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ABSTRACT
Path explosion and constraint solving are two challenges to sym-
bolic execution’s scalability. Symbolic execution explores the pro-
gram’s path space with a searching strategy and invokes the under-
lying constraint solver in a black-boxmanner to check the feasibility
of a path. Inside the constraint solver, another searching procedure
is employed to prove or disprove the feasibility. Hence, there exists
the problem of double searchings in symbolic execution. In this
paper, we propose to unify the double searching procedures to im-
prove the scalability of symbolic execution. We propose Multiplex
Symbolic Execution (MuSE) that utilizes the intermediate assign-
ments during the constraint solving procedure to generate new
program inputs. MuSE maps the constraint solving procedure to
the path exploration in symbolic execution and explores multi-
ple paths in one time of solving. We have implementedMuSE on
two symbolic execution tools (based on KLEE and JPF) and three
commonly used constraint solving algorithms. The results of the ex-
tensive experiments on real-world benchmarks indicate that MuSE
has orders of magnitude speedup to achieve the same coverage.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;
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1 INTRODUCTION
Symbolic execution [18, 21, 38] is a precise program analysis tech-
nique that has been successfully applied to many software engi-
neering activities, including automatic software testing [5, 41], bug
finding [19], program repair [10], etc. One challenge of symbolic
execution is the scalability problem caused by path explosion and
constraint solving.

During symbolic execution, each variable in program P has a
symbolic or concrete value. For non-branch statements, symbolic
execution does symbolic or concrete calculations and updates the
symbolic or concrete values of the variables. When executing a
branch statement br , symbolic execution generates the path condi-
tion (PC) for each branch of br . The path condition of a branch b
(denoted by PC(b) =

∧n
i=1Ci ) is a constraint in qualifier-free first-

order logic that encodes the feasibility of the program path to b,
and Cn is the symbolic condition of b. Symbolic execution invokes
a constraint solver [11, 16, 40] to check the satisfiability [23] of
each branch’s PC . If PC(b) is satisfiable, then the program path to
b is feasible, and symbolic execution will continue to execute the
statement along b; otherwise, it is infeasible, i.e., no input can drive
the program to b, and symbolic execution abandons b. In this way,
symbolic execution systematically explores the path space of P.
On one hand, the path number explodes exponentially in the num-
ber of branch statements. On the other hand, constraint solving is
well-known to be hard [23]. Another complexity explosion occurs
inside of the constraint solver. As shown in Figure 1, there exist
double explosions in symbolic execution. Such double explosions
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Figure 1: Double explosions in symbolic execution proce-
dure. MuSE generates multiple test inputs from partial so-
lutions with only one time of constraint solving. Partial so-
lutions can be used to trigger off-the-path branches on the
current path.

obstruct the application of symbolic execution to larger real-world
programs.

Symbolic execution explores the path space with a search strat-
egy, such as depth-first search (DFS) and breadth-first search (BFS).
The underlying constraint solver also employs an internal search-
ing procedure in the solution space to decide the satisfiability of
path conditions. Essentially, both of the path space and the solution
space represent P’s input space SI . The conditions of P’s branch
statements split SI into different parts. Each part can be represented
by a path. For a path condition PC(b) =

∧n
i=1Ci , the solution space

SPC contains all the possible assignments to the input variables in
PC(b). When solving PC(b), the constraint solver searches SPC , and
hence searches SI . During this searching procedure, the solver may
search the input space corresponding to other paths of P. However,
the solver only returns the final solution satisfying PC(b), if SAT,
or returns UNSAT. Therefore, SI is doubly searched in the stack of
symbolic execution by the path space exploration and the under-
lying constraint solver. It is desirable to unify the two searching
procedures to improve the scalability.

In this paper, we propose Multiplex Symbolic Execution (MuSE)
towards eliminating the redundant searching in dynamic symbolic
execution (DSE). The principle of our method is that we leverage
the constraint solver to search the path space directly via generating
multiple test inputs in one time of solving. For a path condition
PC(b) =

∧n
i=1Ci , we call a point α in the solution space SPC a

partial solution if α satisfies a subset of the constraints in PC(b). As
shown in Figure 1, the solver may touch plenty of partial solutions
before finding a solution or concluding the unsatisfiability. We can
use partial solutions as the test inputs for exploring P’s other paths.
In this way, MuSE maps the constraint solving procedure to the
path space exploration, and reduces the redundant searching to
boost the whole symbolic execution procedure.

Partial solutions exist in a wide range of constraint solving algo-
rithms. We have instantiated the idea of MuSE to three constraint
solving methods to generate partial solutions: i) Simplex-based
quantifier-free linear integer arithmetic (QF_LIA) constraint solving

[13, 25], ii) abstraction refinement based quantifier-free array and
bit-vector (QF_ABV) constraint solving [16], and iii) optimization-
based floating-point constraint solving [15, 40]. Besides, we have
implemented MuSE on two DSE engines based on KLEE [5] and
Symbolic PathFinder (SPF) [33] for C and Java programs, respec-
tively. We have applied our prototypes to real-world C and Java
programs. The evaluation results indicate the effectiveness and
efficiency of MuSE.

The main contributions of this paper are:
• We proposeMuSE to utilize the partial solutions during con-
straint solving to generate multiple test inputs for exploring
multiple paths by solving once.

• We have instantiated the idea of partial solution to three
constraint solving methods and implemented MuSE on two
DSE engines for C and Java programs.

• We have carried out extensive experiments on real-world C
and Java programs. The experimental results indicate that
MuSE achieves one or two orders of magnitude speedup on
the three constraint solving methods for reaching the same
code coverage.

We organize the remainders of this paper as follows. Section
2 motivatesMuSE by a Simplex-based solving method. Section 3
presents MuSE and its instantiations on three solving methods.
Section 4 explains the implementation of MuSE and the experi-
ments on real-world benchmarks. Section 5 reviews the related
work. Section 6 concludes the paper.

