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On the Properties of Kullback-Leibler
Divergence Between Multivariate Gaussian

Distributions
Yufeng Zhang, Wanwei Liu, Zhenbang Chen, Ji Wang, Kenli Li

Abstract—Kullback-Leibler (KL) divergence is one of the most important divergence measures between probability distributions. In this
paper, we prove several properties of KL divergence between multivariate Gaussian distributions. First, for any two 𝑛-dimensional
Gaussian distributions N1 and N2, we give the supremum of 𝐾𝐿 (N1 | |N2) when 𝐾𝐿 (N2 | |N1) ≤ 𝜀 (𝜀 > 0). For small 𝜀, we show that
the supremum is 𝜀 + 2𝜀1.5 +𝑂 (𝜀2). This quantifies the approximate symmetry of small KL divergence between Gaussians. We also
find the infimum of 𝐾𝐿 (N1 | |N2) when 𝐾𝐿 (N2 | |N1) ≥ 𝑀 (𝑀 > 0). We give the conditions when the supremum and infimum can be
attained. Second, for any three 𝑛-dimensional Gaussians N1, N2, and N3, we find an upper bound of 𝐾𝐿 (N1 | |N3) if 𝐾𝐿 (N1 | |N2) ≤ 𝜀1

and 𝐾𝐿 (N2 | |N3) ≤ 𝜀2 for 𝜀1, 𝜀2 ≥ 0. For small 𝜀1 and 𝜀2, we show the upper bound is 3𝜀1 + 3𝜀2 + 2
√
𝜀1𝜀2 + 𝑜 (𝜀1) + 𝑜 (𝜀2). This

reveals that KL divergence between Gaussians follows a relaxed triangle inequality. Importantly, all the bounds in the theorems
presented in this paper are independent of the dimension 𝑛. Finally, We discuss the applications of our theorems in explaining
counterintuitive phenomenon of flow-based model, deriving deep anomaly detection algorithm, and extending one-step robustness
guarantee to multiple steps in safe reinforcement learning.

Index Terms—Kullback-Leibler divergence, statistical divergence, multivariate Gaussian distribution, mathematical optimization,
Lambert 𝑊 function, deep learning, flow-based model, reinforcement learning
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1 INTRODUCTION

A statistical divergence measures the “distance” be-
tween probability distributions. Let 𝑋 be a space of

probability distributions with the same support. A statistical
divergence 𝐷 : 𝑋 × 𝑋 → R+ (R+ is the set of non-negative
real numbers) should satisfy (a) non-negativity: 𝐷 (𝑝, 𝑞) ≥ 0
and (b) identity of indiscernibles: 𝐷 (𝑝, 𝑝) = 0, where 𝑝, 𝑞 are
probability densities. Another stronger concept, statistical
distance, also measures the distance between probability
distributions. A statistical distance should satisfy two extra
properties including (c) symmetry: 𝐷 (𝑝, 𝑞) = 𝐷 (𝑞, 𝑝) and
(d) triangle inequality: 𝐷 (𝑝, 𝑞) ≤ 𝐷 (𝑝, 𝑔) + 𝐷 (𝑔, 𝑞), where
𝑝, 𝑞 and 𝑔 are probability densities.

Kullback-Leibler (KL) divergence, also referred to as
relative entropy [1], plays a key role in many fields includ-
ing machine learning [2], [3], information theory [4], and
statistics [5], etc. The KL divergence between two continuous
probability densities 𝑝(𝑥) and 𝑞(𝑥) is defined as

𝐾𝐿 (𝑝(𝑥) | |𝑞(𝑥)) =
∫

𝑝(𝑥) log
𝑝(𝑥)
𝑞(𝑥) d𝑥 (1)

KL divergence is not a proper distance [1]. Firstly, KL
divergence is not symmetric. It might happen that the for-
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ward KL divergence1 𝐾𝐿 (𝑝 | |𝑞) is very small but the reverse
KL divergence 𝐾𝐿∗ (𝑝 | |𝑞) = 𝐾𝐿 (𝑞 | |𝑝) is very large. Secondly,
KL divergence dose not satisfy the triangle inequality. This
brings obstacles in applying KL divergence in many circum-
stances.

KL divergence is one member of more generalized di-
vergence families including 𝑓 -divergence (also called 𝜙-
divergence) [6], Bregman divergence [7], and Rényi diver-
gence [8]. For example, the widely used 𝑓 -divergence in-
cludes many commonly used measures including KL diver-
gence, Jensen-Shannon divergence, and squared Hellinger
distance [5]. Many 𝑓 -divergence are not proper distance
metrics. KL divergence also has a deep connection with
other information measures. For example, the second
derivative of KL divergence is Fisher information metric. By
taking the second-order Taylor expansion, KL divergence
between two nearly distributions can be approximated with
fisher information matrix [1]. Furthermore, forward and
reverse KL divergence have the same second derivatives at
the point where two distributions are equal. Therefore, KL
divergence is locally approximately symmetric when two
distributions are close to each other.

Meanwhile, Gaussian distribution is one of the most
important distributions and central to statistics. It is also
pervasive in many fields including machine learning and
information theory. The probability density function of an

1. Here we can choose to call 𝐾𝐿 (𝑝 | |𝑞) or 𝐾𝐿 (𝑞 | |𝑝) as forward
KL divergence. The terminologies “forward” and “reverse” is just for
convenience.
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𝑛-dimensional Gaussian distribution is given by

N(µ,𝚺) = 1
(2𝜋)𝑛/2 |𝚺 |1/2

exp
(
−1

2
(x −µ)>𝚺−1 (x −µ)

)
(2)

Here µ ∈ R𝑛 is the mean and 𝚺 ∈ S𝑛++ is the covariance
matrix, where S𝑛++ is the space of symmetric positive definite
𝑛×𝑛 matrices. Gaussian distribution constitutes the basis for
more complicated distributions. For example, the mixture of
Gaussians, namely Gaussian Mixture Model (GMM) has a
wide range of applications due to its power of approxima-
tion [2].

The KL divergence between two 𝑛-dimensional Gaus-
sians N1 (µ1,𝚺1) and N2 (µ2,𝚺2) has the following closed
form [5]

𝐾𝐿 (N1 (µ1,𝚺1) | |N2 (µ2,𝚺2))

=
1
2

(
log

|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1) + (µ2 − µ1)>𝚺−1

2 (µ2 − µ1) − 𝑛
)

(3)

where the logarithm is taken to base 𝑒 and Tr is the trace of
matrix. Due to the good form of Gaussians, one may expect
that KL divergence between Gaussians may have some good
properties. However, as like many other distributions, KL
divergence between Gaussians is not symmetric and does
not satisfy the triangle inequality either.

The concept of KL divergence has been proposed for
seventy years [1]. It is surprising that the properties of KL
divergence between Gaussians have not been investigated
thoroughly.

In this paper, we investigate the following research prob-
lems.

1) For any two Gaussians N1 (µ1,𝚺1) and N2 (µ2,𝚺2),
when forward KL divergence 𝐾𝐿 (N1 | |N2) is bounded
by a small number 𝜀, what is the supremum of reverse
KL divergence 𝐾𝐿 (N2 | |N1)? Although KL divergence
is locally approximately symmetric, we want to step
further in the investigation on such approximate sym-
metry in a Gaussian case.

2) For any two Gaussians N1 (µ1,𝚺1) and N2 (µ2,𝚺2),
when forward KL divergence 𝐾𝐿 (N1 | |N2) is not smaller
than a number 𝑀 , what is the infimum of reverse KL
divergence 𝐾𝐿 (N2 | |N1)? This problem is dual to the first
problem.

3) Does the KL divergence between Gaussians follow
some property similar to the triangle inequality?
Precisely, for any three Gaussians N𝑖 (µ𝑖 ,𝚺𝑖) (𝑖 ∈
1, 2, 3), when 𝐾𝐿 (N1 | |N2) and 𝐾𝐿 (N2 | |N3) are bounded
by small numbers 𝜀1, 𝜀2, respectively, how large
𝐾𝐿 (N1 | |N3) can be?

Note that the third research problem is different from
the several existing general Pythagoras theorems satisfied
by KL divergence [4], [9], [10], [11]. In the existing general
Pythagoras theorems, the bounds are dependent on the
given distributions. In this paper, we want to obtain bounds
that are independent of the parameters of Gaussians and
hold for any Gaussian distributions. We will discuss this
point in Section 4.

As far as we know, we are the first to propose and
investigate the above research problems. These research
problems are motivated by our research on deep anomaly
detection with flow-based model [12], [13], [14]. Flow-based
model is capable of provide explicit likelihood for input.

Researchers have found that flow-based model may assign
higher likelihoods for out-of-distribution (OOD) data than
in-distribution (ID) data. For example, Glow [14] trained on
CIFAR-10 assigns higher likelihoods for SVHN. However,
we can not sample OOD data from the model with prior
although they are assigned higher likelihoods by the model.
This counterintuitive phenomenon has not been explained
satisfactorily. In our research, we find that the KL divergence
between several Gaussian(-like) distributions are vital in
explaining the behavior of flow-based model. This inspires
us to conduct research on the properties of KL divergence
between Gaussians. In this context, the parameters of dis-
tributions are learned from data or dependent on the given
inputs. It is impossible to identify the parameters or the KL
divergence before the model is trained. We only know that
some bound is guaranteed. Therefore, the existing general
Pythagoras theorems are not applicable due to their de-
pendence on the parameters of distributions. The theorems
proved in this paper provide a solid foundation for explain-
ing above phenomenon as well as our anomaly detection
method using flow-based model. Our theorems can also
be used as general conclusions in related fields including
machine learning, information theory and statistics. For
example, our theorems have been used as key support in
safe reinforcement learning framework [15] after we post
our last version of this manuscript on Arxiv [16]. We will
elaborate these applications in Section 5.

Contributions. The contributions of this paper are as
follows.

Given any three 𝑛-dimensional Gaussians N1,N2 and N3,
1) We prove that when 𝐾𝐿 (N2 | |N1) ≤ 𝜀 for

𝜀 > 0 the supremum of 𝐾𝐿 (N1 | |N2) is
1
2
(
(−𝑊0 (−𝑒−(1+2𝜀) ))−1 + log(−𝑊0 (−𝑒−(1+2𝜀) )) − 1

)
, where

𝑊0 is the principal branch of Lambert 𝑊 function. We
give the condition when the supremum can be attained.
For small 𝜀, we show the supremum is 𝜀 + 2𝜀1.5 +𝑂 (𝜀2).
This quantifies the approximate symmetry of small KL
divergence between Gaussians.

2) We find the infimum of 𝐾𝐿 (N1 | |N2) if 𝐾𝐿 (N2 | |N1) ≥ 𝑀

for 𝑀 > 0. We give two proofs for this result. The first
proof has the similar structure with that for the above
supremum. The second proof is based on the proof for
the supremum. We also give the condition when the
infimum can be attained.

3) We find an upper bound of 𝐾𝐿 (N1 | |N3) if 𝐾𝐿 (N1 | |N2) ≤
𝜀1 and 𝐾𝐿 (N2 | |N3) ≤ 𝜀2 for 𝜀1, 𝜀2 ≥ 0. For small 𝜀1 and
𝜀2, we show the upper bound is 3𝜀1 + 3𝜀2 + 2

√
𝜀1𝜀2 +

𝑜(𝜀1)+𝑜(𝜀2) . This indicates that KL divergence between
Gaussians follows a relaxed triangle inequality.

4) All the bounds in our theorems are independent of
the dimension 𝑛. This is a critical property especially
in contexts where dimensionality has a fundamental
impact.

5) We show several applications of the theorems proved in
this paper including explaining counterintuitive phe-
nomenon in flow-based model, deriving anomaly de-
tection algorithm, and extending robustness guarantee
in safe reinforcement learning.

The remaining part of this paper is organized as fol-
lows. In Section 2 we prepare lemmas that will be used
in all theorems. In Section 3 we investigate the supremum
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(infimum) of reverse KL divergence between Gaussians
when forward KL divergence is bounded. In Section 4 we
investigate the relaxed triangle inequality of KL divergence
between Gaussians. In Section 5 we discuss the applications
of the theorems proved in this paper. In Section 6 we discuss
related work. Finally, we conclude in Section 7.

2 LEMMAS AND NOTATIONS

Before presenting our results, we introduce the famous tran-
scendental function, the Lambert 𝑊 function, which occurs
almost everywhere in this paper.
Definition 1. Lambert 𝑊 Function [17], [18]. The inverse

function of function 𝑦 = 𝑥𝑒𝑥 is called Lambert𝑊 function
𝑦 = 𝑊 (𝑥).

When 𝑥 ∈ R, 𝑊 is a multivalued function with two
branches 𝑊0,𝑊−1, where 𝑊0 is the principal branch (also
called branch 0) and 𝑊−1 is the branch −1. The derivative of
𝑊 is

𝑊 ′(𝑥) = 1
𝑥 + 𝑒𝑊 (𝑥) =

𝑊 (𝑥)
𝑥(1 +𝑊 (𝑥)) (𝑥 ≠ 0,−𝑒−1) (4)

Function 𝑓 (𝑥) = 𝑥 − log 𝑥 lies in the core of our problems.
In the following, we prove some useful lemmas related to
𝑓 (𝑥).
Lemma 1. Given function 𝑓 (𝑥) = 𝑥−log 𝑥 (𝑥 ∈ R++) (R++ is the

set of positive real numbers), the following propositions
hold.

(a) 𝑓 (𝑥) is strictly convex and takes the minimum value 1
at 𝑥 = 1.

(b) 𝑓 (𝑥) > 𝑓 (1/𝑥) for 𝑥 > 1 and 𝑓 (𝑥) < 𝑓 (1/𝑥) for 0 < 𝑥 < 1.

(c) The inverse function of 𝑓 is 𝑓 −1 (𝑥) = −𝑊 (−𝑒−𝑥) (𝑥 ≥ 1).
(d) The solutions of equation 𝑥 − log 𝑥 = 1 + 𝑡 (𝑡 ≥

0) are 𝑤1 (𝑡) = −𝑊0 (−𝑒−(1+𝑡) ) ∈ (0, 1] and 𝑤2 (𝑡) =

−𝑊−1 (−𝑒−(1+𝑡) ) ∈ [1, +∞). It is easy to know 𝑤1 (0) =

𝑤2 (0) = 1. We treat 𝑤1 (𝑡), 𝑤2 (𝑡) as functions of 𝑡.
(e) The derivatives of 𝑤1 (𝑡) and 𝑤2 (𝑡) are

𝑤′
1 (𝑡) =

−𝑤1 (𝑡)
1 − 𝑤1 (𝑡)

=
𝑊0 (−𝑒−(1+𝑡) )

𝑊0 (−𝑒−(1+𝑡) ) + 1
< 0 (5)

𝑤′
2 (𝑡) =

−𝑤2 (𝑡)
1 − 𝑤2 (𝑡)

=
𝑊1 (−𝑒−(1+𝑡) )

𝑊1 (−𝑒−(1+𝑡) ) + 1
> 0 (6)

(f) For 𝑡 > 0, 𝑓 (𝑤1 (𝑡)) < 𝑓 ( 1
𝑤1 (𝑡) ), 𝑓 (

1
𝑤2 (𝑡) ) < 𝑓 (𝑤2 (𝑡)).

(g) If 𝑓 (𝑥) ≤ 1 + 𝑡 (𝑡 ≥ 0), then 𝑤1 (𝑡) ≤ 𝑥 ≤ 𝑤2 (𝑡) and

𝑆(𝑡) = sup
𝑡≥0

𝑓 (𝑥)≤1+𝑡

𝑓
(1
𝑥

)
= 𝑓 ( 1

𝑤1 (𝑡)
) (7)

(h) If 𝑓 (𝑥) ≥ 1 + 𝑡 (𝑡 ≥ 0), then 0 < 𝑥 ≤ 𝑤1 (𝑡) ∨ 𝑥 ≥ 𝑤2 (𝑡) and

𝐼 (𝑡) = inf
𝑡≥0

𝑓 (𝑥)≥1+𝑡

𝑓 ( 1
𝑥
) = 𝑓 ( 1

𝑤2 (𝑡)
) (8)

(i) For 𝑡 ≥ 0, 𝑓 ′(𝑤2 (𝑡)) ≤ − 𝑓 ′( 1
𝑤2 (𝑡) ).

(j) For 𝑡1, 𝑡2 ≥ 0,

𝑓 (𝑤1 (𝑡1)𝑤2 (𝑡2)) = 𝑡1 + 𝑡2 + 2 + 𝑤1 (𝑡1)𝑤1 (𝑡2) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2)
(9)

𝑓 (𝑤2 (𝑡1)𝑤2 (𝑡2)) = 𝑡1 + 𝑡2 + 2 + 𝑤2 (𝑡1)𝑤2 (𝑡2) − 𝑤2 (𝑡1) − 𝑤2 (𝑡2)
(10)

Proof 1. The details of the proof are shown in Appendix A.
�

The notations used in this paper are summarized in Table
1.

TABLE 1
Notations.

𝑓 (𝑥) 𝑥 − log 𝑥 (𝑥 ∈ R++)
𝑊 (𝑥) the Lambert 𝑊 function
𝑊0 (𝑥) the principal branch (branch 0) of 𝑊 (𝑥)
𝑊−1 (𝑥) the branch −1 of 𝑊 (𝑥)
𝑤1 (𝑡) the smaller solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)
𝑤2 (𝑡) the larger solution of 𝑓 (𝑥) = 1 + 𝑡 (𝑡 ≥ 0)

f̄ (𝑥1, . . . , 𝑥𝑛)
∑𝑛
𝑖=1 𝑓 (𝑥𝑖)

𝜆 the eigenvalue of matrix
𝜆∗ the largest eigenvalue of matrix
𝜆∗ the least eigenvalue of matrix
𝑓𝑙 (𝑥) 𝑓 (1 − 𝑥) − 1 (0 ≤ 𝑥 < 1)
𝑓𝑟 (𝑥) 𝑓 (𝑥 + 1) − 1 (𝑥 ≥ 0)
𝑔𝑙 (𝜀) 𝑓 −1

𝑙
(𝜀), the inverse function of 𝑓𝑙

𝑔𝑟 (𝜀) 𝑓 −1
𝑟 (𝜀), the inverse function of 𝑓𝑟

N(0, 𝐼) standard Gaussian distribution

3 BOUNDS OF FORWARD AND REVERSE KL DI-
VERGENCE BETWEEN GAUSSIANS

In this section, we give the supremum of reverse KL diver-
gence when forward KL divergence is less than or equal to
a positive number 𝜀. We also show that the supremum is
small if 𝜀 is small. These conclusions quantify the approxi-
mate symmetry of small KL divergence between Gaussians.
We also give the infimum of reverse KL divergence when
forward divergence is greater than or equal to a positive
number 𝑀 . Furthermore, we give the conditions when the
supremum and infimum can be attained.

