(p/0) = limt→∞ φ(t)/t [92].

φ-divergence family is used widely in machine learning
fields. As shown in Table 9, many commonly used measures
including the KL divergence, Jensen-Shannon divergence,
and squared Hellinger distance belong to φ-divergence
family. Many φ-divergences are not proper distance metrics
and do not satisfy the triangle inequality.

We also use (h, φ)-divergence defined by:

Definition 3 ((h, φ)-divergence) The (h, φ)-divergence be-
tween two densities p(x) and q(x) is defined by

Dh
φ(p, q) = h(Dφ(p, q)), (18)

where h is a differentiable increasing real function from [0, φ(0) +
limt→∞ φ(t)/t] onto [0,∞) [93].

TABLE 9
Examples of φ-divergence family

φ(x) Divergence
x log x− x+ 1 Kullback-Leibler
− log x+ x− 1 Minimum Discrimination Information
(x− 1) log x J-Divergence

1
2
|1− x| Total Variation Distance

(1−
√
x)2 Squared Hellinger distance

x log 2x
x+1

+ log 2
x+1

Jensen-Shannon divergence

(h, φ)-divergence includes a broader range of divergences
than φ-divergence. For example, Rényi distance belongs to
(h, φ)-divergence family.

APPENDIX B
TABLES

TABLE 10
Some approximate values of the supremum of KL divergence

ε 0.001 0.005 0.01 0.05 0.1 0.5
sup 0.001 0.006 0.011 0.069 0.016 1.732

APPENDIX C
MODEL DETAILS

We use both DeepMind and OpenAI’s official implementa-
tions of Glow model. The model consists of three stages,
each of which contains 32 coupling layers with width 512.
After each stage, the latent variables are split into two parts,
one half is treated as the final representations and another
half is processed by the next stage. In our experiments, we
use only the output of the last stage with shape (4,4,48) as
representation. We use additive coupling layers for grayscale
data sets and CelebA and use affine coupling layers for
SVHN and CIFAR-10. We find no difference between these
two coupling layers for OOD detection. All priors are
standard Gaussian except for CIFAR-10, which has learned
mean and diagonal covariance. All models are trained using
Adamax optimization method with a batch size of 64. The
learning rate is increased from 0 up to 0.001 in the first
10 epochs and keeps invariable in remaining epochs. Flow-
based models are very resource consuming. We train Glow on
FashionMNIST/SVHN/CelebA32 for 130/390/2000 epochs
respectively. For fairness, we use the checkpoint released
by DeepMind [68] for CIFAR-10. We have also conducted
experiments using the checkpoints released by OpenAI [67]
for CIFAR-10 vs others. The results are similar.

For VAE, we use convolutional architecture in the encoder
and decoder. The encoder consists three 4×4×64 convolution
layers. On top of convolutional layers, two dense layer
heads output the mean µ(x) and the standard variance
σ(x) respectively. The decoder has the mirrored architecture
as encoder. All activations are LeakyReLU with α = 0.3. For
FashionMNIST, SVHN, and CIFAR-10, we use 8-, 16- and
32-dimensional latent space respectively. Models are trained

https://doi.org/10.1145/3439950
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TABLE 11
GAD Results of KLODS on Glow with batch sizes 2 and 4.

ID↓ OOD↓
Batch size→ m=2 m=4
Method→ KLODS Ty-test KLODS Ty-test
Metric→ AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR

Fa
sh

. Constant 100.0±0.0 100.0±0.0 40.6±0.4 41.3±0.2 100.0±0.0 100.0±0.0 41.0±0.5 41.6±0.2
MNIST 91.6±0.1 91.8±0.2 88.7±0.2 81.1±0.4 99.4±0.0 99.4±0.0 96.1±0.1 93.2±0.1
MNIST-C(10.0) 97.2±0.1 97.3±0.1 74.0±0.3 65.2±0.2 100.0±0.0 100.0±0.0 85.4±0.2 77.4±0.5
notMNIST 99.2±0.0 99.4±0.0 64.0±0.3 61.8±0.3 100.0±0.0 100.0±0.0 74.3±0.4 71.2±0.3
notMNIST-C(0.005) 100.0±0.0 100.0±0.0 23.2±0.2 35.3±0.0 100.0±0.0 100.0±0.0 24.8±0.3 35.7±0.1