2 MOTIVATING EXAMPLE
In this section, we motivate the principle of MuSE. Figure 2 shows
a Java function start that receives two parameters and has four
paths. In each path, the program prints a different number. We call
these four path as p1 ∼ p4, respectively. Now we use DSE to explore
the path space. Suppose that the initial input is {x = 1,y = 3}.
Then the first path is p1 that covers the lines {2, 3, 4, 6, 7}. The path
condition of p1 is ϕ1 = x + y ≥ 2 ∧ 2y − x ≥ 1 ∧ 2x − y < 0. If
we use DFS searching strategy, the last branch is flipped. The new
path condition ϕ2 = x + y ≥ 2 ∧ 2y − x ≥ 1 ∧ 2x − y ≥ 0 is feed
into off-the-shell constraint solver. Suppose that the solution of
ϕ2 is {x = 1,y = 1}, then the second path is p2 that covers the
lines {2, 3, 4, 5}. Similarly, p3 and p4 will be explored. In total, DSE
invokes the constraint solver three times for p2 ∼ p4.

Since all the constraints are linear arithmetic, we suppose that
the solver uses the Simplex-based QF_LIA theory solving algorithm
[23, 25]. The algorithm first considers all the integer variables in
the constraints as real variables and uses Simplex-based linear
real arithmetic solving algorithm to solve the constraints. If there
is no solution, the constraints are unsatisfiable. If there exists a
solution and the values in the solution are already integers, the
algorithm returns the solution; otherwise, the algorithm adds the
integer requirement constraints gradually and employs Simplex
procedures again to find the integer solution.

The Simplex algorithm maintains an assignment α to store the
values of variables1. If the assignment does not satisfy the con-
straints, the algorithm changes the assignment so that at least one
unsatisfied constraint becomes true. This procedure continues until
1Details of Simplex algorithm is discussed in Section 3.2.
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1 public void start(int x,int y){ // float x, float y
2 if (x + y >= 2) {
3 if(2 * y - x >= 1) {
4 if(2 * x - y >= 0) {
5 System.out.println("#2");
6 } else {
7 System.out.println("#1");
8 }
9 } else {
10 System.out.println("#3");
11 }
12 } else {
13 System.out.println("#4");
14 }
15 }

Figure 2: Motivating Example
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Figure 3: Branch statements split the input space into dif-
ferent parts corresponding to different paths. The black ar-
rows show how Simplex searches the solution space for ϕ2 =
x + y ≥ 2 ∧ 2y − x ≥ 1 ∧ 2x − y ≥ 0. The solving procedure
covers three points corresponding to the paths p4, p3 and p2,
respectively.

all the constraints are satisfied or returns UNSAT. For example, sup-
pose that the path condition isϕ2 = x+y ≥ 2∧2y−x ≥ 1∧2x−y ≥ 0
and the initial assignment is α0 = {x = 0,y = 0}. Since α0 does not
satisfy x + y ≥ 2 and 2y − x ≥ 1, Simplex changes the assignment
to α1 = {x = 2,y = 0} by the so-called pivot operation [23, 25],
such that x + y ≥ 2 is satisfied. Now Simplex validates assignment
α1 and finds that 2y − x ≥ 1 is violated. In the next step, the pivot
operation changes assignment α1 to α2 = {x = 1,y = 1}. Finally,
all the constraints are satisfied and α2 is already an integer solution.
So, α2 is returned to the DSE engine for generating the input for
path p2. In vanilla DSE, the constraint solver is used as a black box,
only α2 is visible to the DSE engine, and the DSE engine generates
only one test case from one time of constraint solving.

In contrast, MuSE uses the constraint solver in a white-box
manner. As shown in Figure 3, the input space of start (x-y plane)

is split into 7 parts by the three lines corresponding to the three
branch statements. Each of paths p1 ∼ p3 corresponds to one part
and p4 corresponds to four parts. Simplex algorithm leverages the
linear property of the constraints and smartly explores the solution
space. We can say that Simplex algorithm is exploring the path
space of the program. Since the intermediate assignments α0 and
α1 satisfy subsets of the constraints in ϕ2, they can triggerp4 andp3,
respectively. These intermediate assignments are partial solutions.
DSE can utilize these partial solutions to steer the exploration
along off-the-path branches on the current path. For example, when
solving the first path conditionϕ2,MuSE generates two extra inputs
from the partial solutions α0 and α1, and the executions of these
two inputs triggerp4 andp3, respectively. Hence, by utilizing partial
solutions, MuSE only needs one time of constraint solving to explore
all the paths.

With the support of partial solutions,MuSE maps the constraint
solving procedure to the path exploration in DSE by releasing the
power of constraint solver.2 The key requirement of MuSE is that
the underlying constraint solver can generate partial solutions.
Actually, partial solutions widely exist in the current constraint
solving methods (c.f. Section 3.5). Besides, we will see in the experi-
ments (c.f. Section 4) thatMuSE can generate hundreds of partial
solutions with one time of constraint solving in practice.

3 METHOD
In this section, we first show how MuSE works with dynamic sym-
bolic execution framework. Then we elaborate on how to generate
partial solutions in the existing constraint solving algorithms.

3.1 DSE With MuSE
Algorithm 1 shows the procedure of DSE withMuSE. The inputs are
the program P and an initial input seed I0.T stores all the generated
test inputs yet to be executed. The main body of the algorithm is a
repeat-until loop. In the beginning, the for loop selects all the test
inputs in T and execute the program in a concolic manner [18, 38]
(line 5). During the execution, the algorithm can collect the coverage
information, if needed. The function saveUnexploredBranches saves
all the unexplored branches on the current path p into B (line 7).
Then one branch b is selected from B according to a search strategy
(line 9). Here any strategies can be used to prioritize the branches in
B, such as DFS and BFS. Then the function pathCondition generates
the path condition ϕ along b (line 10). The key of our method is that
the algorithm uses an extended constraint solver which returns
a triple (res, solution, partial-solutions) (line 11). When res is SAT,
solution is the target test input that can steer the execution along
b. Then the solution is stored into T for future executions (line 13).
Otherwise, res is UNSAT or UNKNOWN, solution is set as null. We
assume that the underlying constraint solver may generate partial
solutions no matter whether the final solution can be found or not.
Therefore, partial solutions are also stored into T , if any (line 16).
So, the DSE procedure can get multiple inputs by invoking the
constraint solver once. Even for an unsatisfiable path condition, the