3.1 Supremum of Reverse KL Divergence Between
Gaussians
We want to know how large the reverse KL divergence can
be when forward KL divergence is bounded by a number
𝜀. The following Theorem 1 gives the supremum of reverse
KL divergence.
Theorem 1. For any two 𝑛-dimensional Gaussian

distributions N(µ1,𝚺1) and N(µ2,𝚺2), if
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀(𝜀 ≥ 0), then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

The supremum is attained when the following two con-
ditions hold.

(1) There exists only one eigenvalue 𝜆 𝑗 of 𝐵−1
2 𝚺1 (𝐵−1

2 )>
or 𝐵−1

1 𝚺2 (𝐵−1
1 )> equal to −𝑊0 (−𝑒−(1+2𝜀) ) and all other

eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, where 𝐵1 = 𝑃1𝐷
1/2
1 ,

𝑃1 is an orthogonal matrix whose columns are the
eigenvectors of 𝚺1, 𝐷1 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) whose diag-
onal elements are the corresponding eigenvalues, 𝐵2 is
defined in the same way as 𝐵1 except on 𝚺2.
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(2) µ1 = µ2.

Overview of proof of Theorem 1.
Theorem 1 can be seen as the following optimization

problem P1.

maximize 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) (11)
s.t. 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀 (12)

Our aim is to solve problem P1 analytically. The proof
consists of the following several steps.

1) Invertible linear transformation. We use a linear transfor-
mation to turn one of N1 and N2 into standard Gaus-
sian. Since diffeomorphism preserves KL divergence
[19], both the objective function and the constraints in
P1 can be simplified.

2) Reducing to new optimization problem. We reduce P1 to
the following core problem P2.

maximize f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) (13)

s.t. f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀′ (14)

where f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛
𝑖=1 𝑓 (𝑥𝑖) =

∑𝑛
𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈

(0,∞)).
3) Investigating 𝑓 (𝑥). 𝑓 (𝑥) lies in the core of the problem.

We have proven several properties of 𝑓 (𝑥). The inverse
function of 𝑓 (𝑥) is 𝑓 −1 = −𝑊 (−𝑒−𝑥) (𝑥 ≥ 1). This allows
us to conduct further analysis in all other parts of this
paper. Another foundamental property is the relation
between 𝑓 (𝑥) and 𝑓 ( 1

𝑥
), which provides a base for

subsequent steps.
4) Concentrating 𝜀′. In problem P2, the supremum of

f̄ ( 1
𝑥1
, . . . , 1

𝑥𝑛
) is affected by the domain of each dimen-

sion, which is in turn determined by how 𝜀′ is allocated
to these dimensions. We call (𝜀1, · · · , 𝜀𝑛) where

∑𝑛
1 𝜀𝑖 =

𝜀 as an allocation. We prove that f̄ ( 1
𝑥1
, . . . , 1

𝑥𝑛
) takes its

maximum when 𝜀′ is allocated to only one dimension
(i.e., an “extreme” allocation). In other words, there ex-
ists one 𝜀 𝑗 = 𝜀 and 𝜀𝑖 = 0(𝑖 ≠ 𝑗). The key idea is to prove
the convexity of function Δ(𝜀) = 𝑓 ( 1

𝑤1 (𝜀) ) − 𝑓 (𝑤1 (𝜀)).
We put the key steps of proof of Theorem 1 into Lemma

2 and Lemma 3. After that, we give the main proof.

Lemma 2. Given 𝑛-ary function f̄ (x) = f̄ (𝑥1, . . . , 𝑥𝑛) =∑𝑛
𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈ R++), if f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀(𝜀 > 0),

then

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

)

=
1

−𝑊0 (−𝑒−(1+𝜀) )
− log

1
−𝑊0 (−𝑒−(1+𝜀) )

+ 𝑛 − 1 (15)

The supremum is attained when there exists only one 𝑗

such that 𝑓 (𝑥 𝑗 ) = 1 + 𝜀 and 𝑓 (𝑥𝑖) = 1 for 𝑖 ≠ 𝑗 .

Proof 2. We want to solve the following optimization prob-
lem analytically.

maximize f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) (16)

s.t. f̄ (𝑥1, . . . , 𝑥𝑛) ≤ 𝑛 + 𝜀 (17)

Since 𝑓 (𝑥) ≥ 1, the constraint f̄ (𝑥1, . . . , 𝑥𝑛) =
∑𝑛
𝑖=1 𝑓 (𝑥𝑖) =∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 ≤ 𝑛 + 𝜀 can be replaced by the following
constraints(
𝑛∧
𝑖=1

𝑓 (𝑥𝑖) = 𝑥𝑖 − log 𝑥𝑖 ≤ 1 + 𝜀𝑖

)
∧

(
𝑛∧
𝑖=1

𝜀𝑖 ≥ 0

)
∧

𝑛∑︁
𝑖=1

𝜀𝑖 ≤ 𝜀

(18)

Given fixed 𝜀1, . . . , 𝜀𝑛 such that
∧𝑛
𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝜀𝑖 ≤ 𝜀,
we define

S̄ (𝜀1, . . . , 𝜀𝑛) = sup∧𝑛
𝑖=1 𝑓 (𝑥𝑖 ) ≤1+𝜀𝑖

f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

)

=

𝑛∑︁
𝑖=1

sup
𝑓 (𝑥𝑖 ) ≤1+𝜀𝑖

𝑓 ( 1
𝑥𝑖
) =

𝑛∑︁
𝑖=1

𝑆(𝜀𝑖) (19)

So we have

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) = sup∧𝑛
𝑖=1 𝜀𝑖≥0∑𝑛
𝑖=1 𝜀𝑖≤𝜀

S̄ (𝜀1, . . . , 𝜀𝑛) (20)

It is easy to know that S̄ (𝜀1, . . . , 𝜀𝑛) is continuous
and strictly increasing with 𝜀1, . . . , 𝜀𝑛. So the condition∑𝑛
𝑖=1 𝜀𝑖 ≤ 𝜀 in Equation (20) can be changed to

∑𝑛
𝑖=1 𝜀𝑖 = 𝜀.

The remaining proof consists of two steps. In step 1, we
find S̄ (𝜀1, . . . , 𝜀𝑛) for fixed 𝜀1, . . . , 𝜀𝑛. In step 2, we find
sup S̄ (𝜀1, . . . , 𝜀𝑛) for any 𝜀1, . . . , 𝜀𝑛 satisfying

∧𝑛
𝑖=1 𝜀𝑖 ≥

0 ∧ ∑𝑛
𝑖=1 𝜀𝑖 = 𝜀.

Step 1: According to Lemma 1g, for fixed 𝜀𝑖 we get

𝑆(𝜀𝑖) = sup
𝑓 (𝑥) ≤1+𝜀𝑖

𝑓 ( 1
𝑥
) = 𝑓 ( 1

𝑤1 (𝜀𝑖)
) (21)

Plugging Equation (21) into Equation (19), we get

S̄ (𝜀1, . . . , 𝜀𝑛) =
𝑛∑︁
𝑖=1

𝑓 ( 1
𝑤1 (𝜀𝑖)

) (22)

Step 2: We define function

Δ(𝜀) = 𝑓 ( 1
𝑤1 (𝜀)

) − 𝑓 (𝑤1 (𝜀)) =
1

𝑤1 (𝜀)
− 𝑤1 (𝜀) + 2 log𝑤1 (𝜀)

(23)

Now we prove

Δ(𝑡𝜀) ≤ 𝑡Δ(𝜀) (0 ≤ 𝑡 < 1) (24)

When 𝜀 = 0, it is trivial to verify that Δ(0) = 0. In the
following we show that Δ(𝜀) is strictly increasing and
strictly convex. It is easy to know dΔ(𝜀)

d𝑤1
= − 1

𝑤2
1
+ 2
𝑤1

− 1.
Combining Lemma 1e, the derivative of Δ(𝜀) is

dΔ(𝜀)
d𝜀

=
dΔ(𝜀)
d𝑤1

× d𝑤1 (𝜀)
d𝜀

=

(
− 1
𝑤1 (𝜀)2 + 2

𝑤1 (𝜀)
− 1

)
× −𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1
𝑤1 (𝜀)

− 1

The second order derivative of Δ(𝜀) is

d2Δ(𝜀)
d𝜀2 = − 1

𝑤1 (𝜀)2
−𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1
𝑤1 (𝜀) (1 − 𝑤1 (𝜀))

Since 𝑤1 (𝜀) ∈ (0, 1) for 𝜀 > 0, it is easy to know dΔ(𝜀)
d𝜀 >

0, d2Δ(𝜀)
d𝜀2 > 0 for 𝜀 > 0. This indicates that Δ(𝜀) is strictly

increasing and strictly convex on (0, +∞). Thus, for any
𝜀′, 𝜀′′ > 0, we have Δ((1− 𝑡)𝜀′+ 𝑡𝜀′′) < (1− 𝑡)Δ(𝜀′) + 𝑡Δ(𝜀′′)
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for any 0 < 𝑡 < 1. Remember that we have known Δ(0) =
0. Since Δ(𝜀) is continuous, it is easy to know

Δ(𝑡𝜀′′) = lim
𝜀′→0

Δ((1 − 𝑡)𝜀′ + 𝑡𝜀′′)

≤ lim
𝜀′→0

(1 − 𝑡)Δ(𝜀′) + 𝑡Δ(𝜀′′) = 𝑡Δ(𝜀′′) (25)

Thus, we can obtain Equation (24).
Therefore, for any 𝜀1, . . . , 𝜀𝑛 satisfying

∧𝑛
𝑖=1 𝜀𝑖 ≥ 0 ∧∑𝑛

𝑖=1 𝜀𝑖 = 𝜀, we have

�̄�(𝜀1, . . . , 𝜀𝑛) =
𝑛∑︁
𝑖=1

𝑓 ( 1
𝑤1 (𝜀𝑖)

) − 𝑓 (𝑤1 (𝜀𝑖)) =
𝑛∑︁
𝑖=1

Δ(𝜀𝑖)

=

𝑛∑︁
𝑖=1

Δ( 𝜀𝑖
𝜀
𝜀) ≤

𝑛∑︁
𝑖=1

𝜀𝑖

𝜀
Δ(𝜀) = Δ(𝜀) (26)

Inequality (26) is tight when there exists only one 𝑗 such
that 𝜀 𝑗 = 𝜀 and 𝜀𝑖 = 0 for all 𝑖 ≠ 𝑗 . This means that
for any 𝜀1, . . . , 𝜀𝑛 satisfying

∧𝑛
𝑖=1 𝜀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝜀𝑖 = 𝜀, the
following inequality holds.

S̄ (𝜀1, . . . , 𝜀𝑛)

=
∑𝑛
𝑖=1 𝑓 (

1
𝑤1 (𝜀𝑖)

)

≤Δ(𝜀) + ∑𝑛
𝑖=1 𝑓 (𝑤1 (𝜀𝑖))

≤ 1
𝑤1 (𝜀)

− log
1

𝑤1 (𝜀)
− (𝑤1 (𝜀) − log𝑤1 (𝜀))

+ ∑𝑛
𝑖=1 (1 + 𝜀𝑖)

=
1

𝑤1 (𝜀)
− log

1
𝑤1 (𝜀)

− (1 + 𝜀) + 𝑛 + 𝜀

=
1

𝑤1 (𝜀)
− log

1
𝑤1 (𝜀)

+ 𝑛 − 1

=
1

−𝑊0 (−𝑒−(1+𝜀) )
− log

1
−𝑊0 (−𝑒−(1+𝜀) )

+ 𝑛 − 1 (27)

(22)

(26)

Lemma 1d
(23)

Finally, we have

sup f̄ ( 1
𝑥1
, . . . ,

1
𝑥𝑛

) = sup∧𝑛
𝑖=1 𝜀𝑖≥0∑𝑛
𝑖=1 𝜀𝑖≤𝜀

S̄ (𝜀1, . . . , 𝜀𝑛)

=
1

−𝑊0 (−𝑒−(1+𝜀) )
− log

1
−𝑊0 (−𝑒−(1+𝜀) )

+ 𝑛 − 1 (28)

f̄ (1/𝑥1, . . . , 1/𝑥𝑛) reaches its supremum when there ex-
ists only one 𝑗 such that 𝑓 (𝑥 𝑗 ) = 1 + 𝜀 and 𝑓 (𝑥𝑖) = 1 for
𝑖 ≠ 𝑗 .

�

In the following Lemma 3, we deal with the case when
one Gaussian is standard. Then we extend Lemma 3 to
general case.
Lemma 3. Let N(0, 𝐼) be standard Gaussian, 𝜀 be a positive

number. For any 𝑛-dimensional Gaussian distribution
N(µ,𝚺),

(a) If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 𝜀, then

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(b) If 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 𝜀, then

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

Proof 3. (a) According to the definition of KL divergence,
we have

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) =1
2

(
− log |𝚺 | + Tr(𝚺) +µ>µ − 𝑛

)
𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) =1

2

(
log |𝚺 | + Tr(𝚺−1) +µ>𝚺−1µ − 𝑛

)
where 𝑛 is the dimension of the distribution. The positive
definite matrix 𝚺 has factorization 𝚺 = 𝑃𝐷𝑃> where 𝑃 is
an orthogonal matrix whose columns are the eigenvec-
tors of 𝚺, 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) (𝜆𝑖 > 0) whose diagonal
elements are the corresponding eigenvalues. We also
have

|𝚺 | = |𝑃 | |𝐷 | |𝑃> | = |𝐷 | =
𝑛∏
𝑖=1

𝜆𝑖 (29)

log |𝚺 | =
𝑛∑︁
𝑖=1

log𝜆𝑖 ,− log |𝚺 | =
𝑛∑︁
𝑖=1

log
1
𝜆𝑖

(30)

Tr(𝚺) = Tr(𝑃𝐷𝑃>) = Tr(𝑃>𝑃𝐷) = Tr(𝐷) =
𝑛∑︁
𝑖=1

𝜆𝑖 (31)

Tr(𝚺−1) =
𝑛∑︁
𝑖=1

𝜆′𝑖 =
𝑛∑︁
𝑖=1

1
𝜆𝑖

(32)

where 𝜆′
𝑖
= 1/𝜆𝑖 are eigenvalues of 𝚺−1.

If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≤ 𝜀, we have − log |𝚺 | + Tr(𝚺) +
µ>µ − 𝑛 ≤ 2𝜀. This condition is equal to the following
conditions

− log |𝚺 | + Tr(𝚺) =
𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 ≤ 𝑛 + 𝜀1 (33)

µ>µ ≤ 2𝜀 − 𝜀1 (34)
0 ≤ 𝜀1 ≤ 2𝜀 (35)

In the following, we find the maximum of log |𝚺 | +
Tr(𝚺−1) and µ>𝚺−1µ, respectively. From Equation (33),
we have

𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 ≤ 𝑛 + 𝜀1 (36)

Applying Lemma 2 on Inequality (36), we can obtain
𝑛∑︁
𝑖=1

1
𝜆𝑖

− log
1
𝜆𝑖

= log |𝚺 | + Tr(𝚺−1)

≤ 1
−𝑊0 (−𝑒−(1+𝜀1) )

− log
1

−𝑊0 (−𝑒−(1+𝜀1) )
+ 𝑛 − 1 (37)

Moreover, since 𝑓 (𝑥) = 𝑥−log 𝑥 takes the minimum value
𝑓 (1) = 1 at 𝑥 = 1, it is easy to know 𝜆𝑖 − log𝜆𝑖 ≤ 1 + 𝜀1
from Inequality (36). According to Lemma 1g, we know

𝑤1 (𝜀1) ≤ 𝜆𝑖 ≤ 𝑤2 (𝜀1),
1

𝑤2 (𝜀1)
≤ 𝜆′𝑖 =

1
𝜆𝑖

≤ 1
𝑤1 (𝜀1)

(38)

We also have µ>𝚺−1µ ≤ 𝜆′∗µ>µ where 𝜆′∗ is the max-
imum eigenvalue of 𝚺−1. Combining Equation (34) and
(38), we can know

µ>𝚺−1µ ≤ 𝜆′∗ (2𝜀 − 𝜀1) ≤
2𝜀 − 𝜀1

𝑤1 (𝜀1)
(39)

Now note that Inequalities (37) and (39) are tight simul-
taneously when there exists one 𝜆 𝑗 = 𝑤1 (𝜀1) and all other
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𝜆𝑖 = 1 for 𝑖 ≠ 𝑗 . Thus, we can add the two sides of
Inequalities (37) and (39) and get

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

=
1
2

(
log |𝚺 | + Tr(𝚺−1) +µ>𝚺−1µ − 𝑛

)
≤ 1

2

(
1

−𝑊0 (−𝑒−(1+𝜀1) )
− log

1
−𝑊0 (−𝑒−(1+𝜀1) )

+ 𝑛 − 1

+2𝜀 − 𝜀1

𝑤1 (𝜀1)
− 𝑛

)
=

1
2

(
1 + 2𝜀 − 𝜀1

𝑤1 (𝜀1)
− log

1
𝑤1 (𝜀1)

− 1
)

(40)

=𝑈 (𝜀1) (0 ≤ 𝜀1 ≤ 2𝜀)

Notice that the derivative of 𝑈 (𝜀1) is

𝑈 ′(𝜀1) =
1
2

(
𝑤1 (𝜀1) + 2𝜀 − 𝜀1

𝑤1 (𝜀1) (1 − 𝑤1 (𝜀1))
− 1

1 − 𝑤1 (𝜀1)

)
=

1
2

2𝜀 − 𝜀1

𝑤1 (𝜀1) (1 − 𝑤1 (𝜀1))

(41)

Since 𝑤1 (𝜀1) ∈ (0, 1) for 𝜀1 > 0 and 0 ≤ 𝜀1 ≤ 2𝜀, we
can know 𝑈 ′(𝜀1) ≥ 0 for 𝜀1 > 0. Thus, 𝑈 (𝜀1) takes the
maximum value at 𝜀1 = 2𝜀. Finally, we have

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

≤𝑈 (2𝜀) = 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

(42)
Inequality (42) is tight only when there exists one 𝜆 𝑗 =
−𝑊0 (−𝑒−(1+2𝜀) ) and all other 𝜆𝑖 = 1 for 𝑖 ≠ 𝑗 , and |µ| = 0.
We can see that when 𝜀 is small, the right hand side of
Equation (42) is also small.
(b) The proof of Theorem 3b is similar. See Appendix B
for the details.

