
Synthesizing Smart Solving Strategy for Symbolic Execution
Zehua Chen1, Zhenbang Chen1, Ziqi Shuai1,2, Yufeng Zhang3, Weiyu Pan1

1College of Computer, National University of Defense Technology, Changsha, China
2State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China

3College of Information Science and Engineering, Hunan University, Changsha, China
{zbchen,szq,panweiyu}@nudt.edu.cn,yufengzhang@hnu.edu.cn

ABSTRACT
Constraint solving is one of the challenges for symbolic execution.
Modern SMT solvers allow users to customize the internal solving
procedure by solving strategies. In this extended abstract, we report
our recent progress in synthesizing a program-specific solving
strategy for the symbolic execution of a program. We propose a
two-stage procedure for symbolic execution. At the first stage, we
synthesize a solving strategy by utilizing deep learning techniques.
Then, the strategy will be used in the second stage to improve the
performance of constraint solving. The preliminary experimental
results indicate the promising of our method.

CCS CONCEPTS
• Software and its engineering → Software verification and
validation;

KEYWORDS
Symbolic Execution, SMT Solving Strategy, Synthesis

ACM Reference Format:
Zehua Chen, Zhenbang Chen, Ziqi Shuai, Yufeng Zhang, Weiyu Pan. 2020.
Synthesizing Smart Solving Strategy for Symbolic Execution. In 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), Sep-
tember 21–25, 2020, Virtual Event, Australia. ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/3324884.3418904

1 INTRODUCTION AND MOTIVATION
Symbolic execution [7] is an SMT-based program analysis method
that can systematically explore the path space of a program. Sym-
bolic execution has been successfully applied to many software
engineering activities, such as automatic testing, bug finding, and
program repair. For symbolic execution, one of the main bottlenecks
to its scalability is constraint solving [4].

Existing approaches for optimizing the constraint solving in sym-
bolic execution include caching and reusing [3, 10], simplification
of the constraints before solving [3], incremental solving [11], etc.
All the existing approaches consider the SMT solver as a black-box.
Actually, modern SMT solvers (e.g., Z3 [5] and CVC4 [2]) provide
mechanisms for the users to control the solving procedure, e.g.,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6768-4/20/09. . . $15.00
https://doi.org/10.1145/3324884.3418904

solving strategy [6] in Z3. An SMT solving with a different solving
strategymay have a different performance. However, most symbolic
executors use the default solving strategy of the underlying SMT
solver. Customizing a better solving strategy for the SMT solver
can improve the solving’s performance in symbolic execution.

For example, consider the following SMT formula in floating-
point theory, where the type of x is double.

x3 = 8.0

If we use Z3 to solve this constraint by the default strategy, the
solving time is around 56s 1. However, if we use the following
solving strategy, the solving time is only around 22s.

(check-sat-using (then simplify smt))

Usually, modern SMT solvers provide a domain-specific language
(DSL) to specify solving strategies. A solving strategy can be con-
structed from some tactics in terms of composition operators. For
example, in the above example, simplify and smt are tactics, and
then is the sequential composition operator. A tactic may transform
an SMT formula in many different ways, such as simplification and
translation. Some tactics are special for the final solving in SAT or
SMT theory, such as smt and sat. A tactic also has some parameters
that can be used to configure the transformation or solving.

In this extended abstract, we propose to synthesize a smart solv-
ing strategy for the program under symbolic execution. Our key
observation is that a program has its specific SMT formulas during
symbolic execution. We need a customized solving strategy for
the program during symbolic execution. The key idea is to use the
SMT formulas generated at the early stage of symbolic execution
to synthesize a strategy that can be used in the later stage. The syn-
thesis utilizes deep learning and decision tree learning techniques
to online synthesize a solving strategy during symbolic execution.

2 PROPOSED METHOD
We propose the two-stage framework in Figure 1 for symbolic
execution. The first stage of symbolic execution is for synthesizing
the solving strategy that will be used in the second stage.We use the
SMT formulas generated by the symbolic executor in the first stage
to synthesize the solving strategy. The SMT formulas are divided
into training and validation sets, denoted by St and Sv , respectively.
The synthesis consists of three steps that will be explained next.

Tactic sequence generation. For each formula in St , we predi-
cate a tactic sequence by a deep reinforcement learning (DRL)model.
We train the DRL model offline. A training data of the DRL model
consists of four parts and can be represented by (E(φ), E(Ts), t ,p).
E(φ) denotes the embedding of formula φ. Ts is the applied tactic
sequence that generates φ from the original formula, and E(Ts) is
1Z3’s version is 4.6.2. The CPU is 2.5GHz.

ASE ’20, September 21–25, 2020, Virtual Event, Australia Zehua Chen1, Zhenbang Chen1, Ziqi Shuai1,2, Yufeng Zhang3, Weiyu Pan1

Symbolic
Executor

Stage 1 Stage 2

SMT
formulas

Symbolic
Executor

Solving
StrategyTactic Sequence

Generator (DRL)

Strategy
Synthesizer

(Decision Tree)

Tactic Parameter
Tuner (DNNs)

Tactic
Sequences

Optimal Tactic
Sequences

ResultsProgram Program

Strategy
Synthesizer

(Decision Tree)

Figure 1: The two-stage procedure of symbolic execution.

the embedding of Ts . t and p are the next tactic and its probability,
respectively. We generate the training data of the DRL model from
the existing SMT benchmarks. The generation searches the possible
strategies of an SMT formula and records the next tactic and its
probability w.r.t. the consumed resources for applying the tactic.
We use the bag-of-words (BOW) method for the embedding of an
SMT formula.

