
Efficient Multiplex Symbolic Execution
with Adaptive Search Strategy

Tianqi Zhang1, Yufeng Zhang2, Zhenbang Chen1, Ziqi Shuai1, Ji Wang1,3
1College of Computer, National University of Defense Technology, Changsha, China

2College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
3State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China

zhangtianqi18@nudt.edu.cn,yufengzhang@hnu.edu.cn,{zbchen,szq,wj}@nudt.edu.cn

ABSTRACT
Symbolic execution is still facing the scalability problem caused
by path explosion and constraint solving overhead. The recently
proposed MuSE framework supports exploring multiple paths by
generating partial solutions in one time of solving. In this work,
we improve MuSE from two aspects. Firstly, we use a light-weight
check to reduce redundant partial solutions for avoiding the redun-
dant executions having the same results. Secondly, we introduce
online learning to devise an adaptive search strategy for the tar-
get programs. The preliminary experimental results indicate the
promising of the proposed methods.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
symbolic execution, search strategy, machine learning

ACM Reference Format:
Tianqi Zhang, Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Ji Wang. 2020.
Efficient Multiplex Symbolic Execution with Adaptive Search Strategy. In
35th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’20), September 21–25, 2020, Virtual Event, Australia. ACM, New York,
NY, USA, 2 pages. https://doi.org/10.1145/3324884.3418902

1 INTRODUCTION
Symbolic execution has been widely applied in many areas [1],
including test case generation, program repair, etc. In symbolic
execution, The values of variables are maintained as symbolic ex-
pressions. A constraint solver is invoked to determine the feasibility
of the path on each branch. When applied to large-scale programs,
symbolic execution is still facing the scalability problem caused by
path explosion and constraint solving. Firstly, the number of paths
may grow exponentially with the number of conditional statements.
Therefore, it is infeasible to iterate all the paths of a large-scale
program. Secondly, constraint solving is notoriously hard [5]. On

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418902

each path, the constraint solver is invoked to determine the satisfia-
bility of the corresponding path constraints. In practice, constraint
solving may dominate the procedure of symbolic execution [1].

Multiplex symbolic execution (MuSE) [9] is one of the methods [1]
tackling the scalability problem. MuSE is based on the insight that
the solution space searched by the constraint solver and the path
space explored by the symbolic execution engine are both from the
same input space. Therefore, when solving the path constraints, the
constraint solver is essentially searching the path space. The partial
solutions encountered during the constraint solving procedure can
be utilized as useful test cases triggering off-the-path branches on
the current path, although the partial solutions cannot satisfy the
path constraints. MuSE can achieve the same coveragewithin orders
of magnitude less time budget than vanilla symbolic execution.

We find that MuSE is not efficient enough in two aspects. Firstly,
although the constraint solver may produce hundreds of partial
solutions during one solver call, many partial solutions may trig-
ger the same path. It is wasteful to execute redundant test inputs
symbolically. Secondly, MuSE produces orders of magnitude more
test inputs within the same times of constraint solving. Therefore,
MuSE needs a different strategy to prioritize unexplored branches.
In this work, we plan to solve these two problems.

2 METHOD
We propose two methods to improve the efficiency of MuSE. The
improved algorithm is shown in Algorithm 1. The procedure starts
with an initial input I0 and executes all the generated inputs in T .
B stores all the unexplored branches. A strategy s detemines which
branch in B is prioritized. The algorithm uses a constraint solver
supporting partial solutions. After solving, both solution (if SAT)
and partial solutions are stored intoT . This procedure repeats until
all branches are explored, or some stop criterion (e.g., time budget)
is satisfied. In the following, we discuss how we improve MuSE.

2.1 Reducing Redundant Inputs
In MuSE, the constraint solver may produce hundreds of partial
solutions in one time of solving. We observe that many partial solu-
tions trigger the same path or have the same coverage. Therefore,
we devise a light-weight filter (line 15) mechanism to reduce redun-
dant test inputs. Firstly, wemaintain the execution tree representing
all the paths that have been covered as well as the open branches
yet to be explored. For each covered path and unexplored branch,
we also store the corresponding path condition. We filter out partial
solutions which satisfy the same path condition with a covered
path. We have conducted preliminary experiments on 10 real-world
Java programs using our extended Simplex-based QF_LIA theory
solving algorithm with MuSE on JPF [9]. Results show that such

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zhang T.Q. and Zhang Y.F., et al.

a fast check can reduce 7.4% of redundant partial solutions. Sec-
ondly, since one loop statement may correspond to multiple paths
in the execution tree, inputs corresponding to different branches
are not meant to cover different statements. Therefore, we also use
a standby concrete execution further to filter inputs that do not
lead to new coverage. In our preliminary experiments, we find that
a total of 99% redundant partial solutions can be reduced. Note that
we use statement coverage to determine whether a partial solution
is redundant. Another criterion may lead to different results.