�

In the following, we extend Lemma 3 to general Gaus-
sians. Before our generalized theorem, we recall the follow-
ing proposition which states that diffeomorphism preserves
KL divergence ( 𝑓 -divergence) [19].
Proposition 1. (See [19]) Let z = 𝑓 (x) be a diffeomorphism,

𝑋1 ∼ 𝑝𝑋 and 𝑋2 ∼ 𝑞𝑋 be two random variables and
𝑍1 = 𝑓 (𝑋1) ∼ 𝑝𝑍 , 𝑍2 = 𝑓 (𝑋2) ∼ 𝑞𝑍 . Then 𝐾𝐿 (𝑝𝑋 | |𝑞𝑋 ) =

𝐾𝐿 (𝑝𝑍 | |𝑞𝑍 ).

Main Proof of Theorem 1

Proof 4. With the help of Proposition 1, it is not hard to
extend Lemma 3 to general Gaussians. The key idea is to
use an invertible linear transformation to transform one
Gaussian to standard Gaussian, and then apply Lemma
3. Please see Appendix C for details.

�

To investigate the bound in Theorem 1 further, we can
expand Lambert 𝑊 function using the series presented in
[18], [20] for small 𝜀. This is expressed by the following
Theorem.
Theorem 2. For any two 𝑛-dimensional Gaussian distribu-

tions N(µ1,𝚺1), N(µ2,𝚺2), and a small positive number
𝜀, if 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀, then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤ 𝜀 + 2𝜀1.5 +𝑂 (𝜀2) (43)

Proof 5. Please see Appendix D for the details of the proof.
�

Theorem 1 holds for any two Gaussians N(µ1,𝚺1) and
N(µ2,𝚺2). According to the proof of Theorem 1 (Lemma 3),
one of N(µ1,𝚺1) and N(µ2,𝚺2) can be fixed. It is not hard
to extend Lemma 3 to case where the fixed one Gaussian
is not standard. We can apply linear transformation (see
Equation (155)) as what we have done in the main proof
of Theorem 1 (see Appendix C). Therefore, we have the
following corollary.
Corollary 1. Theorem 1 and Theorem 2 hold when one of

N(µ1,𝚺1) and N(µ2,𝚺2) is fixed.

Remark 1. The supremum in Theorem 1 has the following
properties.

1) The supremum is small (zero) when 𝜀 is small (zero).
Figure 1 shows some values of the supremum of KL
divergence.

2) The supremum increases rapidly when 𝜀 > 2 due to the
rapid increase of term 1

−𝑊0 (−𝑒−(1+2𝜀) ) .
3) It is hard to reach the supremum in typical applications

(e.g., in machine learning practice) due to the strict
conditions.

4) The bound is independent of the dimension 𝑛. This is a
critical property in high-dimensional problems.
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log 
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Fig. 1. Values of supremum of KL divergence shown on a logarithmic
scale.

3.2 Infimum of Reverse KL Divergence Between Gaus-
sians

We also want to know how small the reverse KL divergence
could be when forward KL divergence is not less than a
given number. In this subsection, we give the infimum of
𝐾𝐿 (N2 | |N1) when 𝐾𝐿 (N1 | |N2) ≥ 𝑀 (𝑀 > 0). The main result
is shown in Theorem 3.
Theorem 3. For any two 𝑛-dimensional Gaussian

distributionss N(µ1,𝚺1) and N(µ2,𝚺2), if
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 (𝑀 > 0), then

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(44)

The infimum is attained when the following two condi-
tions hold.
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(1) There exists only one eigenvalue 𝜆 𝑗 of 𝐵−1
2 𝚺1 (𝐵−1

2 )>
or 𝐵−1

1 𝚺2 (𝐵−1
1 )> equal to −𝑊−1 (−𝑒−(1+2𝑀 ) ) and all other

eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, where 𝐵1 = 𝑃1𝐷
1/2
1 ,

𝑃1 is an orthogonal matrix whose columns are the
eigenvectors of 𝚺1, 𝐷1 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) whose diag-
onal elements are the corresponding eigenvalues, 𝐵2 is
defined in the same way as 𝐵1 except on 𝚺2.

(2) µ1 = µ2.

Proof of Theorem 3
Intuitively, the problems in Theorem 1 and 3 should has a
tight relation. In this paper, we give two proofs of Theorem
3. The first proof has the similar structure as that of Theorem
1, except that Theorem 3 needs𝑊−1. We put the first proof in
Appendix E. The second proof can be drawn from Theorem
1 directly by analyzing the supremum. We put the second
proof below. These two proofs can verify each other.

Proof 6. In the following, we give the second proof which is
drawn from Theorem 1.
Suppose 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝑡 (𝑡 > 0), accord-
ing to Theorem 1, we know

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝑡) )
− log

1
−𝑊0 (−𝑒−(1+2𝑡) )

− 1
)

(45)

=
1
2

(
1

𝑤1 (2𝑡)
− log

1
𝑤1 (2𝑡)

− 1
)

(46)

=𝑆(𝑡) (47)

Since
1

𝑤1 (2𝑡)
is strictly increasing with 𝑡, 𝑆(𝑡) is continu-

ous and strictly increasing with 𝑡. Besides, the range of
function 𝑆(𝑡) for (𝑡 > 0) is (0, +∞).
Given positive number 𝑀 , according to Theorem 1, there
exists N(µ1,𝚺1), N(µ2,𝚺2) and 𝑚 such that

𝑆(𝑚) =𝑀 (48)
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) =𝑀 (49)
𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) =𝑚 (50)

Thus, given the precondition
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 , we can know that

inf𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) ≤ 𝑚 (51)

In the following, we show

inf𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) = 𝑚 (52)

must holds. Otherwise, there exists an 𝑚′ < 𝑚 and
N(µ1,𝚺1), N(µ2,𝚺2) such that

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 (53)
𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) = 𝑚′ (54)

Applying Theorem 1 on Equation (54), it is easy to know

sup𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝑆(𝑚′) (55)

This contradicts with the precondition
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≥ 𝑀 because
𝑆(𝑚′) < 𝑆(𝑚) = 𝑀 . Thus, Equation (52) holds.

Now we can solve 𝑚 from 𝑆(𝑚) = 𝑀 as follows.

1
2

(
1

−𝑊0 (−𝑒−(1+2𝑚) )
− log

1
−𝑊0 (−𝑒−(1+2𝑚) )

− 1
)
= 𝑀

⇔ 1
−𝑊0 (−𝑒−(1+2𝑚) )

− log
1

−𝑊0 (−𝑒−(1+2𝑚) )
= 1 + 2𝑀

⇔ 1
−𝑊0 (−𝑒−(1+2𝑚) )

= −𝑊−1 (−𝑒−(1+2𝑀 ) )

⇔ 1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

= −𝑊0 (−𝑒−(1+2𝑚) )

⇔ 1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
= 1 + 2𝑚

⇔𝑚 =
1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(56)

where the third and fifth equations follow from Lemma
1d. Plugging Equation (56) into (52), we can prove The-
orem 3.

�

Remark 2. The bound in Theorem 3 has the similar form
with that in Theorem 1. In fact, Theorem 1 and Theorem
3 forms a duality. Firstly, these two theorems can be
proved independently in the similar way. Secondly, these
two theorems can be derived from each other.

4 RELAXED TRIANGLE INEQUALITY

Until now, we have quantified the approximate symmetry
of KL divergence between Gaussians. A natural question
is how large can 𝐾𝐿 (N1 | |N3) be when 𝐾𝐿 (N1 | |N2) and
𝐾𝐿 (N2) | |N3) are small for three Gaussians N1, N2, and N3.
In this section, we give a bound of 𝐾𝐿 (N1 | |N3) that is also
independent of the dimension 𝑛. Proving the relaxed trian-
gle inequality is more difficult. The main result is presented
in Theorem 4. We put the key steps of proof of Theorem 4 in
Lemma 4 ∼ 7 and Lemma 9.
Theorem 4. For any three 𝑛-dimensional

Gaussians N(µ𝑖 ,𝚺𝑖) (𝑖 ∈ {1, 2, 3}) such
that 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1 and
𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2 for 𝜀1, 𝜀2 ≥ 0, then

𝐾𝐿 ((N (µ1,𝚺1) | |𝚺(µ3,𝚺3))

<𝜀1 + 𝜀2 +
1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1) )𝑊−1 (−𝑒−(1+2𝜀2) ) (57)

+𝑊−1 (−𝑒−(1+2𝜀1) ) +𝑊−1 (−𝑒−(1+2𝜀2) ) + 1 (58)

−𝑊−1 (−𝑒−(1+2𝜀2) )
(√︁

2𝜀1 +

√︄
2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2) )

)2ª®¬ (59)

Overview of proof of Theorem 4
We want to solve the following optimzation problem P3
analytically.

maximize 𝐾𝐿 (N (µ1,𝚺1) | |N (𝚺(µ3,𝚺3))
s.t. 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1

𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2

Unfortunately, it is hard to find the supremum due to the
complexity caused by Lambert 𝑊 function. So we relax the
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constraints to simplify the problem. Our proof consists of
the following several steps.

1) Invertible linear transformation. The first step is similar to
that of Theorem 1. We use a linear transformation on
N1, N2, and N3 to simply the problem. After transfor-
mation, N2 is converted to standard Gaussian.

2) Relaxing constraints. In this step, we relax the constraints
to get a simpler problem, which is in turn reduced to
the following core problem P4.

maximize
𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] (60)

s.t. 𝜆1, [𝑖 ] − log𝜆1, [𝑖 ] = 1 + 𝜀1, [𝑖 ] (1 ≤ 𝑖 ≤ 𝑛)
𝑛∧
𝑖=1

𝜀1, [𝑖 ] ≥ 0 ∧
𝑛∑︁
𝑖=1

𝜀1, [𝑖 ] = 2𝜀1

𝜆′2, [𝑖 ] − log𝜆′2, [𝑖 ] = 1 + 𝜀2, [𝑖 ] (1 ≤ 𝑖 ≤ 𝑛)
𝑛∧
𝑖=1

𝜀2, [𝑖 ] ≥ 0 ∧
𝑛∑︁
𝑖=1

𝜀2, [𝑖 ] = 2𝜀2

where 𝜆1, [𝑖 ] , 𝜆
′
2, [𝑖 ] are the eigenvalues of 𝚺1,𝚺−1

2 ar-
ranged in decreasing order, respectively, and 𝜀1, [𝑖 ] , 𝜀2, [𝑖 ]
are arranged in decreasing order too.

3) Concentrating 𝜀1 and 𝜀2. The objective function (60)
is determined by how 𝜀1 and 𝜀2 are allocated to
(𝜀1, [1] , · · · , 𝜀1, [𝑛]) and (𝜀2, [1] , · · · , 𝜀2, [𝑛]). We prove that
an “extreme allocation” can make the objective function
maximized. In other words, Equation (60) takes its
maximum when 𝜀1, [1] = 𝜀1 and 𝜀2, [1] = 𝜀2. We use a key
Lemma 7 to deal with the two dimensional case (i.e.,
𝑛 = 2). Then, we use Lemma 8 to extend the conclusion
to high dimensional problems.
Lemma 7 is the most tricky part in this paper. In the
proof, concentrating 𝜀1 and 𝜀2 is much harder than
that in last section for Theorem 1. 𝑓 (𝑥) = 𝑥 − log 𝑥
is a transcendental function whose inverse function is
expressed by Lambert 𝑊 function. This makes even a
2-dimensional case of problem P4 hard to solve. We
use an iterated way to prove Lemma 7. We prove that,
for any fixed “non-extreme allocation” (𝜀1, [1] , 𝜀1, [2])
(i.e., 𝜀1, [2] > 0), there is a “more extreme” allocation
(𝜀2, [1] , 𝜀2, [2]) that can make the objective function max-
imized. Then we fix (𝜀2, [1] , 𝜀2, [2]) and find a more
extreme allocation (𝜀′1, [1] , 𝜀

′
1, [2]) to lift the objective

function further. Using these iterations, we can find
an infinite sequence of allocations which can make
the objective function reach its supremum when the
allocation is an extreme one.

Notations. Before the proof, we define the following
helper functions based on 𝑓 (𝑥) = 𝑥 − log 𝑥.

𝑓𝑙 (𝑥) = 𝑓 (1 − 𝑥) − 1 (0 ≤ 𝑥 < 1), 𝑓𝑟 (𝑥) = 𝑓 (𝑥 + 1) − 1 (𝑥 ≥ 0)
(61)

The derivatives of 𝑓𝑙 (𝑥), 𝑓𝑟 (𝑥) are

𝑓 ′𝑙 (𝑥) = − 𝑓 ′(1 − 𝑥) = 1
1 − 𝑥 − 1, 𝑓 ′𝑟 (𝑥) = 𝑓 ′(1 + 𝑥) = 1 − 1

𝑥 + 1
(62)

So both 𝑓𝑙 (𝑥) and 𝑓𝑟 (𝑥) are strictly increasing. We note the
inverse functions of 𝑓𝑙 , 𝑓𝑟 as 𝑔𝑙 , 𝑔𝑟 , respectively. Combining
Lemma 1c, it is not hard to verify that 𝑔𝑙 , 𝑔𝑟 are

𝑔𝑙 (𝜀) = 𝑓 −1
𝑙 (𝜀) = 1 − 𝑤1 (𝜀) = 1 +𝑊0 (−𝑒−(1+𝜀) ) (𝜀 ≥ 0) (63)

𝑔𝑟 (𝜀) = 𝑓 −1
𝑟 (𝜀) = 𝑤2 (𝜀) − 1 = −𝑊−1 (−𝑒−(1+𝜀) ) − 1 (𝜀 ≥ 0)

(64)

According to Lemma 1e, the derivatives of 𝑔𝑙 , 𝑔𝑟 are

𝑔′𝑙 (𝜀) = 𝑓 −1′
𝑙 (𝜀) = 𝑤1 (𝜀)

1 − 𝑤1 (𝜀)
=

1 − 𝑓 −1
𝑙

(𝜀)
𝑓 −1
𝑙

(𝜀)
=

1
1 − 𝑤1 (𝜀)

− 1

(65)

𝑔′𝑟 (𝜀) = 𝑓 −1′
𝑟 (𝜀) = 𝑤2 (𝜀)

𝑤2 (𝜀) − 1
=
𝑓 −1
𝑟 (𝜀) + 1
𝑓 −1
𝑟 (𝜀)

= 1 + 1
𝑤2 (𝜀) − 1

(66)

Specially, since lim
𝜀→0

𝑤2 (𝜀) = 𝑤2 (0) = 1, it is easy to know

lim
𝜀→0

𝑔′𝑟 (𝜀) = +∞ (67)

In the following, we note 𝑔′𝑟 (0) = +∞ for convenience.
Lemma 4 gives two useful conclusions for subsequent

analysis. They hold apparently.
Lemma 4. Let 𝑎, 𝑏, 𝑎+, 𝑏− be positive real numbers.
(a) if 𝑎 > 𝑏, 𝑎 < 𝑎+, 𝑏 > 𝑏−, then 𝑎+1

𝑏+1 <
𝑎++1
𝑏−+1 .

(b) if 𝑎 ≤ 𝑏, then 𝑎 (𝑏+1)
𝑏 (𝑎+1) ≤ 1.

Lemma 5. Given 𝑓 (𝑥) = 𝑥 − log 𝑥 and 𝜀 ≥ 0, then 𝑤2 (𝜀) − 1 ≥
1 − 𝑤1 (𝜀) holds and the inequality is tight when 𝜀 = 0;

Proof 7. The details of the proof are shown in Appendix F.
�

Lemma 6. Given 𝑓 (𝑥) = 𝑥−log 𝑥 and 𝜀𝑥 , 𝜀𝑦 ≥ 0, if 𝑓 (𝑥) ≤ 1+𝜀𝑥
and 𝑓 (𝑦) ≤ 1 + 𝜀𝑦 , then

𝑓 (𝑥𝑦) ≤ 𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) (68)

Proof 8. The details of the proof are shown in Appendix G.
�

In Lemma 2 in the last section (and Lemma 10 in Section
E in Supplementary material), we eliminate the dimension
𝑛 from the bound by showing the convexity of constructed
function. Unfortunately, the relaxed triangle inequality in-
volves three Gaussians which make the analysis more com-
plex. The following Lemma 7 is the core of proof of the
relaxed triangle inequality theorem. It is the most techinical
part in this paper. We will use Lemma 7 to make the bound
in Theorem 4 independent of the dimension 𝑛.
Lemma 7. Given 𝑓 (𝑥) = 𝑥−log 𝑥, let 𝜀𝑥,1, 𝜀𝑥,2, 𝜀𝑦,1, 𝜀𝑦,2 be four

non-negative numbers such that 𝜀𝑥,1 ≥ 𝜀𝑥,2, 𝜀𝑦,1 ≥ 𝜀𝑦,2.
Then

𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (𝜀𝑦,1)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (𝜀𝑦,2))
≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (69)

Overview of proof of Lemma 7
In the overview of proof of Theorem 4 in the beginning of
Section 4, we have mentioned Lemma 7. In the left hand
side of Inequality (69), 𝜀𝑥,2 and 𝜀𝑦,2 stay in the second term.
Intuitively, we use Inequality (69) to move 𝜀𝑥,2, 𝜀𝑦,2 into the
first item. It is hard to prove Inequality (69) directly due to
the lack of conclusions relating to Lambert 𝑊 function. In
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the proof, We use an iterative way to absorb 𝜀𝑥,2, 𝜀𝑦,2 into
the first term gradually.

We treat

(𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2, 𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2) and (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2, 𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)

as two allocations, where 𝜃𝑥 and 𝜃𝑦 control how 𝜀𝑥,2 and
𝜀𝑦,2 are allocated among the two terms. The whole proof
can be seen as an variation of coordinate ascent. In each
iteration, we fix one of 𝜃𝑥 and 𝜃𝑦 (i.e., one allocation) and
make another one vary. The goal is to maximize the objective
function (Equation (71)). In this way, we will construct
an infinite sequence of allocations. The procedure is much
harder than a simple coordinate ascent algorithm. The proof
mainly consists of the following four aspects.

A1 In each step, once we fix one allocation and make
another one vary, we prove there exists one and only
one supremum.

A2 We find an equation to express above supremum
implicitly.

A3 We prove the procedure is really lifting the objective
function.

A4 We construct an infinit sequence of allocations. Then
we prove the limit of the allocation sequence will make
the objective function reach its supremum.