SV
H

N

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.008) 100.0±0.0 100.0±0.0 14.9±0.1 33.3±0.0 100.0±0.0 100.0±0.0 14.2±0.5 33.2±0.1
CelebA 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
CelebA-C(0.08) 96.3±0.1 96.6±0.1 44.1±0.3 43.7±0.2 99.3±0.0 99.3±0.0 49.2±0.3 46.2±0.1
CIFAR-10 99.0±0.1 99.1±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0
CIFAR-10-C(0.12) 92.1±0.2 92.9±0.1 37.5±0.2 40.4±0.1 95.9±0.1 96.4±0.1 33.7±0.4 38.6±0.2
CIFAR-100 98.9±0.1 99.1±0.1 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 100.0±0.0 100.0±0.0
CIFAR-100-C(0.12) 92.3±0.1 93.1±0.1 41.1±0.3 42.4±0.1 95.7±0.2 96.2±0.2 37.4±0.2 40.4±0.1
ImageNet32 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
ImageNet32-C(0.07) 97.8±0.1 98.1±0.1 48.4±0.3 48.2±0.1 100.0±0.0 100.0±0.0 42.5±0.3 44.1±0.1

C
IF

A
R

-1
0

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.02) 100.0±0.0 100.0±0.0 9.9±0.0 32.5±0.0 100.0±0.0 100.0±0.0 11.2±0.0 32.8±0.0
CelebA 93.3±0.1 94.6±0.1 98.0±0.1 98.1±0.0 98.4±0.1 98.7±0.1 99.9±0.0 99.9±0.0
CelebA-C(0.3) 72.4±0.3 71.6±0.3 32.4±0.3 38.1±0.1 81.3±0.3 81.2±0.3 29.7±0.4 37.1±0.1
ImageNet32 82.2±0.2 85.2±0.1 93.1±0.2 94.6±0.2 87.8±0.2 90.2±0.2 98.3±0.2 98.7±0.1
ImageNet32-C(0.3) 68.2±0.1 69.1±0.3 47.8±0.3 48.0±0.2 70.2±0.3 71.0±0.2 42.6±0.9 44.0±0.6
SVHN 90.0±0.1 90.7±0.2 91.2±0.1 88.1±0.3 96.2±0.1 96.5±0.1 97.6±0.1 96.8±0.2
SVHN-C(2.0) 99.1±0.1 99.2±0.0 39.2±0.1 64.0±0.1 100.0±0.0 100.0±0.0 35.2±0.5 61.9±0.2

C
el

eb
A

Constant 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
Uniform-C(0.12) 99.2±0.0 99.3±0.0 35.1±0.2 39.3±0.1 100.0±0.0 100.0±0.0 29.4±0.4 37.5±0.1
CIFAR-10 86.3±0.2 86.4±0.2 21.4±0.2 34.6±0.1 98.5±0.1 98.6±0.1 10.2±0.3 31.9±0.1
CIFAR-100 89.6±0.2 90.0±0.2 25.0±0.2 35.9±0.0 99.2±0.1 99.3±0.1 12.9±0.1 32.5±0.0
ImageNet32 100.0±0.0 100.0±0.0 76.4±0.3 83.5±0.1 100.0±0.0 100.0±0.0 76.9±0.4 84.5±0.2
ImageNet32-C(0.07) 97.5±0.1 97.7±0.0 43.2±0.1 48.4±0.2 100.0±0.0 100.0±0.0 37.9±0.2 45.0±0.2
SVHN 99.9±0.0 99.9±0.0 69.3±0.1 62.5±0.1 100.0±0.0 100.0±0.0 76.0±0.2 70.5±0.4
SVHN-C(1.8) 100.0±0.0 100.0±0.0 14.5±0.2 32.9±0.1 100.0±0.0 100.0±0.0 5.6±0.2 31.3±0.0

using Adam without dropout. The learning rate is 5× 1−4

with no decay.

APPENDIX D
MORE EXPERIMENTAL RESULTS

D.1 GAD Results on Glow

KLODS. Table 11 shows GAD results of KLODS with batch
size 2 and 4.

GlowGMM. Table 12 shows the results of using p(z) for
1 vs rest classification on FashionMNIST with GlowGMM.
p(z) is a bad criterion for OOD detection.