2 Multiplex means reusing a shared scarce resource by sending multiple messages
at once, which is analog to exploring multiple paths by solving once. So we call our
method Multiplex Symbolic Execution (MuSE).
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Algorithm 1Multiplex Dynamic Symbolic Execution
1: Input: Program P , initial input seed I0
2: T = {I0} //test cases to be executed
3: B = ∅ // open branches to be explored
4: repeat
5: for all I ∈ T do
6: p = concolicExecute(P , I )
7: saveUnexploredBranches(p, B)
8: end for
9: b = searchStrategy(B)
10: ϕ = pathCondition(b)
11: (res , solution, partial-solutions) = solving(ϕ)
12: if res = SAT then
13: T = T ∪ {solution}
14: end if
15: /∗save partial-solutions whether SAT or not, if any∗/
16: T = T ∪ partial-solutions
17: until B = ∅ ∨ stopCriterion()

expensive computation spent on constraint solving would not be
wasted.

The key to the success of our algorithm is that the constraint
solver can generate partial solutions. A wide range of constraint
solving algorithms conform a trial and error mode. Thus we can
extract plenty of partial solutions from the solving procedure. In
the following of this section, we firstly focus on several commonly
used constraint solving algorithms in symbolic execution. Then we
briefly discuss more constraint solving algorithms. We will see that
the notion of partial solution is a universal principle applicable to a
wide range of constraint solving algorithms.

3.2 Partial Solutions in Simplex
Simplex is an old and efficient constraint solving method for linear
arithmetic [13, 25]. Although theworst case of Simplex’s complexity
is exponential, it is widely used in practice. For example, one of the
state-of-the-art SMT solver Z3 [11] uses Simplex.

Algorithm 2 shows how partial solutions can be supported by
the basic procedure of general Simplex algorithm for quantifier
free linear real arithmatic (QF_LRA). The inputs of the algorithm
is a set ofm linear constraints S . Without considering the prepro-
cess of the constraint solver, we assume that S corresponds tom
path constraints in ϕ. At the beginning of the procedures, the i-th
constraint Σx j ∈N ai jx j ▷◁ Ri (▷◁∈ {=, ≥, ≤}) 3 is transformed into
the general form Σx j ∈N ai jx j − xi = 0 ∧ xi ▷◁ R, where xi and
x j are real variables. For example, x + y ≥ 2 is transformed into
x +y − s = 0∧ s ≥ 2. After the preprocessing, the constraint system
S is in the general form

Ax = 0 and
m∧
i=1

li ≤ xi ≤ ui (1)

whereA is them×(n+m) coefficientmatrix andxi ∈ B. The elements
of B and N are called basic variables and non-basic variables with
the real number set as domains. The algorithm represents A with a
3Strict inequalities and disequalities are processed by additional tricks. More details
can be referred to [13].

Algorithm 2 General Simplex with Partial Solutions
1: Input: A set of constraints in linear real arithmetic
2: Transform S into general form
3: initialize assignment α
4: partial-solutions = ∅

5: while True do
6: if no basic variable violates bounds then
7: return (SAT, α , partial-solutions)
8: else
9: partial-solutions = partial-solutions ∪ {α }
10: if can find xi and x j for pivoting then
11: pivot(xi ,x j )
12: update α
13: else
14: return (UNSAT, null, partial-solutions)
15: end if
16: end if
17: end while

tableau where the columns and rows correspond to non-basic and
basic variables respectively.

Simplex algorithm maintains an assignment α : B ∪ N → Q
where Q is rational numbers set. Initially, all variables are set to
zero (line 3). At line 6, the algorithm checks whether all the bounds
in equation 1 are satisfied. If yes, the algorithm returns the current
assignment as the solution. Otherwise, the current assignment α
violates at least one bound in equation 1. Here we also know which
constraints in ϕ are satisfied. Suppose that the first k constraints
are satisfied, and the k +1 constraint is not. The current assignment
α can be used as the test input steering the execution along the
(k + 1)-th open branch in the current path p. Therefore, the current
assignment is stored in the partial solution set (line 9). Simplex is
both sound and complete. In the next step, the algorithms checks
whether there exist a basic variable xi and a non-basic variable
x j can be pivoted. If not, the constraint system S is unsatisfiable,
and the algorithm returns UNSAT and the current partial-solutions.
Otherwise, the Simplex algorithm changes A in the pivot operation.
Here x j is solved in the row i as

x j =
xi
ai j

−
∑

xk ∈N−{x j }

aikxk
ai j
, (ai j , 0) (2)

In all other rows except row i , x j is replaced by equation 2 such
that x j becomes basic variables and xi becomes non-basic variables.
Here the assignment α(x j ) is changed so that xi satisfies its bounds.

As thewhile loop continues, more and more bounds in equation
1 may be satisfied. Therefore, we can record the current assignment
before each pivot operation as a partial solution.

In this paper, we consider QF_LIA constraints, which can be
solved by a Simplex-based method [23]. The procedure first con-
siders the variables as real variables and use Simplex to solve the
constraint. If no solution, the constraint is unsatisfiable. If there is a
solution, the procedure return the solution if all the variables have
integer values. Otherwise, the procedure selects a variable that has
a non-integer value and add the constraints of integer requirements.
Then, the procedure employs Simplex again to search the integer
solution. Hence, Simplex is the underlying searching procedure for
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solving QF_LIA. Solving a QF_LIA constraint may invoke Simplex
procedure multiple times. Hence, we record partial solutions for
QF_LIA constraint solving in the underlying Simplex procedures.

3.3 Partial Solutions in Array Theory Solving
Arrays widely exist in programs. Existing symbolic executors [5, 6]
use array theory for representing the array operations in programs.
Reasoning about array can be very complex when both index and
array elements are symbolic values. In this subsection, we focus on
how to generate partial solutions in array theory solving.