Tactic parameter tuning. Tactic parameters also have signifi-
cant effects on the performance of solving. A tactic without param-
eter configuration uses the default configuration of the parameters.
After getting the tactic sequences (denoted by TSo) for the formu-
las in St , we randomly generate the parameter configurations for
the tactics in the strategy sequences. We use TSc to denote the
tactic sequences with parameter configurations. We predicate the
performance of the tactic sequences in TSo ∪TSc w.r.t. St by pre-
trained deep neural network (DNN) models. Then, we select top
N1 tactic sequences w.r.t. the number of the predicatively solved
formulas in St . For these N1 tactic sequences, we configure them
to the solver to solve the formulas in St ∪ Sv , and select the top
N2 sequences w.r.t. the number of the solved formulas in St ∪ Sv .
These top N2 sequences (denoted by TSN2) will be used in the next
step for synthesizing the strategy.

Strategy synthesis. Based on the top N2 tactic sequences, we
use decision tree [9] to synthesize a solving strategy. We train a
decision treew.r.t.TSN2 and St ∪Sv to recommend a tactic sequence
in TSN2 to an SMT formula. The trained decision tree ensures
that the recommended tactic sequence can solve the formulas in
St ∪ Sv that are classified into the class of the tactic sequence as
many as possible. Based on the decision tree, we can construct the
solving strategy by composing the tactic sequences by the if-then-
else operator in the strategy DSL. The conditions are the learned
predicates in the decision tree.

Discussion. Solving strategy synthesis introduces overhead. It
is challenging to achieve a tradeoff between the solving perfor-
mance and the extra synthesis overhead. To reduce the overhead
of synthesis, we use the offline trained DNN models in the first
and second steps to avoid online training. Besides, we observe that
the SMT formulas generated during the symbolic execution of a
program are similar. Hence, we do not need many SMT formulas
for synthesis, which also reduces the overhead.

3 PRELIMINARY RESULTS AND OUR PLAN
We have implemented our method on KLEE with Z3 as the back-
end solver 2. We train the DRL model and the DNN models by
Pytorch. The synthesis procedure is implemented in Python 3.6.
We have carried out the preliminary experiments on GNU coreutils,

2KLEE’s version is 2.1-pre, and Z3’s version is 4.6.2

a commonly used benchmark for KLEE-based symbolic execution
methods. Each program is analyzed for 30 minutes. On the 86 core-
utils programs, we can improve the number of the explored paths
for 49 programs. For the remaining 37 programs, we have no effect
on 8 programs but decrease the number of paths for 29 programs.
On average, we improve the number of explored paths by 11.4%
(−56.8% ∼ 70.7%). The average synthesis time is 87s (54s ∼ 146s).

For the next step, our plan is as follows: 1) extensive experiments
on coreutils and other types of benchmarks, such as floating-point
programs; 2) implementation and validation of our method on other
types of symbolic execution engines, such as JPF-based engines
for Java programs; 3) online adjustment of the DNN models in our
method to improve the precision and effectiveness.

4 RELATEDWORK
As far as we know, we are the first to synthesize a program-specific
solving strategy under the background of symbolic execution. There
are few existing work of finding optimal solving strategies for SMT
solving. In [8], the authors mutate the default solving strategy to
search the optimal strategy for a set of SMT formulas. FastSMT [1]
employs DNN to learn the optimal strategy for SMT benchmarks.
FastSMT inspires our work. However, our work targets the online
synthesis of solving strategy for symbolic execution.

ACKNOWLEDGEMENTS This research was supported by Na-
tional Key R&D Program of China (No. 2017YFB1001802) and NSFC
Program (No. 61632015, 61690203 and 61532007).

REFERENCES
[1] Mislav Balunovic, Pavol Bielik, and Martin Vechev. 2018. Learning to solve SMT

formulas. In Advances in Neural Information Processing Systems. 10317–10328.
[2] Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In CAV
2011. 171–177.

[3] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In OSDI 2008. USENIX Association, USA, 209–224.

[4] Cristian Cadar and Koushik Sen. 2013. Symbolic execution for software testing:
three decades later. Commun. ACM 56, 2 (2013), 82–90.

[5] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In
TACAS, C. R. Ramakrishnan and Jakob Rehof (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 337–340.

[6] Leonardo Mendonça de Moura and Grant Olney Passmore. 2013. The Strategy
Challenge in SMT Solving. In Automated Reasoning and Mathematics - Essays in
Memory of William W. McCune. 15–44.

[7] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM
19, 7 (July 1976), 385–394. https://doi.org/10.1145/360248.360252

[8] Nicolás Gálvez Ramírez, Youssef Hamadi, Eric Monfroy, and Frédéric Saubion.
2016. Evolving smt strategies. In ICTAI 2016. IEEE, 247–254.

[9] Jiang Su and Harry Zhang. 2006. A fast decision tree learning algorithm. In AAAI,
Vol. 6. 500–505.

[10] Willem Visser, Jaco Geldenhuys, and Matthew B. Dwyer. 2012. Green: Reducing,
Reusing and Recycling Constraints in Program Analysis. In FSE 2012. Association
for Computing Machinery, New York, NY, USA, 11.

[11] Yufeng Zhang, Zhenbang Chen, and Ji Wang. 2012. Speculative Symbolic Execu-
tion. In ISSRE 2012. 101–110.