Figure 6(a) shows the generated images using noise
sampled from the Gaussian components Ni(µi, diag(σ2

i ))
as prior. The i-th column corresponds to the i-th Gaussian
Ni. Figure 6(b) shows the generated images using the similar
operation in Section 4.1.1. For each i, we compute the repre-
sentations of the ((i+ 1)%10)-th class and normalize them
underNi(µi, diag(σ2

i )) as z′ = (z−µi)/σi. We use the nor-
malized representation to fit a Gaussian Ñi(µ̃i′ , Σ̃i′) Then
we sample εi′ ∼ Ñi(µ̃i′ , Σ̃i′), and compute f−1(εi′ ·σi+µi)
to generate new images. As shown in Figure 6(b), we can
generate almost high quality images of the ((i+ 1)%10)-th
class from the fitted Gaussian.

In Section 1 we have shown that the centroids of compo-
nents are close to each other. The results shown in Figure
6(b) show that correlation of representation is more critical
than the norm in GlowGMM.

D.2 GAD Results on VAE
Table 13 shows the GAD results on convolutional VAE
trained on CIFAR10 vs CIFAR100/Imagenet32.

Table 14 shows the results of using reconstruction proba-
bility Ez∼qφ [log pθ(x|z)] for OOD detection in VAE.

APPENDIX E
FIGURES
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(a) (b) notMNIST
Fig. 6. GlowGMM with 10 components trained on FashionMNIST. (a) sampling from Ni(µi, diag(σ

2
i )). The i-th column corresponds to Gaussian

Ni. (b) For the i-th Gaussian Ni, we fit another Gaussian Ñi(µ̃i′ , Σ̃i′ ) using the normalized representations (by parameters of Ni) of inputs of the
((i+ 1)%10)-th class. The i-th column shows images generated from Ñi.

TABLE 12
GlowGMM trained on FashionMNIST. Use p(z) as criterion for 1 vs rest classification.

Method p(z)
Metrics AUROC AUPR
class 0 vs rest 72.7±1.6 72.0±1.4
class 1 vs rest 85.1±0.6 86.2±0.6
class 2 vs rest 74.8±4.5 76.9±4.0
class 3 vs rest 68.9±4.7 71.2±4.5
class 4 vs rest 77.1±2.1 78.4±3.2
class 5 vs rest 71.7±1.4 71.9±1.2
class 6 vs rest 73.5±7.8 73.7±8.6
class 7 vs rest 86.9±0.4 88.6±0.4
class 8 vs rest 55.5±0.9 53.8±0.5
class 9 vs rest 86.6±0.3 87.1±0.3

TABLE 13
VAE trained on CIFAR10 and tested on CIFAR100. Each row is for one batch size.

Problem CIFAR10 vs CIFAR100 CIFAR10 vs Imagenet32
Method KLOD Ty-test KLOD Ty-test
Metric AUROC AUPR AUROC AUPR AUROC AUPR AUROC AUPR
m=50 72.9±0.7 73.7±2.1 73.8±0.5 74.3±1.8 94.0±0.6 94.0±0.5 100.0±0.0 100.0±0.0
m=100 90.9±1.0 91.3±1.3 82.6±0.5 83.5±1.1 99.9±0.2 99.9±0.2 100.0±0.0 100.0±0.0
m=150 98.0±0.4 98.1±0.5 88.4±1.3 88.6±2.3 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

TABLE 14
VAE trained on CIFAR10. Use reconstruction probability for OOD data detection.

Method reconstruction probability
Metrics AUROC AUPR
SVHN 17.6±0.0 34.3±0.0
CelebA 83.1±0.0 82.5±0.0
Imagenet32 72.4±0.2 75.0±0.1
CIFAR100 52.3±0.0 53.6±0.0



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2021 19

740 720
0

1

2

3

775 750 725
0.0

0.5

1.0

1.5

2.0

750 725
0

1

2

3

4

740 720
0.0

0.5

1.0

1.5

2.0

760 740 720
0

1

2

3

750 725
0.0

0.5

1.0

1.5

2.0

740 720
0

1

2

3

4

5

775 750 725
0.0

0.5

1.0

1.5

2.0

740 720
0

1

2

3

4

5

750 725
0

1

2

3

Fig. 7. Train GlowGMM on FashionMNIST. The i-th subfigure shows the histogram of log-probabilities of 10 centroids under the i-th Gaussian
component. All log-probabilities are close to 768× log(1/

√
2π) ≈ −705.74, which is the log-probability of the center of 768-dimensional standard

Gaussian. These results indicate these centroids are close to each others.