In this procedure, the hardest part is how to find a
more extreme allocation based on the last one. There is
no analytical solution to express these allocations. Luckily,
we find a key equation to express the property of these
allocations implicitly (see Equations (83), (97), (101)). Based
on our analysis on such equation, we succeed to construct a
sequence of allocations and finally prove Lemma 7.
Proof 9. Inequality (69) is equal to

𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (𝜀𝑦,1)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (𝜀𝑦,2))
≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 𝑓 (𝑤2 (0)𝑤2 (0)) (70)

We define function

𝑆(𝜃𝑥 , 𝜃𝑦) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2))
+ 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)) (71)

for − 𝜀𝑥,1
𝜀𝑥,2

≤ 𝜃𝑥 ≤ 1,− 𝜀𝑦,1
𝜀𝑦,2

≤ 𝜃𝑦 ≤ 1. The domains of 𝜃𝑥 , 𝜃𝑦
are restricted to make 𝑤2 (·) in the definition of 𝑆(𝜃𝑥 , 𝜃𝑦)
meaningful. Inequation (69) states that 𝑆(0, 0) ≤ 𝑆(1, 1).
We can prove 𝑆(0, 0) ≤ 𝑆(1, 1) in the following three
cases.
Case 1 𝜀𝑥,2 = 𝜀𝑦,2 = 0.
Case 2 𝜀𝑥,2 > 0, 𝜀𝑦,2 > 0. In this case, we have 𝜀𝑥,1 ≥
𝜀𝑥,2 > 0, 𝜀𝑦,1 ≥ 𝜀𝑦,2 > 0.

Case 3 only one of 𝜀𝑥,2 and 𝜀𝑦,2 equals to 0.
It is easy to verify that 𝑆(0, 0) = 𝑆(1, 1) for Case 1. In the
following, we discuss Case 2 first and deal with Case 3
at the end of the proof.

Case 2:
In 𝑆(𝜃𝑥 , 𝜃𝑦), 𝜃𝑥 , 𝜃𝑦 are symmetric. Without loss of gen-
erality, we choose any 0 < 𝜃𝑥,0 < 1 at the beginning.
The following proof consists of two steps. In Step 1, we
prove that for any fixed 0 < 𝜃𝑥,0 < 1, there exists one
and only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1 such that 𝑆(𝜃𝑥,0, 𝜃𝑦) takes

its maximum. This accomplishes aspects A1 and A2 in
the first iteration. In Step 2, we prove 𝑆(1, 1) ≥ 𝑆(0, 0).
The key idea is finding a strictly increasing sequence

{𝑆[𝑖]} such that 𝑆[0] can be arbitrarily close to 𝑆(0, 0)
and lim

𝑖→∞
𝑆[𝑖] = 𝑆(1, 1). Step 2 will accomplish aspects A1

∼ A4 in all iterations.
Step 1. At the beginning, we select any 0 < 𝜃𝑥,0 < 1. For
brevity, we note

𝜀𝑥,1 [0] = 𝜀𝑥,1 + 𝜃𝑥,0𝜀𝑥,2, 𝜀𝑥,2 [0] = 𝜀𝑥,2 − 𝜃𝑥,0𝜀𝑥,2 (72)
𝜀𝑦,1 = 𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2, 𝜀𝑦,2 = 𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2 (73)

where we use 𝜀𝑥, ( ·) [0] to denote the variable is computed
with 𝜃𝑥,0.
Note that 𝑔𝑟 (𝜀) (defined in Equation (64)) is strictly in-
creasing with 𝜀. Combining the precondition 𝜀𝑥,1 ≥ 𝜀𝑥,2,
we can know

𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔𝑟 (𝜀𝑥,1 + 𝜃𝑥,0𝜀𝑥,2)
𝑔𝑟 (𝜀𝑥,2 − 𝜃𝑥,0𝜀𝑥,2)

>
𝑔𝑟 (𝜀𝑥,1)
𝑔𝑟 (𝜀𝑥,2)

≥ 1 (74)

We note this condition as C1 [0] as follows.

C1 [0] :
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

> 1 (75)

Now given the fixed 𝜃𝑥,0, the derivative of 𝑆(𝜃𝑥,0, 𝜃𝑦) is

d𝑆(𝜃𝑥,0, 𝜃𝑦)
d𝜃𝑦

=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

− 1
𝑤2 (𝜀𝑦,1)

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

)
− 𝜀𝑦,2

(
𝑤2 (𝜀𝑥,2 [0])

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

− 1
𝑤2 (𝜀𝑦,2)

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])𝑤2 (𝜀𝑦,1) − 1

𝑤2 (𝜀𝑦,1) − 1
−
𝑤2 (𝜀𝑥,2 [0])𝑤2 (𝜀𝑦,2) − 1

𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

(
𝑤2 (𝜀𝑥,1 [0])𝑤2 (𝜀𝑦,1) − 𝑤2 (𝜀𝑥,1 [0]) + 𝑤2 (𝜀𝑥,1 [0]) − 1

𝑤2 (𝜀𝑦,1) − 1

−
𝑤2 (𝜀𝑥,2 [0])𝑤2 (𝜀𝑦,2) − 𝑤2 (𝜀𝑥,2 [0]) + 𝑤2 (𝜀𝑥,2 [0]) − 1

𝑤2 (𝜀𝑦,2) − 1

)
=𝜀𝑦,2

((
𝑤2 (𝜀𝑥,1 [0]) +

𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

)
−

(
𝑤2 (𝜀𝑥,2 [0]) +

𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

))
(76)

The second order derivative is

d2𝑆(𝜃𝑥,0, 𝜃𝑦)
d𝜃2

𝑦

=
−(𝑤2 (𝜀𝑥,1 [0]) − 1)
(𝑤2 (𝜀𝑦,1) − 1)2

𝑤2 (𝜀𝑦,1)
𝑤2 (𝜀𝑦,1) − 1

(𝜀𝑦,2)2

−
−(𝑤2 (𝜀𝑥,2 [0]) − 1)
(𝑤2 (𝜀𝑦,2) − 1)2

𝑤2 (𝜀𝑦,2)
𝑤2 (𝜀𝑦,2) − 1

(−(𝜀𝑦,2)2)

= −
(𝑤2 (𝜀𝑥,1 [0]) − 1)𝑤2 (𝜀𝑦,1) (𝜀𝑦,2)2

(𝑤2 (𝜀𝑦,1) − 1)3

−
(𝑤2 (𝜀𝑥,2 [0]) − 1)𝑤2 (𝜀𝑦,2) (𝜀𝑦,2)2

(𝑤2 (𝜀𝑦,2) − 1)3 (77)

Since 𝑤2 (𝜀) > 1 for 𝜀 > 0, it is easy to know d2𝑆 (𝜃𝑥,0 , 𝜃𝑦 )
d𝜃2

𝑦

<

0 for 𝜃𝑦 < 1. Thus we get the following proposition.

Proposition 2. 𝑆(𝜃𝑥,0, 𝜃𝑦) is strictly concave and has at most
one maximum for 𝜃𝑦 < 1.
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Remember that we are discussing Case 2, so 𝜀𝑦,2 > 0.
Now letting d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )

d𝜃𝑦
= 0 (i.e., Equation (76)= 0), we can

obtain
d𝑆(𝜃𝑥,0, 𝜃𝑦)

d𝜃𝑦
= 0 ⇔

𝑤2 (𝜀𝑥,1 [0]) +
𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

= 𝑤2 (𝜀𝑥,2 [0]) +
𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

(78)

Now, it seems that the proof is stuck because we can not
solve Equation (78) analytically. However, we succeed
to go further by analyzing Equation (78). Our analysis
starts from the following transformation in Equations
(79) ∼ (83), which is hard to obtain but easy to verify.
Using the notations of helper functions 𝑔𝑟 (𝜀) =

𝑓 −1
𝑟 (𝜀), 𝑔′𝑟 (𝜀) = 𝑓 −1′

𝑟 (𝜀) in Equations (64) and (66), we
can rewrite Equation (78) as follows.

Equation (78)

⇔𝑤2 (𝜀𝑥,1 [0]) − 1 +
𝑤2 (𝜀𝑥,1 [0]) − 1
𝑤2 (𝜀𝑦,1) − 1

= 𝑤2 (𝜀𝑥,2 [0]) − 1 +
𝑤2 (𝜀𝑥,2 [0]) − 1
𝑤2 (𝜀𝑦,2) − 1

(79)

⇔(𝑤2 (𝜀𝑥,1 [0]) − 1)
(
1 + 1

𝑤2 (𝜀𝑦,1) − 1

)
= (𝑤2 (𝜀𝑥,2 [0]) − 1)

(
1 + 1

𝑤2 (𝜀𝑦,2) − 1

)
⇔𝑔𝑟 (𝜀𝑥,1 [0])𝑔′𝑟 (𝜀𝑦,1) = 𝑔𝑟 (𝜀𝑥,2 [0])𝑔′𝑟 (𝜀𝑦,2)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

(80)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=

(
1

𝑔′𝑟 (𝜀𝑦,1)

)
(

1
𝑔′𝑟 (𝜀𝑦,2)

)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=

(
𝑔𝑟 (𝜀𝑦,1)

𝑔𝑟 (𝜀𝑦,1) + 1

)
(
𝑔𝑟 (𝜀𝑦,2)

𝑔𝑟 (𝜀𝑦,2) + 1

) (81)

⇔
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

=
𝑔𝑟 (𝜀𝑦,1)
𝑔𝑟 (𝜀𝑦,2)

𝑔𝑟 (𝜀𝑦,2) + 1
𝑔𝑟 (𝜀𝑦,1) + 1

(82)

⇔
𝑔𝑟 (𝜀𝑦,1)
𝑔𝑟 (𝜀𝑦,2)

=
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1) + 1
𝑔𝑟 (𝜀𝑦,2) + 1

(83)

where Equation (81) follows from Equation (66).
Up to now, we transform the condition d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )

d𝜃𝑦
= 0 in

Equation (78) to Equation (83). In the following, Equation
(83) will be used to investigate the property of the maxi-
mum for 𝑆(𝜃𝑥,0, 𝜃𝑦). The goal is to accomplish aspect A2
of the proof.
In the following Substep 1.1, we show that Equation
(78) must have one and only one solution. In other
words, there must be one and only one point making
d𝑆 (𝜃𝑥,0 , 𝜃𝑦 )

d𝜃𝑦
= 0. Unfortunately, it is hard to get an analyt-

ical solution from Equation (78) due to the complexity
brought by Lambert 𝑊 function. Therefore, in Substep
1.2, we analyze Equations (79) ∼ (83) to investigate the
properties of the solution. Overall, the analysis in Step 1
will be used as a basic step in Step 2.

Substep 1.1. According to the definition of 𝑔′𝑟 (𝜀) in
Equation (66), 𝑔′𝑟 (𝜀) is strictly decreasing with 𝜀. So
𝑔′𝑟 (𝜀𝑦,2) = 𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2) is strictly increasing and
𝑔′𝑟 (𝜀𝑦,1) = 𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2) is strictly decreasing with 𝜃𝑦 .
Thus, the right hand side of Equation (80) is continous
and strictly increasing with 𝜃𝑦 . Besides, according to
Equation (67) and the definition of 𝜀𝑦,1, 𝜀𝑦,2 in Equation
(72) and (72), it is easy to know

lim
𝜃𝑦→−

𝜀𝑦,1
𝜀𝑦,2

𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

= lim
𝜃𝑦→−

𝜀𝑦,1
𝜀𝑦,2

𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)

=
𝑔′𝑟 (𝜀𝑦,2 + 𝜀𝑦,1)

𝑔′𝑟 (0)
=
𝑔′𝑟 (𝜀𝑦,2 + 𝜀𝑦,1)

+∞ = 0

(84)

lim
𝜃𝑦→1

𝑔′𝑟 (𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1)

= lim
𝜃𝑦→1

𝑔′𝑟 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)
𝑔′𝑟 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2)

=
𝑔′𝑟 (0)

𝑔′𝑟 (𝜀𝑦,1 + 𝜀𝑦,2)
=

+∞
𝑔′𝑟 (𝜀𝑦,1 + 𝜀𝑦,2)

= +∞

(85)

So the range of the right hand side of Equation (80) is
(0, +∞) when − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦 < 1.

Remember that we start from 0 < 𝜃𝑥,0 < 1, combin-
ing the precondition 𝜀𝑥,1 ≥ 𝜀𝑥,2 and the definitions of
𝜀𝑥,1 [0], 𝜀𝑥,2 [0] in Equation (72) and (72), it is easy to
know that the left hand side of Equation (80) is a positive
constant number. Therefore, Equation (80) must has one
and only one solution. We note such solution as 𝜃𝑦,1.
Combining with Proposition 2, we can know that for
any fixed 0 < 𝜃𝑥,0 < 1, there exists one and only one
− 𝜀𝑦,1
𝜀𝑦,2

< 𝜃𝑦,1 < 1 that maximize 𝑆(𝜃𝑥,0, 𝜃𝑦).
Here note that we still have no guarantee for 𝜃𝑦,1 > 0
currently.

Substep 1.2. We can investigate the property of the
solution 𝜃𝑦,1 by analyzing Equation (80), (82) and (83).
Firstly, we can show

𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

=
𝑔𝑟 (𝜀𝑦,1 + 𝜃𝑦,1𝜀𝑦,2)
𝑔𝑟 (𝜀𝑦,2 − 𝜃𝑦,1𝜀𝑦,2)

> 1 (86)

by contradiction. Assume to the contrary that
𝑔𝑟 ( �̃�𝑦,1 [1])
𝑔𝑟 ( �̃�𝑦,2 [1]) ≤ 1, then 𝑔𝑟 ( �̃�𝑦,1 [1])+1

𝑔𝑟 ( �̃�𝑦,2 [1])+1 ≥ 𝑔𝑟 ( �̃�𝑦,1 [1])
𝑔𝑟 ( �̃�𝑦,2 [1]) . Combining

condition C1 [0] in Equation (75), we can deduce

𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

>
𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

≥
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

(87)

This contradicts with Equation (83). Therefore, we can
obtain the following condition C1 [1].

C1 [1] :
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

> 1 (88)

Secondly, according to condition C1 [1], it is easy to
know

𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

>
𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

> 1 (89)
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Now combining Equation (83) and (89), we can know the
following condition2 C2 [1] holds.

C2 [1] :
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

>
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

(90)

In summary, we start from any fixed 0 < 𝜃𝑥,0 < 1 making
condition C1 [0] in Equation (75) hold. Using Step 1, we
find the only one − 𝜀𝑦,1

𝜀𝑦,2
< 𝜃𝑦,1 < 1 such that 𝑆(𝜃𝑥,0, 𝜃𝑦)

takes its maximum at 𝜃𝑦,1 and conditions C1 [1] and
C2 [1] hold.
Step 2. The deduction in Step 1 can be iterated repeat-
edly due to the symmetry of 𝜃𝑥 and 𝜃𝑦 in 𝑆(𝜃𝑥 , 𝜃𝑦).
For consistency, at the begining of the iterations, we can
choose any 𝜃𝑦 ≠ 𝜃𝑦,1 as 𝜃𝑦,0.
In the following, we use notations

𝜀𝑥,1 [𝑖] = 𝜀𝑥,1 + 𝜃𝑥,𝑖𝜀𝑥,2, 𝜀𝑥,2 [𝑖] = 𝜀𝑥,2 − 𝜃𝑥,𝑖𝜀𝑥,2
𝜀𝑦,1 [𝑖] = 𝜀𝑦,1 + 𝜃𝑦,𝑖𝜀𝑦,2, 𝜀𝑦,2 [𝑖] = 𝜀𝑦,2 − 𝜃𝑦,𝑖𝜀𝑦,2 (91)

where 𝜀 ( ·) ,𝑘 [𝑖] (𝑘 ∈ {1, 2}) is computed with 𝜃 ( ·) ,𝑖 . Now
we fix 𝜃𝑦,1 and make 𝜃𝑥 vary, then we repeat Step 1
on 𝜃𝑥 . Note that, in the second iteration the condition
C1 [1] plays the same role as condition C1 [0] plays in
the first iteration. Therefore, we can find a 𝜃𝑥,2 such that
the following conditions hold

𝑆(𝜃𝑥,2, 𝜃𝑦,1) > 𝑆(𝜃𝑥,0, 𝜃𝑦,1) (92)
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

=
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

𝑔𝑟 (𝜀𝑥,1 [2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2]) + 1

=
𝑔𝑟 (𝜀𝑥,1 [0])
𝑔𝑟 (𝜀𝑥,2 [0])

𝑔𝑟 (𝜀𝑦,1 [1]) + 1
𝑔𝑟 (𝜀𝑦,2 [1]) + 1

𝑔𝑟 (𝜀𝑥,1 [2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2]) + 1

(93)

C1 [2] :
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

> 1 (94)

C2 [2] :
𝑔𝑟 (𝜀𝑥,1 [2])
𝑔𝑟 (𝜀𝑥,2 [2])

>
𝑔𝑟 (𝜀𝑦,1 [1])
𝑔𝑟 (𝜀𝑦,2 [1])

(95)

where the first equation is by Equation (83). Note that,
combing conditions C1 [0], C1 [1], C2 [1], C1 [2] and
Equation (93), we know it is impossible that 𝜀𝑥,1 [2] =

𝜀𝑥,1 [0] and 𝜃𝑥,2 = 𝜃𝑥,0. So it is impossible 𝑆(𝜃𝑥,2, 𝜃𝑦,1) =

𝑆(𝜃𝑥,0, 𝜃𝑦,1).
We can repeat Step 1 on 𝜃𝑥 and 𝜃𝑦 alternatively and
construct a sequence {𝜃𝑥,0, 𝜃𝑦,1, 𝜃𝑥,2, 𝜃𝑦,3, . . . } such that
the following conditions hold.