Abstract/refinement-based array theory solving [16] is the state-
of-the-art solving method. Several mainstream QF_ABV SMT tools
implements this method, such as STP [16] and Boolector [31]. It is
natural to generate partial solutions in the abstraction/refinement
loop. Algorithm 3 shows the procedure. At the beginning, formula
f is converted to an abstract version fa by the function abstract
(line 3). In fact, fa is a relaxation of f , where the constraints de-
rived from array axioms [23] are omitted, so f implies fa . Here
we assume that the constraints are expressed in bit-vector theory.
The algorithm feeds fa into a SAT-based bit-vector solver. If fa
is unsatisfiable, then f is unsatisfiable too. Otherwise, the algo-
rithm validates the solutionMa of fa on f . IfMa is also a solution
of f , then the algorithm returns Ma as the solution. Otherwise,
fa is refined so that more constraints derived from array axioms
are added as conjunctives to fa (line 18). The loop continues until
the algorithm terminates. The abstract version fa becomes f if all
constraints derived from array axioms are added into fa . So the
algorithm always terminates.

It is straightforward to extract partial solutions from this ab-
stract/refinement loop. In each loop iteration, we store the solution
Ma of the abstract formula fa as partial solution (line 13). In fact,
we can also modify the SAT-based bit-vector solver to obtain more
partial solutions at line 5. We will discuss this topic in subsection
3.5.

3.4 Partial Solutions in Optimization-based
Solving

Floating-point arithmetic is a challenge for constraint solving. Re-
cently, mathematical optimization based solving has been proposed
for floating-point arithmetic, such as XSAT [15] and CORAL [40].
Optimization-based constraint solving introduces the techniques
from search-based testing, where the constraints are transformed
into an objective function for the optimization algorithms. The
global minimum of the objective function corresponds to the solu-
tion to the solving problem. Thus, any mathematical optimization
algorithms can be used. For example, XSat usesMonte CarloMarkov
Chain (MCMC) method to find the global minimum [15]. CORAL
uses meta-heuristic algorithms, including random search or par-
ticle swarm optimization [40]. In this subsection, we take XSat
as an example to show how partial solutions can be supported in
optimization-based constraint solving algorithms.

XSat transforms the constraints solving problem as follows.
Given a conjuctive normal form of constraint:

F =
∧
j ∈J

∨
i ∈I

ei, j ▷◁ e
′
i, j (▷◁ ∈ {==, ≤, ≥, <, >,,}) (3)

Algorithm 3 Abstract/Refinement-based Array Theory Solving
with Partial Soltions
1: Input: A conjunction of formulas f in bit vector and array

theory
2: partial-solutions = ∅

3: fa = abstract(f )
4: while true do
5: (res ,Ma ) = BVSolver(fa )
6: if res = UNSAT then
7: return (UNSAT, null, partial-solutions)
8: else
9: v = validate(Ma , f )
10: if v=true then
11: return (SAT,Ma , partial-solutions)
12: else
13: partial-solutions = partial-solutions ∪ {Ma }
14: f ′a = refine(fa )
15: if f ′a = fa then
16: return (UNSAT, null, partial-solutions)
17: else
18: fa = f ′a
19: end if
20: end if
21: end if
22: end while

the objective function (or fitness function) corresponding to F is

OF =
∑
j ∈J

∏
i ∈I

d(▷◁, ei, j , e
′
i, j ) (4)

where d is defined in table 1.

Table 1: Fitness function

d(==,x ,y) θ (x ,y)

d(≤,x ,y) x ≤ y ? 0 : θ (x ,y)
d(≥,x ,y) x ≥ y ? 0 : θ (x ,y)
d(<,x ,y) x < y ? 0 : θ (x ,y)
d(>,x ,y) x > y ? 0 : θ (x ,y)
d(,,x ,y) x , y ? 0 : 1

Here θ (x ,y) is the number of floating-point numbers between
a and b, representing the distance between x and y. The fitness
function evaluates how close a test input satisfies the constraints.
Since θ ≥ 0,OF equals to 0 if and only if F is satisfied. For example,
suppose that x and y in Figure 2 are floating-point variables. The
landscape of the objective function for path condition ϕ2 = x +y ≥

2 ∧ 2y − x ≥ 1 ∧ 2x − y ≥ 0 is shown in Figure 4. Note that
the landscape of more complex path constraints can be very non-
convex. There is no guarantee that the global minimum can always
be found.

Given the objective function, we can use any mathematical opti-
mization methods to find the global minimum, including simulated
annealing, particle swarm Optimization, etc. For example, XSat uses
simulated annealing algorithm to find the global minimum. Simu-
lated annealing specializes the general MCMC sampling method
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Figure 4: Landscape of the fitness function corresponding to
path condition ϕ2 = x +y ≥ 2∧ 2y −x ≥ 1∧ 2x −y ≥ 0. MCMC
finds the global minimum after 5 steps.

by using symmetric proposal distribution and exp(−f (x)/T ) as the
density of target unnormalized distribution, where f is the objective
function and T is the temperature [22]. In principle, we can extract
the local minimum or the intermediate points as partial solutions
directly. As shown in Figure 4, we get the final solution (1.68, 2.06)
in 5 steps, and also two partial solutions (0, 0), (1.45, 1.06) corre-
sponding to path p4 and p3 respectively. Besides, the mathematical
optimization procedure may produce many partial solutions, and
some of them may trigger the same path. We can choose to extract
partial solutions only from local minimums, which are supported by
modern optimization algorithms. For example, the Basin-Hopping
algorithm extends MCMC method by employing a local optimiza-
tion method in each Monte Carlo step [32]. Note that, due to the
stochastic nature of MCMC methods, it may take different steps be-
fore the final solution is found in multiple runs. Hence, we may get
different partial solutions in different runs for the same constraint.