(a) (b)

Fig. 8. Train Glow on FashionMNIST and test on MNIST and notMNIST. We scale the representations of OOD dataset to the typical set of prior
Gaussian. The scaled latent vectors still coresponds to clear (a) hand-writen digits or (b) letters.

Fig. 9. Glow trained on FashionMNIST. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by adjusting the contrast.
“-C(k )” means the dataset with adjusted contrast by a factor of k.
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Fig. 10. Glow trained on SVHN. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by adjusting the contrast. “-C(k )”
means the dataset with adjusted contrast by a factor of k.

Fig. 11. Glow trained on CIFAR10. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by adjusting the contrast.
“-C(k )” means the dataset with adjusted contrast by a factor of k. For CIFAR10 vs CelebA, the range of log p(x) of CelebA is too large. For CIFAR10
vs Uniform, log p(x) of Uniform are too small.
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Fig. 12. Glow trained on CelebA. Histogram of log p(x). We can manipulate the likelihood distribution of OOD dataset by adjusting the contrast.
“-C(k)” means the dataset with adjusted contrast by a factor of k. It is hard to make the likelihoods of train and test split fit well on the official Glow
model.

(a) (b)

Fig. 13. (a) Train Glow on CelebA and sample from the fitted Gaussian of SVHN. (b) Train on FashionMNIST and sample from the fitted Gaussian of
notMNIST. From top to down, the sampled noises from Gaussian are scaled by temperature 0, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, respectively.
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(a) (b) (c)

(d) (e)

Fig. 14. Glow trained on CIFAR10. Generated images according to the fitted Gaussian from representations of (a) MNIST; (b) CIFAR100; (c) SVHN;
(d) Imagenet32; (e) CelebA. We replicate MNIST into three channels and pad zeros for consistency. These results demonstrate that the covariance of
representations contains important information of an OOD dataset.

(a) (b) (c)

Fig. 15. Glow trained on CelebA32×32, sampling according to (a) standard Gaussian; (b) fitted Gaussian from MNIST representations; (c) fitted
Gaussian from CIFAR10 representations.

Fig. 16. Glow trained on FashionMNIST. Sampling according to prior (up), fitted Gaussian from representations of MNSIT (middle) and notMNIST
(down).
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Fig. 17. Glow trained on FashionMNIST. Histogram of log p(z) of (a) FashionMNIST vs MNIST, (b) FashionMNIST vs notMNIST under Glow. The
green part corresponds to the log p(z) of noises sampled from the fitted Gaussian of OOD datasets.
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Fig. 18. Glow trained on FashionMNIST. Heatmap of correlation of FashionMNIST representations.
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Fig. 19. Glow trained on FashionMNIST. Heatmap of correlation of MNIST representations.
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Fig. 20. Glow trained on FashionMNIST. Heatmap of correlation of notMNIST representations.
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Fig. 21. Glow trained on SVHN. Histogram of non-diagonal elements of correlation of representations.
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Fig. 22. Glow trained on CIFAR10. Histogram of non-diagonal elements of correlation of representations.
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Fig. 23. Glow trained on CelebA. Histogram of non-diagonal elements of correlation of representations.
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Fig. 24. VAE trained on FashionMNIST. Heatmap of correlation of (a)FashionMNIST (b)MNIST (c) notMNIST representations. (d) Histogram of
non-diagonal elements of correlation of sampled representations.
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Fig. 25. VAE trained on SVHN. Histogram of non-diagonal elements of correlation of sampled representations.
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Fig. 26. VAE trained on CIFAR10. Histogram of non-diagonal elements of correlation of sampled representations.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2021 27

1 0.17 0.04 0.02

0.15 0.12 0.12 0.08

0.12 0.19 0.11 0.09

0.08 0.1 0.07 0.05

[8,0,0]

0.1

0.2

0.3

0.4

0.5
0.17 1 0.18 0.09

0.19 0.21 0.11 0.1

0.15 0.17 0.13 0.08

0.08 0.1 0.06 0.04

[8,0,1]