For 𝑖 ∈ N we have

𝑆(𝜃𝑥,2𝑖+2, 𝜃𝑦,2𝑖+1) > 𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+1) (96)
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) =

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1])

𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) + 1

=
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) + 1

(97)

C1 [2𝑖 + 2] :
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) > 1 (98)

C2 [2𝑖 + 2] :
𝑔𝑟 (𝜀𝑥,1 [2𝑖 + 2])
𝑔𝑟 (𝜀𝑥,2 [2𝑖 + 2]) >

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) (99)

2. In this context, C2 [1] is stronger than C1 [1]. We separate C1 [1]
and C2 [1] away for clarity.

For 𝑖 ∈ N ∧ 𝑖 > 0 we have

𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+1) > 𝑆(𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖−1) (100)
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) =

𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

=
𝑔𝑟 (𝜀𝑦,1 [2𝑖 − 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 − 1])

𝑔𝑟 (𝜀𝑥,1 [2𝑖]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖]) + 1

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

(101)

C1 [2𝑖 + 1] :
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) > 1 (102)

C2 [2𝑖 + 1] :
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) >

𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

(103)

Now combining conditions C2 [2𝑖 + 2], C2 [2𝑖 + 1] and
Equations (91), we can also obtain

𝜃𝑥,2𝑖+2 > 𝜃𝑥,2𝑖 , 𝜃𝑦,2𝑖+3 > 𝜃𝑦,2𝑖+1 (𝑖 ∈ N) (104)

Up to now, we have constructed the following strictly
increasing sequences

Θ𝑥 [𝑖] = 𝜃𝑥,2𝑖 (105)
Θ𝑦 [𝑖] = 𝜃𝑦,2𝑖+1 (106)

𝑅𝑥 [𝑖] =
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

(107)

𝑅𝑦 [𝑖] =
𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1])
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) (108)

for 𝑖 ∈ N. According to conditions C1 [0],C1 [1], · · · , it is
easy to know 𝑅𝑥 [𝑖] > 1, 𝑅𝑦 [𝑖] > 1 for 𝑖 ∈ N. Besides, we
note

𝑅+
𝑥 [𝑖] =

𝑔𝑟 (𝜀𝑥,1 [2𝑖]) + 1
𝑔𝑟 (𝜀𝑥,2 [2𝑖]) + 1

, 𝑅+
𝑦 [𝑖] =

𝑔𝑟 (𝜀𝑦,1 [2𝑖 + 1]) + 1
𝑔𝑟 (𝜀𝑦,2 [2𝑖 + 1]) + 1

(109)

for 𝑖 ∈ N. According to Lemma 4a, it is easy to know both
𝑅+
𝑥 [𝑖], 𝑅+

𝑦 [𝑖] are strictly increasing. Importantly, we have
constructed the following strictly increasing sequence for
𝑖 ∈ N.

𝑆[𝑖] =


𝑆(𝜃𝑥,0, 𝜃𝑦,0), 𝑖 = 0
𝑆(𝜃𝑥,𝑖−1, 𝜃𝑦,𝑖), 𝑖%2 = 1
𝑆(𝜃𝑥,𝑖 , 𝜃𝑦,𝑖−1), 𝑖%2 = 0 ∧ 𝑖 > 0

(110)

This accomplishes aspect A3.
Here we note that C1 [𝑖] (𝑖 ≥ 0) plays an important role in
each iteration. When C1 [𝑖] holds, we let the derivative of
𝑆 equal to 0. Then we get the maximum of 𝑆 and make
C2 [𝑖] (𝑖 ≥ 1) hold in each iteration. Importantly, C2 [𝑖]
guarantees 𝑅𝑥 [𝑖] and 𝑅𝑦 [𝑖] are strictly increasing.
In the following, we prove

lim
𝑖→+∞

𝑅𝑥 [𝑖] = +∞, lim
𝑖→+∞

𝑅𝑦 [𝑖] = +∞ (111)

in order to accomplish aspect A4 finally. Now let’s ob-
serve how 𝑅𝑥 [𝑖] increases. Using the notations of 𝑅𝑥 [𝑖]
and 𝑅+

𝑥 [𝑖], we rewrite Equation (97) and get the following
relation

𝑅𝑥 [𝑖 + 1] = 𝑅𝑥 [𝑖]𝑅+
𝑦 [𝑖]𝑅+

𝑥 [𝑖 + 1] (112)

This indicates that

𝑅𝑥 [𝑖 + 1] − 𝑅𝑥 [𝑖] = 𝑅𝑥 [𝑖] (𝑅+
𝑦 [𝑖]𝑅+

𝑥 [𝑖 + 1] − 1) (113)
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Here 𝑅𝑥 [𝑖], 𝑅+
𝑦 [𝑖], 𝑅+

𝑥 [𝑖] are all strictly increasing and
larger than 1. The relation in Equation (113) indi-
cates that the difference between neighbouring ele-
ments of {𝑅𝑥 [𝑖]} is strictly increasing. This violates the
Cauchy’s criterion for convergence. Thus, we can con-
clude lim

𝑖→+∞
𝑅𝑥 [𝑖] = +∞. Similarly, we can also conclude

lim
𝑖→+∞

𝑅𝑦 [𝑖] = +∞.
Now from Θ𝑥 [𝑖] < 1, we can know

𝑅𝑥 [𝑖] =
𝑔𝑟 (𝜀𝑥,1 [2𝑖])
𝑔𝑟 (𝜀𝑥,2 [2𝑖])

=
𝑤2 (𝜀𝑥,1 + 𝜃𝑥,2𝑖𝜀𝑥,2) − 1
𝑤2 (𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2) − 1

<
𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2) − 1

𝑤2 (𝜀𝑥,2 − 𝜃𝑥,2𝑖𝜀𝑥,2) − 1
(114)

The numerator of the rightmost item of Equation (114)
is a constant. From lim

𝑖→+∞
𝑅𝑥 [𝑖] = +∞, we can conclude

lim
𝑖→+∞

𝑤2 (𝜀𝑥,2−𝜃𝑥,2𝑖𝜀𝑥,2)−1 = 0 and lim
𝑖→+∞

𝜀𝑥,2−𝜃𝑥,2𝑖𝜀𝑥,2 = 0.
Thus, we obtain

lim
𝑖→+∞

Θ𝑥 [𝑖] = lim
𝑖→+∞

𝜃𝑥,2𝑖 = 1 (115)

Similarly, we can also obtain

lim
𝑖→+∞

Θ𝑦 [𝑖] = lim
𝑖→+∞

𝜃𝑦,2𝑖+1 = 1 (116)

Now combining Equations (71), (105), (106), (110), (115)
and (116), we can know

lim
𝑖→+∞

𝑆[𝑖]

=𝑆(1, 1) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2))
+ 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜀𝑦,2))

= 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (117)

Since 𝑆[𝑖] is strictly increasing, we can conclude

𝑆(𝜃𝑥,0, 𝜃𝑦,0) < 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 (118)

Remember that, we can take any 𝜃𝑥,0 > 0 and any 𝜃𝑦,0 ≠

𝜃𝑦,1 as the start point of above iterations. This means that
Equation (118) holds for any point (𝜃𝑥,0, 𝜃𝑦,0) satisfying
𝜃𝑥,0 > 0 in the neighborhood of (0, 0) on the 𝜃𝑥𝜃𝑦 plane.
Now we can show

𝑆(0, 0) ≤ 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1 = 𝑆(1, 1)
(119)

by contradiction. Assume to the contrary that 𝑆(0, 0) >
𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜀𝑦,2)) + 1, due to continuity
of 𝑆(𝜃𝑥 , 𝜃𝑦), we can find a neighbour (𝜃 ′𝑥 , 𝜃 ′𝑦) (𝜃 ′𝑥 > 0)
of (0, 0) such that 𝑆(𝜃 ′𝑥 , 𝜃 ′𝑦) > 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (𝜀𝑦,1 +
𝜀𝑦,2)) + 1. This contradicts with Inequlity (118).

Case 3:
Finally, we can discuss Case 3 when one of 𝜀𝑥,2 and
𝜀𝑦,2 equals 0. Without loss of generality, we suppose that
𝜀𝑦,2 = 0. We can discuss this in two subcases.

- Subcase 3.1: 𝜀𝑦,1 = 𝜀𝑦,2 = 0. By Lemma 1d and Equation
(71), it is easy to know

𝑆(1, 1) = 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜀𝑥,2)𝑤2 (0)) + 𝑓 (𝑤2 (0)𝑤2 (0))
=1 + 𝜀𝑥,1 + 𝜀𝑥,2 + 1

𝑆(0, 0) = 𝑓 (𝑤2 (𝜀𝑥,1)𝑤2 (0)) + 𝑓 (𝑤2 (𝜀𝑥,2)𝑤2 (0))
=1 + 𝜀𝑥,1 + 1 + 𝜀𝑥,2

This satisfies 𝑆(0, 0) ≤ 𝑆(1, 1).

- Subcase 3.2: 𝜀𝑦,1 > 𝜀𝑦,2 = 0.
Here we treat 𝑆(𝜃𝑥 , 𝜃𝑦) as a function of three variables
𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2 as follows.

𝑆(𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2)
= 𝑓 (𝑤2 (𝜀𝑥,1 + 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,1 + 𝜃𝑦𝜀𝑦,2))
+ 𝑓 (𝑤2 (𝜀𝑥,2 − 𝜃𝑥𝜀𝑥,2)𝑤2 (𝜀𝑦,2 − 𝜃𝑦𝜀𝑦,2)) (120)

It is easy to know 𝑆(𝜃𝑥 , 𝜃𝑦 , 𝜀𝑦,2) is continuous. Note
that, we have proven 𝑆(0, 0, 𝜀𝑦,2) ≤ 𝑆(1, 1, 𝜀𝑦,2) for any
𝜀𝑦,2 > 0 in Case 2. Therefore, we have

𝑆(0, 0, 0) = lim
𝜀𝑦,2→0

𝑆(0, 0, 𝜀𝑦,2) ≤ lim
𝜀𝑦,2→0

𝑆(1, 1, 𝜀𝑦,2) = 𝑆(1, 1, 0)

(121)

so 𝑆(0, 0) ≤ 𝑆(1, 1) for 𝜀𝑦,1 > 𝜀𝑦,2 = 0.
This concludes the proof of Lemma 7.

�

Up to now, we have resolved the 2-dimensional case of
the core of the proof. To extend to high-dimensional case,
we need the following Lemma 8.

Lemma 8. (See [21]) For any two Hermition positive
semidefinite 𝑛 × 𝑛-matrices 𝐴, 𝐵

Tr(𝐴𝐵) ≤
𝑛∑︁
𝑖=1

𝜆𝐴, [𝑖 ]𝜆𝐵, [𝑖 ] (122)

where 𝜆𝐴, [𝑖 ] , 𝜆𝐵, [𝑖 ] are the eigenvalues of 𝐴, 𝐵 arranged
in decreasing order, respectively.

Now we present our theorem on the relaxed triangle
inequality of KL divergences between Gaussians. Firstly, we
deal with the case when one of the Gaussians is standard
Gaussian. Then, we generalize the conclusion to general
case.

Lemma 9. For any two 𝑛-dimensional Gaussian
distributionss N(µ1,𝚺1) and N(µ2,𝚺2) such that
𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤
𝜀2 (𝜀1, 𝜀2 ≥ 0) , then

𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2)) (123)

<𝜀1 + 𝜀2 +
1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1) )𝑊−1 (−𝑒−(1+2𝜀2) )

+𝑊−1 (−𝑒−(1+2𝜀1) ) +𝑊−1 (−𝑒−(1+2𝜀2) ) + 1

−𝑊−1 (−𝑒−(1+2𝜀2) )
(√︁

2𝜀1 +

√︄
2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2) )

)2ª®¬
Proof 10. In the proofs of Lemma 2 (and Lemma 10 in Ap-

pendix), we construct equivalent optimization problems
by introducing new variables in the constraints. Unfortu-
nately, in the proof of Lemma 9, we cannot use the same
step. Otherwise, the bound would be too complicated to
resolve. To obtain a bound independent of the dimension
𝑛, we need to relax the constraint in the beginning.
Our aim is to find an upper bound of
𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2)) under the constraints
𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤
𝜀2. In the following, we first relax the constraints and
then find an upper bound under the relaxed constraints.
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According to the definition of KL divergence, we have

𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2))

=
1
2

(
log

|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1) + (µ2 −µ1)>𝚺−1

2 (µ2 −µ1) − 𝑛
)

In the following two steps, we first find an upper bound
for the first two items, then we find an upper bound for
the rest items.
Step 1. According to Lemma 8, we have

log
|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1)

=Tr(𝚺−1
2 𝚺1) − log

|𝚺1 |
|𝚺2 |

=Tr(𝚺−1
2 𝚺1) − log( |𝚺−1

2 | |𝚺1 |)

=Tr(𝚺−1
2 𝚺1) − log

𝑛∏
𝑖=1

𝜆1,𝑖𝜆
′
2,𝑖

≤
𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log

𝑛∏
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ]

=

𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] (124)

where 𝜆1,𝑖 , 𝜆
′
2,𝑖 are the eigenvalues of 𝚺1,𝚺−1

2 arranged in
decreasing order, respectively. In the following, we find
an upper bound for Equation (124).
By the definition of KL divergence, the constraint
𝐾𝐿 (N (µ1,𝚺1) | |N (0, 𝐼)) ≤ 𝜀1 is equal to

− log |𝚺1 | + Tr(𝚺1) +µ>
1 µ1 − 𝑛 ≤ 2𝜀1 (125)

Combining Lemma 1a, Equation (29) and (32), we relax
the constraint in Inquality (125) as follows.

− log |𝚺1 | + Tr(𝚺1) =
𝑛∑︁
𝑖=1

𝜆1,𝑖 − log𝜆1,𝑖 ≤ 𝑛 + 2𝜀1 (126)

µ>
1 µ1 ≤ 2𝜀1 (127)

where 𝜆1,𝑖 are the eigenvalues of 𝚺1. For simplicity, we
modify the constraint in Inquality (126) to the following
constraint.

− log |𝚺1 | + Tr(𝚺1) =
𝑛∑︁
𝑖=1

𝜆1,𝑖 − log𝜆1,𝑖 = 𝑛 + 2𝜀1 (128)

In the following, we find the upper bound for Equation
(124) under constraints (128). Then we will see that
the upper bound is increasing with 𝜀1. So there is no
difference between constraints (126) and (128).
Form the perspective of optimization, the constraint in
Inequality (128) can be replaced by the following con-
straints

𝜆1,𝑖 − log𝜆1,𝑖 = 1 + 𝜀1,𝑖 (1 ≤ 𝑖 ≤ 𝑛) (129)
𝑛∧
𝑖=1

𝜀1,𝑖 ≥ 0 ∧
𝑛∑︁
𝑖=1

𝜀1,𝑖 = 2𝜀1 (130)

Similarly, the constraint 𝐾𝐿 (N (0, 𝐼) | |N (µ2,𝚺2)) ≤ 𝜀2 is
equal to

log |𝚺2 | + Tr(𝚺−1
2 ) +µ>

2 𝚺
−1
2 µ2 − 𝑛 ≤ 2𝜀2 (131)

which implies the following constraints

log |𝚺2 | + Tr(𝚺−1
2 ) =

𝑛∑︁
𝑖=1

𝜆′2,𝑖 − log𝜆′2,𝑖 ≤ 𝑛 + 2𝜀2 (132)

µ>
2 𝚺

−1
2 µ2 ≤ 2𝜀2 (133)

where 𝜆′2,𝑖 are the eigenvalues of 𝚺−1
2 . We also modify

the constraint in Inequality (132) to the following con-
straint which does not affect the upper bound.

log |𝚺2 | + Tr(𝚺−1
2 ) =

𝑛∑︁
𝑖=1

𝜆′2,𝑖 − log𝜆′2,𝑖 = 𝑛 + 2𝜀2 (134)

Furthermore, constraint (134) can be replaced by the
following constraints.

𝜆′2,𝑖 − log𝜆′2,𝑖 = 1 + 𝜀2,𝑖 (1 ≤ 𝑖 ≤ 𝑛) (135)
𝑛∧
𝑖=1

𝜀2,𝑖 ≥ 0 ∧
𝑛∑︁
𝑖=1

𝜀2,𝑖 = 2𝜀2 (136)

In the following, we find an upper bound of Equation
(124) under constraints (129), (130), (135), and (136).
Applying Lemma 6 to Equation (124) with conditions
(129) and (135), we can obtain
𝑛∑︁
𝑖=1

𝜆1, [𝑖 ]𝜆
′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] ≤

𝑛∑︁
𝑖=1

𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))

(137)

where 𝜀1, [𝑖 ] and 𝜀2, [𝑖 ] are also arranged in decreasing
order.
Now we apply Lemma 7 to the right hand side of
Inequality (137) repeatedly on the first two dimensions
as follows. Here we use notations 𝐸1,𝑘 =

∑𝑘
𝑖=1 𝜀1, [𝑖 ] , 𝐸2,𝑘 =∑𝑘

𝑖=1 𝜀2, [𝑖 ] for brevity.

log
|𝚺2 |
|𝚺1 |

+ Tr(𝚺−1
2 𝚺1)

≤∑𝑛
𝑖=1 𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ] − log𝜆1, [𝑖 ]𝜆

′
2, [𝑖 ]

≤∑𝑛
𝑖=1 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))

= 𝑓 (𝑤2 (𝜀1, [1])𝑤2 (𝜀2, [1])) + 𝑓 (𝑤2 (𝜀1, [2])𝑤2 (𝜀2, [2]))
+ ∑𝑛

𝑖=3 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))
≤ 𝑓 (𝑤2 (𝜀1, [1] + 𝜀1, [2])𝑤2 (𝜀2, [1] + 𝜀2, [2])) + 1
+ ∑𝑛

𝑖=3 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))
= 𝑓 (𝑤2 (𝐸1,2)𝑤2 (𝐸2,2)) + 𝑓 (𝑤2 (𝜀1, [3])𝑤2 (𝜀2, [3]))
+ ∑𝑛

𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ])) + 1
≤ 𝑓 (𝑤2 (𝐸1,2 + 𝜀1, [3])𝑤2 (𝐸2,2 + 𝜀2, [3])) + 1
+ ∑𝑛

𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ])) + 1
= 𝑓 (𝑤2 (𝐸1,3)𝑤2 (𝐸2,3)) +

∑𝑛
𝑖=4 𝑓 (𝑤2 (𝜀1, [𝑖 ])𝑤2 (𝜀2, [𝑖 ]))

+ 2
. . .