3.5 The Ubiquitous Partial Solutions
Until now,we have discussed howpartial solutions can be supported
in three commonly used constraint solving algorithms in symbolic
execution. In practice, symbolic execution barely generates disjunc-
tion in path condition, which is a hurdle to the general DPLL(T)
framework in SMT solvers [23]. For example, the default constraint
solver STP [16] used by KLEE does not support disjunctions. There-
fore, in this paper, we briefly discuss how partial solutions can be
supported in several other constraint solving algorithms. Here we
take some of them as instances.

CDCL framework for SAT. The popular CDCL framework used
in SAT solvers searches the solution space by a decide-backtrack
loop [23]. CDCLmaintains a partial assignment to variables. In each
loop iteration, the decide phase chooses an assignment to a selected
variable, then the backtracking phase erases some assignments to
resolve conflicts. The loop continues until the partial assignment is
extended to a full assignment or return UNSAT. Obviously, we can
extract the partial assignments as partial solutions. Besides, fixed-
sized bit-vector theory solving uses SAT solving as the underlying
solver. Nowadays, bit-vector theory [23] is widely used in symbolic
execution to precisely model the computations of machine numbers
in programs. Many mainstream SMT solvers support bit-vector
theory, such as Z3 [11] and STP [16]. Bit-vector theory solving

converts a bit-vector constraint to a propositional formula and
invokes the underlying SAT solver for solving. Therefore, we can
record the partial solutions during the SAT solving procedure and
generate partial solutions for bit-vector solving. Hence, the method
in Section 3.3 for QF_ABV can be improved further, which is left to
be the future work.

DPLL(T) for Satisfiability Modulo Theories (SMT). DPLL(T)
framework extends the CDCL framework with the decision proce-
dures of background theories [23]. DPLL(T) uses CDCL algorithm
to find a solution to the propositional skeleton of the constraints
and then employs a constraint solver of background theories (e.g.,
Simplex for linear arithmetic) to find a solution. We can extract
partial solutions as in CDCL framework and constraint solving
algorithms for background theories.

Congruence-Closure algorithm for equality logic and unin-
terpreted functions. The Congruence-Closure algorithm constructs
the congruence-closed equivalence classes for terms [23]. If a dise-
quality constraint violates the equivalence relation, the algorithms
return UNSAT. We can construct partial solutions according to the
equivalence classes at any point during the construction procedure.

JFS is a recent constraint solving algorithm for floating-point
arithmetic [28]. JFS transforms floating-point constraints into a
program having a list of branch statements. The inputs satisfy the
constraints only when the final statement of the program is covered.
Thus, the constraint solving problem is transformed into a state-
ment covering problem. JFS employs coverage-guided fuzzing [1] to
generate the test cases to cover the target statement. Therefore, JFS
is similar to the optimization-based floating-point solving methods
where the optimization is implemented implicitly by the fuzzing
method. We can extract partial solutions as like in Section 3.4.

3.6 Discussion
MuSE is the first step towards unifying the double searching proce-
dures in symbolic execution. Compared to vanilla symbolic execu-
tion,MuSE can generate more test inputs with the same amount of
constraint solvings, i.e., exploring multiple paths by solving once.
We have no guarantee that each of the generated test inputs by par-
tial solutions can trigger a distinct path. From the results in section
4, we will see that multiple partial solutions indeed correspond to
the same path. A potential method to avoid expensive symbolic
execution with equivalent partial solutions as inputs is to employ
lightweight concrete executions on these partial solutions. Such
advanced synergy of concrete and symbolic execution can both
exploit partial solutions and avoid expensive redundant symbolic
computations. We leave this as the future work.

4 EXPERIMENTAL EVALUATION
4.1 Implementation
In order to support partial solutions, we have extended the three
constraint solving methods discussed in section 3 on two state-of-
the-art constraint solvers and one self-implemented solver.

• We use Z3 [11] for QF_LIA solving and modified Z3 to gen-
erate partial solutions. Z3 employs Simplex-based QF_LRA
solving to find the real solution to a relaxed problem first
and then adds constraints gradually to find integer solutions
[12, 26]. We record the partial solutions in the iterations of
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Simplex-based solving and convert each partial solution to
its closest integer version.

• We use STP [16] for QF_ABV solving. STP implements the
abstract refinement-based approach for solving QF_ABV
formulas. We record the partial solution generated in STP’s
each refinement iteration.

• We have implemented an optimization-based floating-point
solver in Java. We use simulated annealing [22] as the opti-
mization algorithm. In each Monte Carlo step, we check the
assignments and extract them as partial solutions if needed.

To evaluateMuSE extensively, we built the DSE engines utilizing
partial solutions for C and Java programs based on the state-of-the-
art symbolic executors.

• We have implemented MuSE on the DSE engine [34, 44] for
C programs based on KLEE [5]. The engine uses the STP
enabled for providing partial solutions. Besides, the DSE
engine supports the under-constrained symbolic execution
[35] that can easily carry out the DSE for a function.

• We have implemented MuSE on the DSE engine [47] for
Java programs based on SPF [33]. The engine uses the Z3
supporting partial solutions for solving QF_LIA formulas and
our optimization-based solver for analyzing floating-point
programs.

4.2 Research Questions
We carry out experiments to answer the following questions:

• Effectiveness: How effective is MuSE to test a program auto-
matically compared with the existing search strategies? We
use code coverage to measure the effectiveness.

• Efficiency: How efficient is MuSE to accomplish a testing
task compared with the existing search strategies? We use
the time budget to achieve the same coverage to measure
the efficiency.

4.3 Setup
We conduct three experiments to evaluate MuSE with the three
constraint solving methods. The setups of these experiments are as
follows.

4.3.1 Experiment 1: Simplex-based QF_LIA Solving. We use the
DSE engine for Java programs and Z3 enabled with partial solutions
during QF_LIA solving for evaluation. Table 2 shows the bench-
mark programs. All the programs are real-world open-source Java
programs. The programs are file parsing libraries of different kinds
of file formats, including BMP, MP3, WAV, etc. Four programs are
from ImageJA library, which is a popular library for manipulating
images, and the total LOC of the library is 123783. Two programs
are from apache imaging library, whose LOC is 32594. For each
program, we count the LOC of the files that are directly related to
the tested parsing interface.