Algorithm 1 Improved MuSE
1: Input: Program P , open branches set B , search strategy s
2: T = {I0 } //test cases to be executed
3: do
4: for I in T do //execute all generated inputs
5: p = concolicExecute(P , I) //p is the current path
6: saveUnexploredBranches(p , B)
7: end for
8: b = select(B , s)
9: ϕ = pathCondition(b)
10: (res, solution, partial-solutions) = solving(ϕ)
11: if res = SAT then
12: T = T ∪ {solution}
13: end if
14: /∗save partial-solutions whether SAT or not, if any∗/
15: T = T ∪ filter(partial-solutions) //reduce redundant inputs
16: while B , ∅ ∧ ¬ stopCriterion()

2.2 Adaptive Search Strategy for MuSE
Search strategy is important to the performance of symbolic exe-
cution [1]. In MuSE, the search strategy not only decides which
branch is to be explored but also affects the efficiency and effec-
tiveness of the generated partial solutions. For example, the path
condition of a deeper branch tends to contain more constraints
and may lead to timeout in solver for vanilla symbolic execution.
However, in MuSE, solving more complex path condition tends
to generate more partial solutions, which are supposed to cover
more program paths. Nevertheless, it is hard to predict whether
a partial solution will improve the program coverage. Thus, it is
difficult to devise an appropriate search strategy for MuSE. Due to
the complexity of programs, there is no silver bullet strategy for
all target programs. Recently, Sooyoung et al. propose using online
learning to devise an adaptive search strategy for target programs
[3]. We introduce such a learning paradigm to improve the search
strategy of MuSE.

Table 1: Features of unexplored branch b
1 whether b is from a loop statement
2 the depth of b (normalized)

3 the number of unexplored branches after all the
off-path-branches along the path prefix of b

4 the sum of the depths of unexplored branches after all the
off-path-branches along the path prefix of b (normalized)

5 whether b lies in the top 10% part of the most deepest path

6 whether b lies in the bottom 10% depth of the most deepest
path

7 whether b is from a statement covered by last runs

8 whether b is a direct descendant of some branch b′ which is
solved yet

In our algorithm, a strategy s is a function defined on the set
of branch s(b) = w · feat(b), where w is the parameter vector and
feat(b) = (feat1(b), · · · , featn (b)) is a vector representing the fea-
tures of b. As shown in Table 1, each feature describes the static
or dynamic information of b. For example, feature 1 determines
whether b is from a loop statement. If yes, we want to assign b a

lower priority. Feature 2 prioritizes deeper branches because they
may lead to more partial solutions.

Algorithm 2 shows the procedure of the online learning of the
search strategy. The overall procedure is a genetic algorithm [7]
searching the optimal parameter vector fitting the target program
best. Initially, we use a set of randomly chosen strategy set S to
direct MuSE. For each strategy, we run MuSE for a fixed num-
ber of iterations. Next, we evaluate the coverage information of
each strategy and choose the good ones G. Then we generate off-
springs from G and kill bad ones from S . The procedure iterates
until the execution tree is completed or some stop criterion is satis-
fied. The strategy search procedure is performed online along with
the symbolic execution. During this procedure, bad strategies will
be abandoned and good strategies will be found.

Algorithm 2 Online Learning Adaptive Search Strategy
1: Input: Program P , initial input seed I0
2: S = {s1, . . . , sk } //initial search strategies
3: B = ∅ //open branches to be explored
4: do
5: for si in S do
6: Ci = MuSE(P , B , si) // return coverage information
7: end for
8: G = choose(S) // choose better strategies w.r.t. Ci
9: S = S ∪ offSpring(G) \ kill(S)
10: while B , ∅ ∧ ¬ stopCriterion()

3 RELATEDWORK AND RESEARCH PLAN
Many works have been proposed to improve the search strategy
of symbolic execution [1]. The CFDS [2] method chooses branch
whose opposite branch is the nearest to uncovered statement. The
CGS [6] method excludes branch whose context has been met
before. Generational search [4] prioritizes all the open branches
on the current path. Xie et al. use fitness function to devise search
strategy [8]. Recently, Sooyoung et al. propose using learning to
devise adaptive search strategy for target program [2, 3].

Nextly, we plan to investigate more features and conduct large-
scale experiments to evaluate our online strategy learning method.
ACKNOWLEDGEMENT
This research was supported by National Key R&D Program of
China (No. 2017YFB1001802) and NSFC Program (No. 61632015,
61690203 and 61532007).

REFERENCES
[1] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene

Finocchi. 2018. A Survey of Symbolic Execution Techniques. ACM Comput. Surv.
51, 3, Article 50 (May 2018), 39 pages.

[2] J. Burnim and K. Sen. 2008. Heuristics for Scalable Dynamic Test Generation. In
ASE 2008. IEEE Computer Society, USA, 443–446.

[3] Sooyoung Cha and Hakjoo Oh. 2019. Concolic Testing with Adaptively Changing
Search Heuristics. In ESEC/FSE 2019 (Tallinn, Estonia). ACM, 235–245.

[4] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2012. SAGE: Whitebox
Fuzzing for Security Testing. Queue 10, 1 (Jan. 2012), 20–27.

[5] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures: An Algorithmic
Point of View. https://doi.org/10.1007/978-3-540-74105-3

[6] Hyunmin Seo and Sunghun Kim. 2014. How We Get There: A Context-Guided
Search Strategy in Concolic Testing. In FSE 2014 (Hong Kong, China). 413–424.

[7] M. Srinivas and L. M. Patnaik. 1994. Genetic algorithms: a survey. Computer 27, 6
(1994), 17–26.

[8] T. Xie, N. Tillmann, J. de Halleux, and W. Schulte. 2009. Fitness-guided path
exploration in dynamic symbolic execution. In 2009 IEEE/IFIP DSN. IEEE Computer
Society, Los Alamitos, CA, USA.

[9] Yufeng Zhang, Zhenbang Chen, Ziqi Shuai, Tianqi Zhang, Kenli Li, and Ji Wang.
2020. Multiplex Symbolic Execution: Exploring Multiple Paths by Solving Once.
In ASE 2020. IEEE Computer Society, USA.