≤ 𝑓 (𝑤2 (𝐸1,𝑛)𝑤2 (𝐸2,𝑛)) + 𝑛 − 1
= 𝑓 (𝑤2 (

∑𝑛
𝑖=1 𝜀1, [𝑖 ])𝑤2 (

∑𝑛
𝑖=1 𝜀2, [𝑖 ])) + 𝑛 − 1

= 𝑓 (𝑤2 (2𝜀1)𝑤2 (2𝜀2)) + 𝑛 − 1
=2𝜀1 + 2𝜀2 + 2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1)
− 𝑤2 (2𝜀2) + 𝑛 − 1

=2𝜀1 + 2𝜀2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1) − 𝑤2 (2𝜀2)
+ 𝑛 + 1 (138)

by (124)

by (137)

Lemma 7

Lemma 7

Lemma 1j
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The bound in Equation (138) is increasing with 𝜀1 and
𝜀2. Therefore, the constraints (128) and (134) can be
modified back to (126) and (132), respectively .
Step 2. from Equation (127), we know

|µ1 | ≤
√︁

2𝜀1 (139)

where | · | denotes the 𝐿2 norm of vector. From Inequlity
(133), we also know 𝜆′2∗µ

>
2 µ2 ≤ µ>

2 𝚺
−1
2 µ2 ≤ 2𝜀2, where

𝜆′2∗ is the minimum eigenvalue of 𝚺−1
2 . Now combining

the condition (132) and Lemma 1g, we get

µ>
2 µ2 ≤ 2𝜀2

𝜆′2∗
≤ 2𝜀2

𝑤1 (2𝜀2)
=⇒ |µ2 | ≤

√︄
2𝜀2

𝑤1 (2𝜀2)
(140)

Combining Inequalities (139), (140) and using the trian-
gle inequality for norms of vectors, we have

|µ2 −µ1 | ≤ |µ2 | + |µ1 | ≤
√︁

2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)
(141)

Again, we have (µ2 − µ1)>𝚺−1
2 (µ2 − µ1) ≤ 𝜆′∗2 |µ2 − µ1 |2,

where 𝜆′∗2 is the maximum eigenvalue of 𝚺−1
2 . From

Lemma 1g and condition (132), we know 𝜆′∗2 ≤ 𝑤2 (2𝜀2).
Thus, we can conclude that

(µ2 −µ1)>𝚺−1
2 (µ2 −µ1) ≤𝑤2 (2𝜀2) |µ2 −µ1 |2

≤𝑤2 (2𝜀2)
(√︁

2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)

)2

(142)

Finally, combining Inequalities (138) and (142), we can
conclude that

𝐾𝐿 ((N (µ1,𝚺1) | |N (µ2,𝚺2))

<
1
2

©­«2𝜀1 + 2𝜀2 + 𝑤2 (2𝜀1)𝑤2 (2𝜀2) − 𝑤2 (2𝜀1) − 𝑤2 (2𝜀2)

+ 𝑛 + 1 + 𝑤2 (2𝜀2)
(√︁

2𝜀1 +

√︄
2𝜀2

𝑤1 (2𝜀2)

)2

− 𝑛ª®¬
=𝜀1 + 𝜀2 +

1
2

©­«𝑊−1 (−𝑒−(1+2𝜀1) )𝑊−1 (−𝑒−(1+2𝜀2) )

+𝑊−1 (−𝑒−(1+2𝜀1) ) +𝑊−1 (−𝑒−(1+2𝜀2) ) + 1

−𝑊−1 (−𝑒−(1+2𝜀2) )
(√︁

2𝜀1 +

√︄
2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2) )

)2ª®¬ (143)

�

Remark 3. The bound in Equation (143) has the following
properties.

1) The bound becomes 0 when 𝜀1 = 𝜀2 = 0.
2) When both 𝜀1 and 𝜀2 are small, all the items in the

bound are small and hence the bound is small.
3) The bound is independent of the dimension 𝑛 because

we have eliminated the impact of dimension 𝑛 by
Lemma 7. This is the most tricky part in this proof.

4) When 𝜀2 is large, the bound is mostly dominated by the
last item in the branket.

5) In fact, we can distribute 2𝜀1 into two parts in Equation
(126) and (127). However, this will lead to a complicated

expression which is very hard to solve a supremum as
like what we do on Equation (40). Numerical experi-
ments show that the supremum varies with how 2𝜀1
(2𝜀2) are allocated into two parts in the left hand sides
of Equation (126) and (127) ((132) and (133)). Therefore,
in constraints (126), (127), (132), and (133), we relax
the conditions and get an relaxed upper bound with
a simpler form in Inequality (143).

Proof of Theorem 4.
Proof 11. Theorem 4 extends Lemma 9 to three general

Gaussians. We can use linear invertible transformation to
convert one Gaussian into standard Gaussian and then
apply Lemma 9. Please see Appendix H for details.

�

In Theorem 4, we try to find an upper bound as tight as
possible. So the bound seems a little complicated. We can
expand Lambert 𝑊 function by series [18], [20] and simplify
the bound as follows [15] 3.
Theorem 5. For any three 𝑛-dimensional

Gaussians N(µ𝑖 ,𝚺𝑖) (𝑖 ∈ {1, 2, 3}) such
that 𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) ≤ 𝜀1 and
𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) ≤ 𝜀2 for small 𝜀1, 𝜀2 ≥ 0,
then

𝐾𝐿 (N (µ1,𝚺1) | |N (µ3,𝚺3))
<3𝜀1 + 3𝜀2 + 2

√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) (144)

Proof 12. See Appendix I for the details of the proof.
�

Finally, in the proof of Theorem 4, we use invertible lin-
ear transformation to convert N2 to standard Gaussian with
preserving KL divergence. This still holds when N(µ2,𝚺2)
is fixed. So we get the the following corollary.
Corollary 2. Theorem 4 and 5 hold when N(µ2,𝚺2) is fixed.

Remark 4. Comparison with existing general Pythagoras
inequalities
It is known that KL divergence satisfies some general
Pythagoras inequalities which seem similar to our re-
laxed triangle inequality. We note that they are different
in the follows.
The bound in our relaxed triangle inequality is indepen-
dent of the parameters of Gaussians and only related
to 𝜀1 and 𝜀2. Our theorem is different from the several
existing generalized Pythagoras inequalities satisfied by
KL divergence, where the bounds are functions of the
given distributions. We list them as follows.

1) The generalized Pythagoras inequality for KL diver-
gence [4], [11] states that for a convex set of distri-
butions P, any distribution 𝑄 not in P, and 𝐷𝑚𝑖𝑛 =

inf𝑃∈P 𝐾𝐿 (𝑃 | |𝑄), there exists a distribution 𝑃∗ such that

𝐾𝐿 (𝑃 | |𝑄) ≥ 𝐾𝐿 (𝑃 | |𝑃∗) + 𝐷𝑚𝑖𝑛 for all 𝑃 ∈ P

2) Erven et al. generalize the Pythagoras inequality for
KL divergence to Rényi divergence which includes KL
divergence with order 1. See [11] for details.

3. After we post our last version of manuscript on Arxiv [16], Liu et
al. cited our manuscript in their work [15] in which they simplify the
bound in Theorem 4 by using series in simpler case 𝜀1 = 𝜀2.
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3) Functional Bregman divergence also satisfies a gen-
eralized Pythagoras theorem [10]. Let (R𝑑 ,Ω, 𝑣) be a
measure space, where 𝑑 is a positive integer and 𝑣 is
a Borel measure. Let A be a convex subset of 𝐿 𝑝 (𝑣).
For any 𝑓 , 𝑔, ℎ ∈ A, functional Bregman divergence 𝑑𝜙
satisfies

𝑑𝜙 [ 𝑓 , ℎ] = 𝑑𝜙 [ 𝑓 , 𝑔] + 𝑑𝜙 [𝑔, ℎ] + 𝛿𝜙[𝑔; 𝑓 − 𝑔] − 𝛿𝜙[ℎ; 𝑓 − 𝑔]
(145)

where 𝜙 : 𝐿 𝑝 (𝑣) → R is a strictly convex, twice-
continuously Fréchet-differentiable functional. 𝛿𝜙[𝑔; ·]
is the Fréchet derivative of 𝜙 at 𝑔. KL divergence is a
special form of functional Bregman divergence when
𝜙 =

∫
𝑝(𝑥) log 𝑝(𝑥) d𝑥 whose Fréchet derivative at 𝑔 is

𝛿𝜙[𝑔; 𝑡] =
∫
(log 𝑔(𝑥) + 1)𝑡 (𝑥) d𝑥. Plugging 𝜙 and 𝛿𝜙 into

Equation (145), we get

𝐾𝐿 ( 𝑓 | |ℎ)

=𝐾𝐿 ( 𝑓 | |𝑔) + 𝐾𝐿 (𝑔 | |ℎ) +
∫

(log 𝑔(𝑥) + 1) ( 𝑓 (𝑥) − 𝑔(𝑥)) d𝑥

−
∫

(log ℎ(𝑥) + 1) ( 𝑓 (𝑥) − 𝑔(𝑥)) d𝑥

=𝐾𝐿 ( 𝑓 | |𝑔) +
∫

𝑓 (𝑥) log
𝑔(𝑥)
ℎ(𝑥) d𝑥 (146)

All the bounds in the above inequalities are dependent
on the parameters of the given distributions.

In our theorem, we allow all parameters are unknown or
one Gaussian is fixed. Therefore, our theorems are suitable
for contexts where the re can vary. This is common in deep
learning where the parameters are learned by the model.
Therefore, it is impossible to identify the parameters or the
KL divergence before the model is trained. In some cases,
we only know that some bound is guaranteed. In the next
section, we discuss the applications of our theorems in deep
learning.

5 APPLICATIONS

5.1 Anomaly Detection with Flow-based Model

The research question in this paper comes from our re-
search on deep anomaly detection using flow-based model
[12], [13], [14], [22]. Flow-based model constructs diffeo-
morphism between data space to latent space. Compared
with other generative models such as generative adversarial
networks, flow-based model has the advantage of providing
explicit likelihood 𝑝𝜃 (𝑥) to input 𝑥, where 𝜃 refer to model
parameters. Usually, flow-based model is trained by max-
imum likelihood estimate with Gaussian prior. Intuitively,
it is natural to believe that samples from the training (in-
distribution, ID in short) dataset should have higher likeli-
hoods than out-of-distribution (OOD) data (i.e., anomalies).
However, Nalisnick et al. reveal that deep generative models
including flow-based models may assign higher likelihoods
to OOD data [23]. For example, Glow [14] assigns higher
likelihoods for SVHN when trained on CIFAR-10. This ob-
servation is also verified by many other researchers includ-
ing ourselves [24], [25], [26], [27], [28]. This brings obstacles
to anomaly detection in flow-based model according to
model likelihood [27], [28]. However, we can not sample
these OOD data from the model although they may have

higher likelihoods than training data. Nalisnick et al. explain
this phenomenon by the discrepancy of typical set and high
probability density regions of model distribution [27]. This
can explain why we can not sample OOD data that have
higher likelihoods than ID data. But their explanation fails
when OOD data has coinciding likelihoods with ID data.
Before our analysis, this counterintuitive phenomenon has
not been satisfactorily explained.

In this context, we want to explain why we can not
sample OOD data from flow-based model with prior regardless
of when OOD data have higher, lower, or coinciding likelihoods.
We investigate this problem from a statistical divergence
perspective. Let 𝑧 = 𝑓 (𝑥) be the flow-based model which
maps data 𝑥 in data space to 𝑧 in latent space. Assume
that the prior distribution 𝑝𝑟

𝑍
is the most commonly used

Gaussian distribution. Suppose that 𝑋1 ∼ 𝑝𝑋 (𝑥), 𝑋2 ∼ 𝑞𝑋 (𝑥)
represent distributions of ID and OOD datasets, respec-
tively. We note 𝑍1 = 𝑓 (𝑋1) ∼ 𝑝𝑍 (𝑧), 𝑍2 = 𝑓 (𝑋2) ∼ 𝑞𝑍 (𝑧)
to represent the distributions of representations of ID and
OOD datasets, respectively. We also note the model induced
distribution 𝑝𝑟

𝑋
such that 𝑍𝑟 ∼ 𝑝𝑟

𝑍
and 𝑋𝑟 = 𝑓 −1 (𝑍𝑟 ) ∼ 𝑝𝑟

𝑋
.

Flow-based model is usually trained by maximum like-
lihood estimation. This is equal to minimizing forward
KL divergence 𝐾𝐿 (𝑝𝑋 | |𝑝𝑟𝑋 ) [3], [29]. In our experiments,
we conduct generalized Shapiro-Wilk test for multivariate
normality. Results demonstrate that 𝑝𝑍 is Gaussian-like for
all datasets. Surprisingly, 𝑞𝑍 is also Gaussian-like for OOD
datasets with higher or coinciding likelihoods except for just
one case. These results allow us to approximate 𝑝𝑍 and 𝑞𝑍
with Gaussians. Note that, it seems that the normality of
represetations of ID and OOD dataset is a characteristic of
flow-based model. We did not get similar observations in
variational autoencoders.

The theorems proved in this paper can help us to analyze
the KL divergences between 𝑝𝑍 , 𝑝𝑟

𝑍
, and 𝑞𝑍 . On one hand,

according to Proposition 1, we can know 𝐾𝐿 (𝑝𝑋 | |𝑝𝑟𝑋 ) =

𝐾𝐿 (𝑝𝑍 | |𝑝𝑟𝑍 ), so 𝐾𝐿 (𝑝𝑍 | |𝑝𝑟𝑍 ) is trained to be small. By The-
orem 1, we can know 𝐾𝐿 (𝑝𝑟

𝑍
| |𝑝𝑍 ) is small too. So we can

assume 𝑝𝑟
𝑍
≈ 𝑝𝑍 when 𝐾𝐿 (𝑝𝑍 | |𝑝𝑟𝑍 ) is sufficiently small. On

the other hand, we can also assume that the distributions
of ID and OOD data are far from each other. This implies
that 𝐾𝐿 (𝑝𝑋 | |𝑞𝑋 ) = 𝐾𝐿 (𝑝𝑍 | |𝑞𝑍 ) can be any large. By the
relaxed triangle inequality, we can infer that 𝐾𝐿 (𝑝𝑟

𝑍
| |𝑞𝑍 )

must be large. This answers the question why we can not
sample OOD data from flow-based model with prior. Fur-
thermore, we decompose the large divergence 𝐾𝐿 (𝑞𝑍 | |𝑝𝑟𝑍 )
into dimensional-wise KL divergence and total correlation
(generalized mutual information) measuring the mutual
dependence between dimensions. We demonstrate that the
representations of OOD data are more correlated than that
of ID data. From a geometric perspective, strong correlation
indicates that the representations of OOD data locate in
specific directions. In high dimensional space, it is hard
to sample data residing in specific directions from prior.
This gives the second explanation to the above question.
Based on the theoretical analysis and further observation
on the local pixel dependence in the representation of
OOD dataset, we propose a KL divergence-based anomaly
detection algorithm. Experimental results have shown the
effectiveness of our method. More details of the application
of our theorems in deep anomaly detection research can



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

be referred to in our manuscript [30], which is submitted
independently.

Importantly, flow-based model constructs diffeomor-
phism between data space to latent space with thousands
of dimensions. It is important that the bounds found in
this paper are independent of the dimension. Furthermore,
since both 𝑝𝑍 and 𝑞𝑍 are dependent on model parameters
and 𝑞𝑍 is also dependent on the input OOD dataset, it is
impossible to determine the parameters of 𝑝𝑍 and 𝑞𝑍 in
advance. Our theorems do not dependent on the parameters
of distributions and only requires some bound is restricted.
This is why we need to prove the theorems in this paper
rather than using existing theorems.

5.2 Safety Guarantee in Reinforcement Learning

The theorems proved in this paper can also be used as
general conclusions in related fields. Since we post the last
version of this manuscript on Arxiv [16], our manuscript
has been cited by other researchers. For example, the re-
laxed triangle inequality (Theorem 4) has been used in
the research of constrained variational policy optimization
for safe reinforcement learning [15]. In their work, Liu et
al. propose an Expectation-Maximization style approach
for learning safe policy in reinforcement learning. After
achieving one-step robutness guarantee, a natural question
is extending to multiple steps policy updating robustness
guarantee. This requires triangle inequality for consecutive
updated policies. It is known that KL divergence does not
has such property in general case. However, multivariate
Gaussian is commonly used as policy in continuous action
space tasks. In such context, our relaxed triangle inequality
(Theorem 4) is used to extend one-step robustness guarantee
to multiple steps. Particularly, Liu et al. use big-𝑂 to simplify
the bound in Theorem 4 in case 𝜀1 = 𝜀2 . Please see [15] for
more details about the application.

6 RELATED WORK

KL divergence is an important divergence and has a wide
range of applications [2], [3], [4], [5], [31], [32], [33]. Re-
searchers have investigated KL divergence between many
distributions including Markov sources [34], GMM models
[35], [36], multivariate generalized Gaussians [37], univari-
ate mixtures [38], discrete normal distributions [39], etc.
In [5], a bound of KL divergence between Gaussians is
given. As we discussed in Remark 4, existing generalized
Pythagorean inequality satisfied by KL divergence are all
dependent on the parameters of distributions [4], [11]. As
far as we know, there is no related work that focuses on the
similar properties of KL divergence between Gaussians as
this paper.

KL divergence is one member of more general diver-
gences such as Bregman divergence [7], [9], [10], [40], 𝑓 -
divergence [5], [6], [41], Rényi divergence [5], [8], [11], and
recently proposed ( 𝑓 , Γ)-divergence [42]. Bregman diver-
gence defines a class of divergences [9] in vector space. KL
divergence between multinomial distributions is a special
form of Bregman divergence when the convex function for
Bregman divergence is chosen as

∑𝑛
𝑖=1 𝑝𝑖 log 𝑝𝑖 , where 𝑝𝑖 ≥ 0

for 𝑖 = 1, . . . , 𝑛 define a multinomial distribution. Frigyik

et. al. [10] extends vector Bregman divergence to functional
Bregman divergence in 𝐿 𝑝 . Similarly, KL divergence is a
special form of functional Bregman divergene. (functional)
Bregman divergence also satisfies generalized Pythagoras
theorem [9], [10]. We note that our relaxed triangle inequal-
ity has a different meaning in Remark 4.

𝑓 -divergence also defines a class of divergences based on
convex functions [5], [6], [43], [44]. Many commonly used
measures including the KL divergence, Jensen-Shannon di-
vergence, and squared Hellinger distance are special cases
of 𝑓 -divergence. Many 𝑓 -divergences are not proper dis-
tance metrics and do not satisfy the triangle inequality.
KL divergence is the unique divergence belong to both 𝑓 -
divergence and Bregman divergence [45].

Rényi divergence defines another class of divergences
[5], [8], [11], [46]. Rényi divergence with order of 1 becomes
KL divergence. As discussed in Remark 4, Rényi divergence
also satisfies a generalized Pythogras theorem [11].

KL divergence between general distributions does not
have a closed form. In application, it is not easy to esti-
mate KL divergence when only samples of distributions are
available especially in high dimensional problems. A line of
research is dedicated to the estimation of divergences [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58]. Unlike
other distributions, the KL divergence between Gaussians
has a closed form. The theorems presented in this paper
can deepen our understanding of KL divergence between
Gaussians.

The asymmetry of KL divergence has restricted the ap-
plication of KL divergence in practical applications. Many
other divergences have been investigated [9], [59], [60], [61],
[62], [63], [64], [65], [66], [67]. Pardo gives a comprehensive
survey on a wide range of statistical divergences in his book
[5].