We create a driver program for each parsing library program to
invoke its main parsing interface. We use a valid file as the initial
input. The file sizes range from tens to thousands of bytes. We
symbolize each byte in the file for DSE. Note that, not all symbolic
bytes are involved in the constraints due to the functionality of these
programs. Because many bit operations exist in these programs, and

Table 2: The programs in the QF_LIA experiment.

Programs LOC Brief Description
BMPDecorder 266 BMP file decoder
AviParser 2046 ImageJA AVI file decoder
GifParser 439 ImageJA GIF parser
BMPParser 205 ImageJA BMP parser
PGMParser 2736 ImageJA PGM parser
ImgParserPCX 945 Imaging PCX decoder
ImgParserBMP 1123 Imaging BMP decoder
JaadParser 115 Jaad MP3 decoder
Schroeder 1448 Schroeder WAV decoder
JMP3Parser 1634 JavaMP3 decoder
Toba 1060 Java bytecode decoder
Total 12017 11 open source programs

QF_LIA does not support the modeling of bit operations, we convert
bit operations to its integer-implemented version. We use DSE to
test these programs automatically in four configurations: DFS, DFS
with partial solutions (DFS+P), BFS, and BFS with partial solutions
(BFS+P). Since the initial inputs are valid files and cover a large
portion of instructions, we use the number of the new instructions
covered after the first path as the criterion to evaluate methods. We
test each program in each configuration for 15 minutes.

4.3.2 Experiment 2: Abstraction Refinement-based Array Theory
Solving. We use the DSE engine for C programs and the partial
solution enabled STP for evaluation. Table 3 shows the benchmark
programs, which are from the GNU scientific library (GSL) [14].
Floating-point operations and array operations are extensive in
these programs. The second column LOC displays the total number
of the LLVM instructions inside the tested function and its callee
functions.

Table 3: The programs in the QF_ABV experiment. LOC*:
lines of LLVM instructions.

Programs LOC* GSL Function
akimaei 2225 akima_eval_integ
bilinea 2075 bilinear_deriv_y
find 7706 find
eigengs 9150 gsl_eigen_genv_sort
fft-rrt 10199 gsl_fft_real_radix2_transform
h2d-ps 7919 gsl_histogram2d_pdf_sample
sort 328 gsl_sort
sum-lum 2896 gsl_sum_levin_u_minmax
linear-ed 1618 linear_eval_deriv
linear-ei 2117 linear_eval_integ
solve-ct 8066 solve_cyc_tridiag
solve-ctn 8205 solve_cyc_tridiag_nonsym
steffen-ei 1815 steffen_eval_integ
Total 64319 13 GSL functions

To support floating-point operations, we have implemented the
method in [36] that converts each floating-point instruction to
its integer simulation implementation. We use softfloat [3] as the
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Table 4: The programs in the experiment for optimization-
based floating-point solving.

Programs LOC Brief Description
EigenD 1985 La4j Eigen decomposition
JacobiS 1210 La4j Jacobi solver
CholeskyD 1203 La4j Cholesky decomposition
LeastS 1264 La4j least squares solver
SquareR 1224 La4j square root solver
EDAnalysis 1429 Colt Eigen value decomposition
Mutil 1120 Colt linear matrix multiplication
RankAnalysis 1120 Colt rank for matrix
SVDAnalysis 1139 Colt singular value decomposition
TVSAnalysis 1120 Colt several kinds of decomposition
Total 12814 10 open source programs

library for floating-point simulation. We test these programs in six
configurations: DFS with partial solutions (DFS+P), BFS with partial
solutions (BFS+P), the default random-cover new search (RCN), the
random state search (RSS), DFS, and BFS. We test each program in
each configuration for 15 minutes.

4.3.3 Experiment 3: Optimization-based Floating-point Solving.
Similar to experiment 1, we also evaluate MuSE equipped with
the partial solution enabled optimization-based floating-point con-
straint solver on the DSE engine for Java programs. Table 4 shows
the benchmark Java programs. All the programs are from two real-
world linear algebra Java libraries (i.e., La4j and Colt), which include
very complex floating-point arithmetics. Same as Table 2, we count
the LOC of each benchmark’s directly related files. The LOCs of
Colt and La4j are 32879 and 10963, respectively.

We reuse the testing drivers that already exist in the libraries.
The drivers usually input double typed matrices to the library’s
interfaces. We symbolize each element in the matrixes to test these
programs.

All experiments are carried out on a server with 64GB RAM and
one 3.4GHz Xeon CPU with six cores. The results are the average
of 3 runs.

4.4 Experimental Results
This sub-section illustrates the results of the three experiments
evaluating MuSE.

4.4.1 Experiment 1: Simplex-based LIA Solving. Table 5 gives
the experimental results of evaluating MuSE on QF_LIA constraint
solving. The column #T displays the number of the tests generated
by DSE. The column #NI displays the number of new instructions
that have been covered after the first path. Both these two numbers
reflect the DSE’s ability of path exploration. As shown by the table,
compared with the baseline search strategy, i.e., DFS or BFS, MuSE
can cover more new instructions and generate more tests for most
of the programs, which indicate the effectiveness of MuSE.

Figure 5 shows the trends of covered new instructions under
different configurations for all the programs. We record the wall
time after each path is covered. In the end, we compute the number
of newly covered instructions after the first path (Y-axis) at each

time step (X-axis). As shown in the Figure 5, under the same period,
MuSE covers more new instructions consistently than the baseline
search strategy. We also evaluate the efficiency of MuSE with the
time needed to cover the same amount of new instructions. DFS
achieves its largest number of new instructions (i.e., 398) at 625.6s,
and DFS+MuSE covers the closest number (i.e., 400) at 14.4s and
achieves at least 43.4x speedup. On the other hand, MuSE achieves
at least 12.9x (890.6s/69.2s) speedup on BFS for covering 1296 in-
structions that are no less than BFS’s upper bound (i.e., 1296). These
results indicate thatMuSE is highly efficient.