0.1

0.2

0.3

0.4

0.5
0.04 0.18 1 0.15

0.09 0.18 0.11 0.02

0.07 0.11 0.11 0.06

0.05 0.08 0.03 0.08

[8,0,2]

0.1

0.2

0.3

0.4

0.5
0.02 0.09 0.15 1

0.04 0.09 0.16 0.12

0.04 0.09 0.1 0.05

0.04 0.07 0.03 0.02

[8,0,3]

0.1

0.2

0.3

0.4

0.5

0.15 0.19 0.09 0.04

1 0.24 0.18 0.09

0.22 0.16 0.18 0.1

0.1 0.17 0.09 0.06

[8,1,0]

0.1

0.2

0.3

0.4

0.5
0.12 0.21 0.18 0.09

0.24 1 0.3 0.18

0.27 0.28 0.2 0.18

0.16 0.18 0.15 0.06

[8,1,1]

0.1

0.2

0.3

0.4

0.5
0.12 0.11 0.11 0.16

0.18 0.3 1 0.19

0.2 0.29 0.21 0.1

0.14 0.24 0.11 0.07

[8,1,2]

0.1

0.2

0.3

0.4

0.5
0.08 0.1 0.02 0.12

0.09 0.18 0.19 1

0.11 0.17 0.2 0.19

0.06 0.12 0.15 0.05

[8,1,3]

0.1

0.2

0.3

0.4

0.5

0.12 0.15 0.07 0.04

0.22 0.27 0.2 0.11

1 0.24 0.21 0.13

0.17 0.16 0.15 0.09

[8,2,0]

0.1

0.2

0.3

0.4

0.5
0.19 0.17 0.11 0.09

0.16 0.28 0.29 0.17

0.24 1 0.33 0.21

0.18 0.28 0.16 0.13

[8,2,1]

0.1

0.2

0.3

0.4

0.5
0.11 0.13 0.11 0.1

0.18 0.2 0.21 0.2

0.21 0.33 1 0.25

0.17 0.28 0.23 0.07

[8,2,2]

0.1

0.2

0.3

0.4

0.5
0.09 0.08 0.06 0.05

0.1 0.18 0.1 0.19

0.13 0.21 0.25 1

0.11 0.13 0.17 0.19

[8,2,3]

0.1

0.2

0.3

0.4

0.5

0.08 0.08 0.05 0.04

0.1 0.16 0.14 0.06

0.17 0.18 0.17 0.11

1 0.18 0.12 0.05

[8,3,0]

0.1

0.2

0.3

0.4

0.5
0.1 0.1 0.08 0.07

0.17 0.18 0.24 0.12

0.16 0.28 0.28 0.13

0.18 1 0.23 0.06

[8,3,1]

0.1

0.2

0.3

0.4

0.5
0.07 0.06 0.03 0.03

0.09 0.15 0.11 0.15

0.15 0.16 0.23 0.17

0.12 0.23 1 0.11

[8,3,2]

0.1

0.2

0.3

0.4

0.5
0.05 0.04 0.08 0.02

0.06 0.06 0.07 0.05

0.09 0.13 0.07 0.19

0.05 0.06 0.11 1

[8,3,3]

0.1

0.2

0.3

0.4

0.5

imagenet32 channel 8: corrcoef between pixel and its neighbours

Fig. 27. Train Glow on SVHN and test on Imagenet32. We randomly select the 8-th channel. The subfigure at i-th row and j-th column shows the
correlation between the pixel at position (i, j) and all other pixels. Adjacent pixels tend to have stronger correlation.
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(a) SVHN (b) SVHN with increased contrast by a
factor of 2, have lower likelihood

(c) CelebA32 (d) CelebA32 with decreased contrast by
a factor of 0.3, have higher likelihood

(e) Imagenet32 (f) Imagenet32 with decreased contrast by
a factor of 0.3, have higher likelihood

Fig. 28. Examples of datasets and their mutations. Under Glow trained on CIFAR10, these mutated datasets have the similar likelihood distribution
with CIFAR10 test split.
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(a) (b) (c)

Fig. 29. Generated images from Glow trained on (a)FashionMNIST; (b)CIFAR-10; (c)CelebA32.
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Fig. 30. The distributions of complexity estimated by the lengths of compressed files of data sets. We use FLIF as compressor and compute lengths
in bits per dimension. Datasets with decreased contrast has lower complexity.
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