7 CONCLUSION

In this paper, we research the properties of KL divergences
between Gaussians. First, we find the supremum of reverse
KL divergence 𝐾𝐿 (N2 | |N1) if the forward KL divergence
𝐾𝐿 (N1 | |N2) ≤ 𝜀 (𝜀 > 0). This conclusion quantifies the
approximate symmetry of small KL divergence between
Gaussians. We also find the infimum of 𝐾𝐿 (N2 | |N1) if
𝐾𝐿 (N1 | |N2) ≥ 𝑀 (𝑀 > 0). We give the conditions when the
supremum and infimum can be attained. Second, we find a
bound for 𝐾𝐿 (N1 | |N3) when 𝐾𝐿 (N1 | |N2) and 𝐾𝐿 (N2 | |N3)
are bounded. This indicates that KL divergence between
Gaussians follows a relaxed triangle inequality. Importantly,
all the bounds in the theorems in this paper are inde-
pendent of the dimension of distributions. The theorems
presented in this paper is suitable especially for contexts
where parameters may vary or can not be identified in
advance (e.g., machine learning). Finally, we discuss the
applications of our theorems in deep anomaly detection and
safe reinforcement learning. We hope our research can shed
light on more research in related field. In the future, we plan
to explore the properties of KL divergence between more
general distributions such as Gaussian mixture models and
exponential family of distributions.
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APPENDIX A
PROOF OF LEMMA 1
Proof 13.
(a) This is because 𝑓 ′(𝑥) = 1 − 1

𝑥
, 𝑓 ′′(𝑥) = 1

𝑥2 > 0
(b) We note Δ(𝑥) = 𝑓 ( 1

𝑥
)− 𝑓 (𝑥) = 1

𝑥
−𝑥+2 log 𝑥. Then Δ′(𝑥) =

−( 1
𝑥
− 1)2 ≤ 0 and Δ(1) = 0 So it is easy to know Lemma

1b holds.
(c) We can verify this by definition.

𝑦 − log 𝑦 = 𝑥 ⇐⇒𝑒𝑦−𝑥 = 𝑦 ⇐⇒ (−𝑦)𝑒−𝑦 = −𝑒−𝑥

⇐⇒𝑦 = −𝑊 (−𝑒−𝑥) (147)

(d) We can get Lemma 1d from 1c immediately.
(e) According to Equation (4), we can have

d𝑤1 (𝑡)
d𝑡

= −d(𝑊0 (−𝑒−(1+𝑡) ))
d𝑡

=
−𝑊0 (−𝑒−(1+𝑡) )

−𝑒−(1+𝑡) (1 +𝑊0 (−𝑒−(1+𝑡) ))

× d(−𝑒−(1+𝑡) )
d𝑡

=
𝑊0 (−𝑒−(1+𝑡) )

𝑊0 (−𝑒−(1+𝑡) ) + 1
=

−𝑤1 (𝑡)
1 − 𝑤1 (𝑡)

The derivative of 𝑤2 (𝑡) can be computed in a similar
way.

(f) From Lemma 1b, we can know Lemma 1f.
(g) This is because

𝑓 (𝑥) ≤ 1 + 𝑡 =⇒𝑤1 (𝑡) < 𝑥 < 𝑤2 (𝑡) =⇒
1

𝑤2 (𝑡)
<

1
𝑥
<

1
𝑤1 (𝑡)

Combining Lemma 1b, we have

𝑓 ( 1
𝑤2 (𝑡)

) < 𝑓 (𝑤2 (𝑡)) = 1 + 𝑡 = 𝑓 (𝑤1 (𝑡)) < 𝑓 ( 1
𝑤1 (𝑡)

)

Thus Equation (7) holds. It is also easy to know that
𝑆(𝑡) = 𝑓 ( 1

𝑤1 (𝑡) ) is continuous and strictly increasing
with 𝑡.

(h) We have

𝑓 (𝑥) ≥ 1 + 𝑡 =⇒ 𝑥 ≤ 𝑤1 (𝑡) ∨ 𝑥 ≥ 𝑤2 (𝑡)

=⇒ 1
𝑥
≤ 1
𝑤2 (𝑡)

∨ 1
𝑥
≥ 1
𝑤1 (𝑡)

Combining Lemma 1b, we have 𝑓 ( 1
𝑤2 (𝑡) ) < 𝑓 ( 1

𝑤1 (𝑡) ), so
we have Lemma 1h.

(i) Since 𝑓 ′(𝑥) = 1 − 1
𝑥

and 𝑤2 (𝑡) ≥ 1 for 𝑡 ≥ 0, we have

𝑓 ′(𝑤2 (𝑡)) =1 − 1
𝑤2 (𝑡)

=
𝑤2 (𝑡) − 1
𝑤2 (𝑡)

≤𝑤2 (𝑡) − 1 = −
©­­­«1 − 1

1
𝑤2 (𝑡)

ª®®®¬ = − 𝑓 ′( 1
𝑤2 (𝑡)

)

(148)

(j)

𝑓 (𝑤1 (𝑡1)𝑤1 (𝑡2))
=𝑤1 (𝑡1)𝑤1 (𝑡2) − log𝑤1 (𝑡1)𝑤1 (𝑡2)
=𝑤1 (𝑡1)𝑤1 (𝑡2) + (𝑤1 (𝑡1) − log𝑤1 (𝑡1))
+ (𝑤1 (𝑡2) − log𝑤1 (𝑡2)) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2)

=𝑤1 (𝑡1)𝑤1 (𝑡2) + 1 + 𝑡1 + 1 + 𝑡2 − 𝑤1 (𝑡1) − 𝑤1 (𝑡2)
=𝑡1 + 𝑡2 + 2 + 𝑤1 (𝑡1)𝑤1 (𝑡2) − 𝑤1 (𝑡1) − 𝑤1 (𝑡2) (149)

where the third equation follows from Lemma 1d.
Equation (10) can be proved in a similar way.

�

APPENDIX B
PROOF OF LEMMA 3B

Proof 14.
The condition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≤ 𝜀 is equal to the
following conditions

log |𝚺 | + Tr(𝚺−1) ≤ 𝑛 + 𝜀1 (150)

µ>𝚺−1µ ≤ 2𝜀 − 𝜀1 (151)
0 ≤ 𝜀1 ≤ 2𝜀 (152)

We can apply Lemma 2 on Equation (150) and get

− log |𝚺 | + Tr(𝚺)

≤ 1
−𝑊0 (−𝑒−(1+𝜀1) )

− log
1

−𝑊0 (−𝑒−(1+𝜀1) )
+ 𝑛 − 1

Applying Lemma 1g on Equation (150), we get

𝑤1 (𝜀1) < 𝜆′ < 𝑤2 (𝜀1) (153)

From Equation (151) we know µ>𝚺−1µ ≤ 2𝜀 − 𝜀1. Since
µ>𝚺−1µ ≥ 𝜆′∗µ

>µ where 𝜆′∗ is the minimum eigenvalue
of 𝚺−1, combining Equation (153), we can know

µ>µ ≤ 2𝜀 − 𝜀1

𝜆′∗
≤ 2𝜀 − 𝜀1

𝑤1 (𝜀1)
(154)

Adding the two sides of Inequalities (153), and (154), we
get the same result as Equation (40). Therefore, we can
get the same supremum as follows.

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

Inequality (155) is tight only when there exists one 𝜆′
𝑗
=

−𝑊0 (−𝑒−(1+2𝜀) ) and all other 𝜆′
𝑖
= 1 for 𝑖 ≠ 𝑗 , and |µ| = 0.

�

APPENDIX C
PROOF OF THEOREM 1
Proof 15.

For 𝑋 ∼ N(µ,𝚺), there exists an invertible matrix 𝐵 such
that 𝑋 ′ = 𝐵−1 (𝑋−µ) ∼ N (0, 𝐼) [2]. Here 𝐵 = 𝑃𝐷1/2, 𝑃 is an
orthogonal matrix whose columns are the eigenvectors
of 𝚺, 𝐷 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑛) whose diagonal elements
are the corresponding eigenvalues. For 𝑋1 ∼ N(µ1,𝚺1)
and 𝑋2 ∼ N(µ2,𝚺2), we define the following linear
transformations 𝑇1, 𝑇2

𝑋1
1 = 𝑇1 (𝑋1) = 𝐵−1

1 (𝑋1 −µ1) such that 𝑋1
1 ∼ N(0, 𝐼)

(155)

𝑋2
2 = 𝑇2 (𝑋2) = 𝐵−1

2 (𝑋2 −µ2) such that 𝑋2
2 ∼ N(0, 𝐼)

(156)

and the reverse transformations 𝑇−1
1 , 𝑇−1

2 such that 𝑋1 =

𝑇−1
1 (𝑋1

1 ) = 𝐵1𝑋
1
1 +µ1 and 𝑋2 = 𝑇−1

2 (𝑋2
2 ) = 𝐵2𝑋

2
1 +µ2, where

𝑝𝑋1
1
= 𝑝𝑋2

2
= N(0, 𝐼). Besides, it is easy to know 𝑋2

1 =

𝑇2 (𝑋1) = 𝐵−1
2 (𝑋1 −µ2) and 𝑋1

2 = 𝑇1 (𝑋2) = 𝐵−1
1 (𝑋2 −µ1) are

both Gaussian variables. We also have

𝑋2
1 ∼ N(𝐵−1

2 (µ1 −µ2), 𝐵−1
2 𝚺1 (𝐵−1

2 )>) (157)

𝑋1
2 ∼ N(𝐵−1

1 (µ2 −µ1), 𝐵−1
1 𝚺2 (𝐵−1

1 )>) (158)
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With the help of invertible linear transformations, we
can convert the KL divergence between two arbitrary
Gaussians into that between one Gaussian and standard
Gaussian. According to Proposition 1, diffeomorphisms
preserve KL divergence. If we apply 𝑇2 simultaneously
on 𝑋1, 𝑋2, we can have

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) =𝐾𝐿 (𝑝𝑋2
1
| |𝑝𝑋2

2
)

=𝐾𝐿 (𝑝𝑋2
1
| |N (0, 𝐼)) (159)

Then we can apply 𝑇−1
2 on 𝑋2

1 , 𝑋2
2 and also have

𝐾𝐿 (N (0, 𝐼) | |𝑝𝑋2
1
) =𝐾𝐿 (𝑝𝑋2

2
| |𝑝𝑋2

1
) (160)

=𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1)) (161)

According to precondition, it is easy to know
𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝐾𝐿 (𝑝𝑋2

1
| |N (0, 𝐼)). Applying

Theorem 3a on 𝐾𝐿 (𝑝𝑋2
1
| |N (0, 𝐼)), we can prove

𝐾𝐿 (N (0, 𝐼) | |𝑝𝑋2
1
) = 𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤ 1
2

(
1

−𝑊0 (−𝑒−(1+2𝜀) )
− log

1
−𝑊0 (−𝑒−(1+2𝜀) )

− 1
)

Similarly, if we use 𝑇1 simultaneously on 𝑋1 and 𝑋2, we
can get the same result.
Inequality (162) is tight when there exists only one
eigenvalue 𝜆 𝑗 of 𝐵−1

2 𝚺1 (𝐵−1
2 )> or 𝐵−1

1 𝚺2 (𝐵−1
1 )> is equal

to −𝑊0 (−𝑒−(1+2𝜀) ) and all other eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are
equal to 1, and µ1 = µ2.

�

APPENDIX D
PROOF OF THEOREM 2
Proof 16.

When 𝜀 is small, we can use the series expanding𝑊0 (see
Section III.17 in [20]) to simplify the bound in Theorem
1.
Notice that when 𝜀 is small, −𝑊0 (−𝑒−(1+2𝜀) ) is close to 1.
According to the series expanding 𝑊0 (see Section III.17
in [20]), we have

𝑊0 (−𝑒−(1+2𝜀) ) = −1 + 2
√
𝜀 − 4

3
𝜀 + 2

9
𝜀1.5 +𝑂 (𝜀2) (162)

Now expand the log term around −𝑊0 (−𝑒−(1+2𝜀) ) = 1
using Taylor series for small 𝜀.

log(−𝑊0 (−𝑒−(1+2𝜀) ))
= log(1 −𝑊0 (−𝑒−(1+2𝜀) ) − 1)

= −𝑊0 (−𝑒−(1+2𝜀) ) − 1 − 1
2

(
−𝑊0 (−𝑒−(1+2𝜀) ) − 1

)2

+ 1
3

(
−𝑊0 (−𝑒−(1+2𝜀) ) − 1

)3
+𝑂

(
(−𝑊0 (−𝑒−(1+2𝜀) ) − 1)4

)
= − 2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

− 1
2

(
−2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)2

+ 1
3

(
−2

√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)3

+𝑂 (𝜀2) (163)

= − 2
√
𝜀 − 2

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2) (164)

Plugging Equation (162) and (164) into the bound in
Theorem 1, we can have

𝐾𝐿 (N (µ2,𝚺2) | |N (µ1,𝚺1))

≤ 1
2

©­­­«
1

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

+
(
−2

√
𝜀 − 2

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

)
− 1

ª®®®¬
=

1
2

2𝜀 − 4
3
𝜀1.5 +𝑂 (𝜀2)

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

=𝜀 + 2𝜀1.5 +𝑂 (𝜀2)

1 − 2
√
𝜀 + 4

3
𝜀 − 2

9
𝜀1.5 +𝑂 (𝜀2)

=𝜀 + 2𝜀1.5 +𝑂 (𝜀2) (165)

�

APPENDIX E
THE FIRST PROOF OF THEOREM 3
Theorem 3 can be proved using the similar method as that
of Theorem 1, except that the proof uses𝑊−1. We put the key
steps of the proof of Theorem 3 in Lemma 10 and Lemma
11.
Lemma 10. Given 𝑛-ary function f̄ (x) = f̄ (𝑥1, . . . , 𝑥𝑛) =∑𝑛

𝑖=1 𝑥𝑖 − log 𝑥𝑖 (𝑥𝑖 ∈ R++), if f̄ (𝑥1, . . . , 𝑥𝑛) ≥ 𝑛 +𝑀 (𝑀 > 0),
then

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
=

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
+ 𝑛 − 1

Proof 17.
The structure of proof of Lemma 10 is similar to that of
Lemma 2. The constraint in the following optimization
problem

minimize f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
(166)

s.t.
𝑛∑︁
𝑖=1

𝑥𝑖 − log 𝑥𝑖 ≥ 𝑛 + 𝑀 (167)

can be replaced by the following constraints
𝑛∧
𝑖=1

𝑓 (𝑥𝑖) = 𝑥𝑖 − log 𝑥𝑖 ≥ 1 + 𝑀𝑖 ∧
𝑛∧
𝑖=1

𝑀𝑖 ≥ 0 ∧
𝑛∑︁
𝑖=1

𝑀𝑖 ≥ 𝑀

(168)

Given fixed 𝑀1, . . . , 𝑀𝑛 such that
∧𝑛
𝑖=1 𝑀𝑖 ≥ 0∧∑𝑛

𝑖=1 𝑀𝑖 ≥
𝑀 , we define

Ī (𝑀1, . . . , 𝑀𝑛) = inf∧𝑛
𝑖=1 𝑓 (𝑥𝑖 ) ≥1+𝑀𝑖

f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
=

𝑛∑︁
𝑖=1

inf
𝑓 (𝑥𝑖 ) ≥1+𝑀𝑖

𝑓
( 1
𝑥𝑖

)
=

𝑛∑︁
𝑖=1

𝐼 (𝑀𝑖) (169)
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So we have

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
= inf∧𝑛

𝑖=1 𝑀𝑖≥0∑𝑛
𝑖=1 𝑀𝑖≥𝑀

Ī (𝑀1, . . . , 𝑀𝑛) (170)

It is easy to know that Ī (𝑀1, . . . , 𝑀𝑛) is continuous
and strictly increasing with 𝑀1, . . . , 𝑀𝑛. So the condi-
tion

∑𝑛
𝑖=1 𝑀𝑖 ≥ 𝑀 in Equation (170) can be changed to∑𝑛

𝑖=1 𝑀𝑖 = 𝑀 .
The remaining proof consists of two steps. We find
Ī (𝑀1, . . . , 𝑀𝑛) for fixed 𝑀1, . . . , 𝑀𝑛 in the first step, and
then find inf Ī (𝑀1, . . . , 𝑀𝑛) for any 𝑀1, . . . , 𝑀𝑛 satisfying∧𝑛
𝑖=1 𝑀𝑖 ≥ 0 ∧ ∑𝑛

𝑖=1 𝑀𝑖 = 𝑀 in the second step.
Step 1: According to Lemma 1h, for fixed 𝑀𝑖 , we get

𝐼 (𝑀𝑖) = inf
𝑓 (𝑥) ≥1+𝑀𝑖

𝑓
(1
𝑥

)
= 𝑓

( 1
𝑤2 (𝑀𝑖)

)
(171)

Combining Equation (169), we know

Ī (𝑀1, . . . , 𝑀𝑛) =
𝑛∑︁
𝑖=1

𝑓
( 1
𝑤2 (𝑀𝑖)

)
(172)

Step 2: We define function

Δ(𝑀) = 𝑓 (𝑤2 (𝑀)) − 𝑓
( 1
𝑤2 (𝑀)

)
=𝑤2 (𝑀) − 1

𝑤2 (𝑀) − 2 log𝑤2 (𝑀) (173)

Similarly, we can prove Δ(𝑡𝑀) ≤ 𝑡Δ(𝑀) (0 ≤ 𝑡 < 1)
by showing Δ(0) = 0 (apparently) and Δ(𝑀) is strictly
increasing and strictly convex. Combining Lemma 1e,
we get the derivative of Δ(𝑀) as

dΔ(𝑀)
d𝑀

=

(
1 + 1

𝑤2 (𝑀)2 − 2
𝑤2 (𝑀)

)
× d𝑤2 (𝑀)

d𝑀
= 1 − 1

𝑤2 (𝑀)
(174)

The second order derivative of Δ(𝑀) is

d2Δ(𝑀)
d𝑀2 =

1
𝑤2 (𝑀)2 × 𝑤2 (𝑀)

𝑤2 (𝑀) − 1
=

1
𝑤2 (𝑀) (𝑤2 (𝑀) − 1)

(175)

Since 𝑤2 (𝑀) ∈ (1, +∞) for 𝑀 > 0, so it is easy to know
dΔ(𝑀 )

d𝑀 > 0, d2Δ(𝑀 )
d𝑀 2 > 0 for 𝑀 > 0. This implies that Δ(𝑀)

is strictly increasing and strictly convex. We can use the
similar deduction as Lemma 2 to prove Δ(𝑡𝑀) ≤ 𝑡Δ(𝑀).
Thus, we have

�̄�(𝑀1, . . . , 𝑀𝑛) =
𝑛∑︁
𝑖=1

𝑓 (𝑤2 (𝑀𝑖)) − 𝑓
( 1
𝑤2 (𝑀𝑖)