4.4.2 Experiment 2: Abstraction Refinement-based Array The-
ory Solving. Table 6 gives the experimental results. We use several
default strategies used in KLEE as the baselines, including RCN
(random + cover new), RSS (random state search), DFS and BFS. Col-
umn #PS shows the number of partial solutions generated during
analysis. ColumnCOV shows the coverage result. We collect LLVM
code coverage during symbolic execution. As shown by the table,
compared with the other configurations, BFS+P, i.e., MuSE plus
BFS, achieves the best result in average. Compared with the last

Table 5: Experimental Results of QF_LIA

Programs DFS+P DFS BFS+P BFS
#T #NI #T #NI #T #NI #T #NI

BMPDecorder 1125 134 5 0 3746 84 104 40
AviParser 340 117 144 46 1732 101 114 0
GifParser 721 25 60 5 1905 64 960 48
BMPParser 1203 52 8 0 4458 126 102 18
PGMParser 264 1 263 1 4736 188 7362 178
ImgParserPCX 387 38 81 20 2596 76 65 0
ImgParserBMP 458 314 114 21 1784 528 135 198
JaadParser 2083 64 134 0 2692 64 2835 59
Schroeder 1149 23 235 20 2267 29 402 22
JMP3Parser 214 286 37 198 319 653 279 646
Toba 1836 344 117 87 1670 311 179 87
Average 889 127 108 36 2536 202 1139 117
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Figure 5: Trends of number of covered new instructions in
experiment on QF_LIA.
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four strategies in KLEE, BFS+P improves more than 20% coverage,
which indicates the effectiveness of MuSE.

Figure 6 shows the coverage trend under different strategies. The
X-axis shows the analysis time, and the Y-axis shows the achieved
average coverage. As shown in the figure,MuSE performs consis-
tently better than the baseline strategies. The results also indicate
that MuSE has two orders of magnitude speedup to achieve the
upper bound coverages of DFS and BFS, respectively.

4.4.3 Experiment 3: Optimization-based Floating-point Solving.
Table 7 shows the experimental results of MuSE on optimization-
based floating-point solving. The meanings of the columns are the
same as those in Table 5. Compared with the baseline method,
MuSE covers more instructions and generates more tests. Besides,
compared with BFS, MuSE improves DFS more. The reason is that
DFS explored longer paths in priority. Longer paths have more
complex PCs that are hard to resolve. On the other hand, BFS
explores short paths first, whose PCs are more likely to be solved by
optimization-based solvers. The results marked with an asterisk in
Table 7 mean that the analyses terminate before the time limit. This

Table 6: Experimental Results of QF_ABV

Programs DFS+P BFS+P Other Stategies
#PS COV #PS COV RCN RSS DFS BFS

akimaei 1 64.7 514 76.1 76.5 67.2 65.3 64.9
bilinea 305 71.6 172 80.8 79.0 77.4 59.1 65.4
find 177 96.9 156 96.7 91.3 40.0 91.5 97.7
eigengs 19 73.5 118 98.0 67.6 51.6 61.1 82.8
fft-rrt 1015 46.8 350 99.5 39.6 38.6 46.5 11.3
h2d-ps 4 95.7 130 98.6 47.5 47.5 95.7 98.6
sort 18 100.0 9 100.0 89.7 82.2 83.7 44.6
sum-lu 29 76.5 129 88.6 70.8 50.7 70.1 43.1
linear-ed 13 63.1 1015 82.8 79.9 78.7 56.3 63.8
linear-ei 3 73.5 376 80.5 77.5 71.2 64.2 72.6
solve-ct 135 93.4 33 94.4 26.6 22.3 13.8 93.5
solve-ctn 32 94.2 2 96.0 21.7 19.2 30.0 95.5
steffen-ei 18 74.8 253 83.4 68.7 65.6 67.4 68.8
Average 136 78.8 250 90.4 64.3 54.8 61.9 69.4
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Figure 6: Trends of coverage in experiment on QF_ABV.

is because the path conditions are too complex for the constraint
solver. Symbolic execution can not expand the execution tree when
the constraint solver can not generate solutions.

Figure 7 shows the trend of newly covered instructions under
different configurations. The X-axis is the analysis time, and the
Y-axis shows the number of newly covered instructions for all the
programs after the first path. As shown by the figure, MuSE is con-
sistently more efficient than the base line method. Besides,MuSE
with DFS finally covers more instructions than BFS, which also
indicates that partial solutions improve the effectiveness. Similar
to experiment 1, we also evaluate the efficiency of MuSE by com-
paring it with the baseline for covering the same amount of new
instructions. To achieve DFS’s largest number of new instructions
(i.e., 615 at 773.1s), MuSE uses 7.8s to cover 633 instructions and
gets 99.1x speedup. For BFS,MuSE gets at least 4.6x (290.2s/63.2s)
speedup for covering 4350 instructions that are closest to BFS’s
upper bound (i.e., 4265). These results indicate the efficiency of
MuSE.

Table 7: Experimental results of optimization-based
floating-point solving. Results marked with asterisk mean
that symbolic execution can not generate more inputs for
complex path conditions and stops expanding the execution
tree before time limit at that run.

Programs DFS+P DFS BFS+P BFS
#T #NI #T #NI #T #NI #T #NI

EigenD 3 244 1 0 477 1028 20 965
JacobiS 1424 13 43 6 1151 13 43 6
CholeskyD 1376 1335 43 4 1116 8 42 8
LeastS 169 2000 1 0 573 2246 43 2196
SquareR 1541 166 43 4 1240 8 44 8
EDAnalysis 8 418* 3 3* 8 392* 3 3*
Mutil 10 7* 4 0* 10 7* 4 0*
RankAnalysis 255 406 15 180 325 427* 20 427*
SVDAnalysis 204 427* 38 418* 276 427* 19 427*
TVSAnalysis 343 430 1 0 484 612 7 225
Average 484 495 17 55 514 469 22 387
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experiment on floating-point solving.
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4.4.4 Partial Solutions. We also collect the results of constraint
solving and the numbers of partial solutions. Figure 8 shows the
average number of partial solutions per solving in different experi-
ments. Due to the difference between constraint solving methods,
the number of partial solutions can be very different. For example,
in one analysis on BMPDecorder using QF_LIA under DFS mode,
our method generates 923 partial solutions in 4 times of solvings.
For fft-frrt using QF_ABV under DFS mode, our method generates
940 partial solutions in 232 times of solvings. It worth noting that

our method usually generates more partial solutions under DFS
than BFS. The reason is that the path condition under DFS contains
more constraints and is usually more complicated, so the solving
algorithms need more trials before finding the final solution.

4.5 Threats to Validity
The threats to the validity of the experimental results are mainly
external. Although we only applied the idea of partial solutions on
three solving methods, the idea is general and can be applied to
other constraint solving methods (c.f., Section 3.5). The benchmarks
we use for evaluatingMuSE on three constraint solving methods
are limited and thus the experimental results could be biased. We
plan to evaluate MuSE on other constraint solving methods and
benchmark programs for a more general validation. The internal
threats mainly come from the bugs in implementation due to the
complexity of the solvers and the DSE engines. We have designed
a set of test cases to test the partial solution enabled solvers and
the DSE engines utilizing partial solutions.

5 RELATEDWORK
The key idea of MuSE is that the underlying constraint solver sup-
ports partial solutions. We expect that the mainstream constraint
solvers to provide a general interface to access partial solutions in
the future.

The most related work to our method is the constraint opti-
mization techniques. In many symbolic execution engines, solving
result cache stores the previous solving results so that the same
constraints are not repeatedly solved [5, 6]. The counter-example
cache also stores the sets of unsatisfiable constraints. When the
query contains a subset stored in the counter-example cache, there
is no need to invoke the constraint solver [5]. Both of symbolic
execution and constraint solving reduce constraints into simpler
forms before querying the underlying constraint solver. For exam-
ple, KLEE rewrites expressions by folding constants and simplifying
linear expressions [5]. EXE separates a query into independent sub-
sets of constraints so that the solving result cache can be reused
better. The Green framework provides a unified facility so that the
constraint solution can be reused across multiple programs and
analysis [42]. Green also canonicalizes constraints to improve the
cache hit ratio. In [20], Green is extended to support logical implica-
tion relations between constraints. Speculative symbolic execution
(SSE) executes branch statements speculatively [49]. The constraint
solver is invoked until a specified number of constraints is collected
on the current path. The total invocation times of constraint solver
is reduced. SSE also uses unsat core to help backtracking in wrong
speculations.

Another research track on boosting symbolic execution focuses
on path explosion problem. This research track can be classified
into two classes. The first class develops efficient path exploration
strategies to achieve specific goals with limited resources, including
branch/statement coverage, statement reachability, etc. For exam-
ple, the SGS strategy steers the symbolic execution to less-traveled
paths to improve statement coverage [27]. Directed symbolic exe-
cution proposes two search strategies to reach a particular target
statement [29]. CGDS strategy prioritizes branches with the short-
est distance to the unexplored program part, aiming to attain better
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branch coverage with fewer test inputs [4]. The recently proposed
adaptive search heuristic uses machine learning techniques to learn
search strategy online to improve the coverage. The learned search
strategy is adaptive with respect to the program under test. Experi-
mental results also show that the learned search strategy outper-
forms traditional fixed search strategy in both statement coverage
and bug-finding [7, 9]. Another class of research work reduces the
path space so that uninteresting paths are abandoned. RGSE com-
bines static data-flow analysis and dynamic symbolic execution to
find paths satisfying the given regular property as soon as possi-
ble [48, 50]. Grammar-based white-box fuzzing uses the grammar
specification of valid inputs, in order to avoid non-parsable inputs
and reach deeper program parts [17]. In [8], the input template is
automatically learned online to reduce the path space and hence
improve the branch coverage. The works proposed in [39, 47] use
program slicing to reduce paths unrelated to the analysis target.
For concurrent programs, partial order reduction can be used to
reduce path space [37, 43]. MPI-SV combines symbolic execution
and model checking to prune equivalent paths satisfying the same
property in linear temporal logic property [46]. State merging tech-
niques also can reduce the number of paths effectively [2, 24]. It
worths noting that state merging with the ite operator encodes
multiple paths into one formula, which is solved by the constraint
solver. This also can be seen as using constraint solving to search
the path space directly. However, as far as we know, we are the first
to open up the constraint solver in symbolic execution.

Search based software testing (SBST) techniques use fitness func-
tion to measure how close a test input can reach the target program
part, such as branches and statements, and then employ optimiza-
tion algorithms to find the global minimum of the fitness function
[30, 45]. SBST transforms the test input generation problem into a
mathematical optimization problem so that plenty of optimization
algorithms can be used. In Section 3.4, we discuss the optimization-
based constraint solving technique used in search-based testing.

6 CONCLUSION
Symbolic execution is facing the scalability problem caused by the
path explosion and the complexity explosion inside the constraint
solver. We observe that there exist redundant searchings in the
stack of symbolic execution. In this paper, we propose MuSE, a
general method to use the constraint solver to explore the path
space directly.MuSE maps the search procedure of the constraint
solving algorithm to the searchings in the path space via extracting
partial solutions produced in the solving procedure. We implement
MuSE in mainstream symbolic execution engines and the state-
of-the-art constraint solvers. The experimental results show that
MuSE achieves one or two orders of magnitude speedups on the
three constraint solving methods to reach the same code cover-
age. We believe that MuSE is the first step towards unifying the
searching procedures in symbolic execution. There are several di-
rections for future work: 1) implementing MuSE on more theories
and conducting more extensive experiments; 2) investigating the
synergy of concrete and symbolic executions to leverage partial
solutions more efficiently; 3) exploring the methods for unifying
the searching procedures under different backgrounds.
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