)
=

𝑛∑︁
𝑖=1

Δ(𝑀𝑖)

=

𝑛∑︁
𝑖=1

Δ(𝑀𝑖
𝑀
𝑀) ≤

𝑛∑︁
𝑖=1

𝑀𝑖

𝑀
Δ(𝑀) = Δ(𝑀)

(176)

Inequality (176) is tight when there exists only one
𝑀 𝑗 = 𝑀 and all other 𝑀𝑖 = 0 for 𝑖 ≠ 𝑗 . Therefore, from
Inequality (176), we can obtain

Ī (𝑀1, . . . , 𝑀𝑛)

=
∑𝑛
𝑖=1 𝑓

( 1
𝑤2 (𝑀𝑖)

)
≥∑𝑛

𝑖=1 𝑓 (𝑤2 (𝑀𝑖)) − Δ(𝑀)

=
∑𝑛
𝑖=1 (1 + 𝑀𝑖) −

(
𝑓 (𝑤2 (𝑀)) − 𝑓

( 1
𝑤2 (𝑀)

) )
=𝑛 + 𝑀 − (1 + 𝑀) + 𝑓

( 1
𝑤2 (𝑀)

)
=

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
+ 𝑛 − 1 (177)

(172)

(176)

Lemma 1d
(173)

Finally, we can conclude that

inf f̄
( 1
𝑥1
, . . . ,

1
𝑥𝑛

)
= inf∧𝑛

𝑖=1 𝑀𝑖≥0∑𝑛
𝑖=1 𝑀𝑖=𝑀

Ī (𝑀1, . . . , 𝑀𝑛)

=
1

−𝑊−1 (−𝑒−(1+𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+𝑀 ) )

+ 𝑛 − 1 (178)

Similarly, f̄ (1/𝑥1, . . . , 1/𝑥𝑛) reaches its infimum when
there exists only one 𝑗 such that 𝑥 𝑗 = −𝑊−1 (−𝑒−(1+𝑀 ) )
and 𝑓 (𝑥𝑖) = 1 for 𝑖 ≠ 𝑗 . �

The following Lemma 11 gives the infimum of KL diver-
gence when one Gaussian is standard.
Lemma 11. For any 𝑛-dimensional Gaussian distribution

N(µ,𝚺),
(a) If 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 (𝑀 > 0), then

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

(b) If 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 𝑀 , then

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼))

≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

Proof 18. (a) We first consider the case when
𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) = 𝑀 . At the end of the proof,
we deal with the case when 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 .
The condition − log |𝚺 | +Tr(𝚺) +µ>µ−𝑛 = 2𝑀 is equal to

− log |𝚺 | + Tr(𝚺) =
𝑛∑︁
𝑖=1

𝜆𝑖 − log𝜆𝑖 = 𝑛 + 𝑀1 (179)

µ>µ = 2𝑀 − 𝑀1 (180)

where 0 ≤ 𝑀1 ≤ 2𝑀 .
Applying Lemma 10 on Equation (179), we can get

log |𝚺 | + Tr(𝚺−1) =
𝑛∑︁
𝑖=1

1
𝜆𝑖

− log
1
𝜆𝑖

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1) )
+ 𝑛 − 1

Inequality (181) is tight when all eigenvalues 𝜆𝑖 of 𝚺 are
equal to 1 except for one 𝜆 𝑗 = −𝑊−1 (−𝑒−(1+𝑀1) ).
From Equation (180), we know µ>𝚺−1µ ≥ 𝜆′∗µ

>µ =

𝜆′∗ (2𝑀 − 𝑀1) where 𝜆′∗ is the smallest eigenvalue of
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𝚺−1. Here 𝜆∗ = 1/𝜆′∗ is the largest eigenvalue of 𝚺.
From Equation (179), Lemma 1a and 1g, we know
𝜆∗ ≤ −𝑊−1 (−𝑒−(1+𝑀1) ). So we obtain

µ>𝚺−1µ ≥ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1) )
(181)

Note that, inequalities (181) and (181) become tight
simultanously when the same condition holds. Now
combining Equation (181) and (181), we obtain

log |𝚺 | + Tr(𝚺−1) +µ>𝚺−1µ − 𝑛

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1) )

+ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1) )
− 1

=
1 + 2𝑀 − 𝑀1

𝑤2 (𝑀1)
− log

1
𝑤2 (𝑀1)

− 1 = 𝐿 (𝑀1) (0 ≤ 𝑀1 ≤ 2𝑀)
(182)

It is easy to know that 𝐿 ′(𝑀1) =
𝑀1−2𝑀

𝑤2 (𝑀1) (𝑤2 (𝑀1)−1) . Since
𝑀1 ≤ 2𝑀 and 𝑤2 (𝑀1) > 1 for 𝑀1 > 0, so 𝐿 ′(𝑀1) <

0 (𝑀1 > 0). This indicates that 𝐿 (𝑀1) > 𝐿(2𝑀) for
0 < 𝑀1 < 2𝑀 . Thus, we can conclude

𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺))

≥ 1
2
𝐿 (2𝑀)

=
1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

Inequality (183) is tight when there exist only one eigen-
value 𝜆 𝑗 of 𝚺 equal to −𝑊−1 (−𝑒−(1+2𝑀 ) ) and all other
eigenvalues 𝜆𝑖 (𝑖 ≠ 𝑗) are equal to 1, and µ = 0.
Finally, we can consider the case when
𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 . The bound in Equation
(183) is strictly increasing with 𝑀 . Therefore, the
precondition 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) = 𝑀 can be changed
to 𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼)) ≥ 𝑀 .
(b) The proof of Lemma 3b is the similar to that of
Lemma 3a. We list it here for clarity.
The condition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) = 𝑀 is equal to

log |𝚺 | + Tr(𝚺−1) = 𝑛 + 𝑀1 (183)

µ>𝚺−1µ = 2𝑀 − 𝑀1 (184)

where 0 ≤ 𝑀1 ≤ 2𝑀 . Applying Lemma 10 on Equation
(183), we can obtain

− log |𝚺 | + Tr(𝚺)

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1) )
+ 𝑛 − 1

From Equation (183) and Lemma 1a and 1g, we have
𝜆′ ≤ −𝑊−1 (−𝑒−(1+𝑀1) ) where 𝜆′ is the eigenvalue of 𝚺−1.
Now let 𝜆′∗ be the largest eigenvalues of 𝚺−1. It is easy
to know

𝜆′∗µ>µ ≥ µ>𝚺−1µ = 2𝑀 − 𝑀1

=⇒µ>µ ≥ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1) )
(185)

Inequalities (185) and (185) are tight simutanously when
there exist only one eigenvalue 𝜆′

𝑗
= −𝑊−1 (−𝑒−(1+𝑀1) ) and

all other eigenvalues are equal to 1, and |µ| = 0. There-
fore, combining Equation (185) and (185), we obtain

− log |𝚺 | + Tr(𝚺) +µ>µ − 𝑛

≥ 1
−𝑊−1 (−𝑒−(1+𝑀1) )

− log
1

−𝑊−1 (−𝑒−(1+𝑀1) )

+ 2𝑀 − 𝑀1

−𝑊−1 (−𝑒−(1+𝑀1) )
− 1 (186)

Finally, using the similar analysis as Equation (183), we
can conclude that

𝐾𝐿 (N (µ,𝚺) | |N (0, 𝐼))

≥ 1
2

(
1

−𝑊−1 (−𝑒−(1+2𝑀 ) )
− log

1
−𝑊−1 (−𝑒−(1+2𝑀 ) )

− 1
)

Similarly, the precondition 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) = 𝑀

can be changed to 𝐾𝐿 (N (0, 𝐼) | |N (µ,𝚺)) ≥ 𝑀 because
the bound in Equation (187) is strictly increasing with
𝑀 .

�

Notes. It needs strict conditions to reach the infimum in
Lemma 11.

Now we can also obtain Theorem 3 on two general
Gaussians. We can use linear transformation on Gaussians
and apply Lemma 11 on them as what we do in the main
proof of Theorem 1. The key steps have been proven in
Lemma 10 and 11. More details are ommited.

APPENDIX F
PROOF OF LEMMA 5
Proof 19.

With the helper functions 𝑓𝑙 , 𝑓𝑟 (Equation (61)), we define
function

Δ𝑤 (𝜀) = 𝑔𝑟 (𝜀) − 𝑔𝑙 (𝜀) = (𝑤2 (𝜀) − 1) − (1 − 𝑤1 (𝜀)) (187)

It is straightforward to know

Δ𝑤 (0) = 𝑤2 (0) − 1 − (1 − 𝑤1 (0)) = 0 (188)

In the following, we prove Δ𝑤
′(𝜀) > 0 for 𝜀 > 0. Plugging

Equation (62), we have

𝑔′𝑟 (𝜀) = 𝑓 −1
𝑟

′(𝜀) = 1
𝑓 ′𝑟 ( 𝑓 −1

𝑟 (𝜀))
=

1
𝑓 ′𝑟 (𝑤2 (𝜀) − 1)

=
1

1 − 1
𝑤2 (𝜀)

=
1

𝑓 ′(𝑤2 (𝜀))
(189)

𝑔′𝑙 (𝜀) = 𝑓
−1
𝑙

′(𝜀) = 1
𝑓 ′
𝑙
( 𝑓 −1
𝑙

(𝜀))
=

1
𝑓 ′
𝑙
(1 − 𝑤1 (𝜀))

=
1

1
𝑤1 (𝜀)

− 1
=

1
− 𝑓 ′(𝑤1 (𝜀))

(190)

According to Lemma 1 and Lemma 1f, 𝑓 (𝑥) is strictly
decreasing in (0, 1) and 𝑓 (𝑤1 (𝜀)) > 𝑓 ( 1

𝑤2 (𝜀) ). So we can
know 𝑤1 (𝜀) < 1

𝑤2 (𝜀) . Since 𝑓 (𝑥) is convex and 𝑓 ′(𝑥) < 0
in (0, 1), we can know 𝑓 ′(𝑤1 (𝜀)) < 𝑓 ′( 1

𝑤2 (𝜀) ). Now
combining Lemma 1i, we can obtain 0 < 𝑓 ′(𝑤2 (𝜀)) ≤
− 𝑓 ′( 1

𝑤2 (𝜀) ) < − 𝑓 ′(𝑤1 (𝜀)) (𝜀 > 0). This leads to

𝑔′𝑟 (𝜀) =
1

𝑓 ′(𝑤2 (𝜀))
>

1
− 𝑓 ′(𝑤1 (𝜀))

= 𝑔′𝑙 (𝜀) (191)
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for 𝜀 > 0, which means Δ𝑤 ′(𝜀) = 𝑔′𝑟 (𝜀)−𝑔′𝑙 (𝜀) > 0 (𝜀 > 0).
Now combining Equation (188), we can conclude

Δ𝑤 (𝜀) = 𝑔𝑟 (𝜀) − 𝑔𝑙 (𝜀) = (𝑤2 (𝜀) − 1) − (1 − 𝑤1 (𝜀)) ≥ 0
(192)

�

APPENDIX G
PROOF OF LEMMA 6
Proof 20.

From Lemma 1g, we know 𝑤1 (𝜀𝑥) ≤ 𝑥 ≤ 𝑤2 (𝜀𝑥) and
𝑤1 (𝜀𝑦) ≤ 𝑦 ≤ 𝑤2 (𝜀𝑦). So we have 𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑥) ≤
𝑥𝑦 ≤ 𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦). According to Lemma 1a, it suffices
to show 𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)) ≤ 𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)). By the
definition of 𝑓 (𝑥), we have

𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) − 𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦))
=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − log(𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦))
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − log(𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)))

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − log𝑤2 (𝜀𝑥) − log𝑤2 (𝜀𝑦)
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − log𝑤1 (𝜀𝑥) − log𝑤1 (𝜀𝑦))

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) + 𝑤2 (𝜀𝑥) − log𝑤2 (𝜀𝑥)
− 𝑤2 (𝜀𝑦) + 𝑤2 (𝜀𝑦) − log𝑤2 (𝜀𝑦)
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) + 𝑤1 (𝜀𝑥) − log𝑤1 (𝜀𝑥)
− 𝑤1 (𝜀𝑦) + 𝑤1 (𝜀𝑦) − log𝑤1 (𝜀𝑦))

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) + 𝜀𝑥 − 𝑤2 (𝜀𝑦) + 𝜀𝑦
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) + 𝜀𝑥 − 𝑤1 (𝜀𝑦) + 𝜀𝑦)

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) − 𝑤2 (𝜀𝑦)
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) − 𝑤1 (𝜀𝑦))

=𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦) − 𝑤2 (𝜀𝑥) − 𝑤2 (𝜀𝑦) + 1
− (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦) − 𝑤1 (𝜀𝑥) − 𝑤1 (𝜀𝑦) + 1)

=(𝑤2 (𝜀𝑥) − 1) (𝑤2 (𝜀𝑦) − 1) − (𝑤1 (𝜀𝑥) − 1) (𝑤1 (𝜀𝑦) − 1)
(193)

From Lemma 5, it is easy to know 𝑤2 (𝜀𝑥) −1 ≥ 1−𝑤1 (𝜀𝑥)
and 𝑤2 (𝜀𝑦) − 1 ≥ 1 − 𝑤1 (𝜀𝑦). Thus we can conclude

𝑓 (𝑤2 (𝜀𝑥)𝑤2 (𝜀𝑦)) − 𝑓 (𝑤1 (𝜀𝑥)𝑤1 (𝜀𝑦)) ≥ 0 (194)

�

APPENDIX H
PROOF OF THEOREM 4
Proof 21.

For 𝑋2 ∼ N(µ2,𝚺2), there exists an invertible matrix
𝐵2 such that 𝑋 ′

2 = 𝐵−1
2 (𝑋2 − µ2) ∼ N (0, 𝐼) [2]. Here

𝐵2 = 𝑃2𝐷
1/2
2 , 𝑃2 is an orthogonal matrix whose columns

are the eigenvectors of 𝚺2, 𝐷2 = 𝑑𝑖𝑎𝑔(𝜆2,1, . . . , 𝜆2,𝑛)
whose diagonal elements are the corresponding eigen-
values. We define the following two invertible linear
transformations 𝑇 , 𝑇−1 on random vectors.

𝑋 ′ = 𝑇 (𝑋) = 𝐵−1
2 (𝑋 −µ2), 𝑋 = 𝑇−1 (𝑋 ′) = 𝐵2𝑋

′ +µ2
(195)

Applying transformation 𝑇 on 𝑋1, 𝑋2, 𝑋3, we can get
three Gaussians.

𝑋 ′
1 = 𝑇 (𝑋1) ∼ N (µ′

1,𝚺
′
1)

𝑋 ′
2 = 𝑇 (𝑋2) ∼ N (0, 𝐼)

𝑋 ′
3 = 𝑇 (𝑋3) ∼ N (µ′

3,𝚺
′
3)

According to Proposition 1, 𝑇 and 𝑇−1 preserve KL
divergence. Thus, we have

𝐾𝐿 (N (µ1,𝚺1) | |N (µ2,𝚺2)) = 𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (0, 𝐼))

(196)
𝐾𝐿 (N (µ2,𝚺2) | |N (µ3,𝚺3)) = 𝐾𝐿 (N (0, 𝐼) | |N (µ′

3,𝚺
′
3))

(197)
𝐾𝐿 (N (µ1,𝚺1) | |N (µ3,𝚺3)) = 𝐾𝐿 (N (µ′

1,𝚺
′
1) | |N (µ′

3,𝚺
′
3))

(198)

Combining the preconditions and Equations (196), (197),
we can know

𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (0, 𝐼)) ≤ 𝜀1, 𝐾𝐿(N (0, 𝐼) | |N (µ′

2,𝚺
′
2)) ≤ 𝜀2

(199)

Now we can apply Lemma 9 on N(µ′
1,𝚺

′
1),

N(0, 𝐼) and N(µ′
3,𝚺

′
3)) and get the bound of

𝐾𝐿 (N (µ′
1,𝚺

′
1) | |N (µ′

3,𝚺
′
3)). Finally, combining Equation

(198), we can prove Theorem 4.
�

APPENDIX I
PROOF OF THEOREM 5
Proof 22.

Suppose that 𝜀1, 𝜀2 are sufficiently small. According to
the series expanding 𝑊0 and 𝑊1 (Section III.17 in [20]),
we have

𝑊0 (−𝑒−(1+2𝜀) ) = − 1 + 2
√
𝜀 +𝑂 (𝜀) (200)

𝑊−1 (−𝑒−(1+2𝜀) ) = − 1 − 2
√
𝜀 +𝑂 (𝜀) (201)

So we can obtain

𝑊−1 (−𝑒−(1+2𝜀1) )𝑊−1 (−𝑒−(1+2𝜀2) ) +𝑊−1 (−𝑒−(1+2𝜀1) )
+𝑊−1 (−𝑒−(1+2𝜀2) ) + 1

=(𝑊−1 (−𝑒−(1+2𝜀1) ) + 1) (𝑊−1 (−𝑒−(1+2𝜀2) ) + 1)
=(2√𝜀1 +𝑂 (𝜀1)) (2

√
𝜀2 +𝑂 (𝜀2))

=4
√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) (202)

and

−𝑊−1 (−𝑒−(1+2𝜀2) )
(√︁

2𝜀1 +

√︄
2𝜀2

−𝑊0 (−𝑒−(1+2𝜀2) )

)2

=(1 + 2
√
𝜀2 +𝑂 (𝜀2))

(√︁
2𝜀1 +

√︄
2𝜀2

1 − 2
√
𝜀2 +𝑂 (𝜀2)

)2

≤(1 + 2
√
𝜀2 +𝑂 (𝜀2))

(
4𝜀1 +

4𝜀2

1 − 2
√
𝜀2 +𝑂 (𝜀2)

)
=4𝜀1 + 𝑜(𝜀1) + 𝑜(𝜀2) +

4𝜀2 (1 + 2
√
𝜀2 +𝑂 (𝜀2))

1 − 2
√
𝜀2 +𝑂 (𝜀2)

=4𝜀1 + 𝑜(𝜀1) + 𝑜(𝜀2) + 4𝜀2 +
4𝜀2 (4

√
𝜀2 +𝑂 (𝜀2))

1 − 2
√
𝜀2 +𝑂 (𝜀2)

=4𝜀1 + 4𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) +𝑂 (𝜀1.5
2 ) (203)



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 24

Using Equations (202) and (203), we can rewrite the
bound in Theorem 4 as

𝐾𝐿 ((N (µ1,𝚺1) | |𝚺(µ3,𝚺3))
<3𝜀1 + 3𝜀2 + 2

√
𝜀1𝜀2 + 𝑜(𝜀1) + 𝑜(𝜀2) (204)
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