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ABSTRACT

Constraint solving is one of the challenges for symbolic execution.
Modern SMT solvers allow users to customize the internal solving
procedure by solving strategies. In this extended abstract, we report
our recent progress in synthesizing a program-specific solving
strategy for the symbolic execution of a program. We propose a
two-stage procedure for symbolic execution. At the first stage, we
synthesize a solving strategy by utilizing deep learning techniques.
Then, the strategy will be used in the second stage to improve the
performance of constraint solving. The preliminary experimental
results indicate the promising of our method.
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1 INTRODUCTION AND MOTIVATION

Symbolic execution [7] is an SMT-based program analysis method
that can systematically explore the path space of a program. Sym-
bolic execution has been successfully applied to many software
engineering activities, such as automatic testing, bug finding, and
program repair. For symbolic execution, one of the main bottlenecks
to its scalability is constraint solving [4].

Existing approaches for optimizing the constraint solving in sym-
bolic execution include caching and reusing [3, 10], simplification
of the constraints before solving [3], incremental solving [11], etc.
All the existing approaches consider the SMT solver as a black-box.
Actually, modern SMT solvers (e.g., Z3 [5] and CVC4 [2]) provide
mechanisms for the users to control the solving procedure, e.g.,
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solving strategy [6] in Z3. An SMT solving with a different solving
strategy may have a different performance. However, most symbolic
executors use the default solving strategy of the underlying SMT
solver. Customizing a better solving strategy for the SMT solver
can improve the solving’s performance in symbolic execution.

For example, consider the following SMT formula in floating-
point theory, where the type of x is double.

x> =80

If we use Z3 to solve this constraint by the default strategy, the
solving time is around 56s !. However, if we use the following
solving strategy, the solving time is only around 22s.

(check-sat-using (then simplify smt))

Usually, modern SMT solvers provide a domain-specific language
(DSL) to specify solving strategies. A solving strategy can be con-
structed from some tactics in terms of composition operators. For
example, in the above example, simplify and smt are tactics, and
then is the sequential composition operator. A tactic may transform
an SMT formula in many different ways, such as simplification and
translation. Some tactics are special for the final solving in SAT or
SMT theory, such as smt and sat. A tactic also has some parameters
that can be used to configure the transformation or solving.

In this extended abstract, we propose to synthesize a smart solv-
ing strategy for the program under symbolic execution. Our key
observation is that a program has its specific SMT formulas during
symbolic execution. We need a customized solving strategy for
the program during symbolic execution. The key idea is to use the
SMT formulas generated at the early stage of symbolic execution
to synthesize a strategy that can be used in the later stage. The syn-
thesis utilizes deep learning and decision tree learning techniques
to online synthesize a solving strategy during symbolic execution.

2 PROPOSED METHOD

We propose the two-stage framework in Figure 1 for symbolic
execution. The first stage of symbolic execution is for synthesizing
the solving strategy that will be used in the second stage. We use the
SMT formulas generated by the symbolic executor in the first stage
to synthesize the solving strategy. The SMT formulas are divided
into training and validation sets, denoted by S; and S,,, respectively.
The synthesis consists of three steps that will be explained next.
Tactic sequence generation. For each formula in S;, we predi-
cate a tactic sequence by a deep reinforcement learning (DRL) model.
We train the DRL model offline. A training data of the DRL model
consists of four parts and can be represented by (E(¢), E(Ts), t, p).
&E(¢) denotes the embedding of formula ¢. T is the applied tactic
sequence that generates ¢ from the original formula, and &(T5) is
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Figure 1: The two-stage procedure of symbolic execution.

the embedding of Ts. t and p are the next tactic and its probability,
respectively. We generate the training data of the DRL model from
the existing SMT benchmarks. The generation searches the possible
strategies of an SMT formula and records the next tactic and its
probability w.r.t. the consumed resources for applying the tactic.
We use the bag-of-words (BOW) method for the embedding of an
SMT formula.

Tactic parameter tuning. Tactic parameters also have signifi-
cant effects on the performance of solving. A tactic without param-
eter configuration uses the default configuration of the parameters.
After getting the tactic sequences (denoted by TS,) for the formu-
las in Sy, we randomly generate the parameter configurations for
the tactics in the strategy sequences. We use TS, to denote the
tactic sequences with parameter configurations. We predicate the
performance of the tactic sequences in TS, U TS, w.r.t. S; by pre-
trained deep neural network (DNN) models. Then, we select top
N tactic sequences w.r.t. the number of the predicatively solved
formulas in S;. For these Nj tactic sequences, we configure them
to the solver to solve the formulas in S; U S, and select the top
Ny sequences w.r.t. the number of the solved formulas in S; U Sy,.
These top N sequences (denoted by TSy;,) will be used in the next
step for synthesizing the strategy.

Strategy synthesis. Based on the top N tactic sequences, we
use decision tree [9] to synthesize a solving strategy. We train a
decision tree w.r.t. TSy, and S; US,, to recommend a tactic sequence
in TSy, to an SMT formula. The trained decision tree ensures
that the recommended tactic sequence can solve the formulas in
St U Sy, that are classified into the class of the tactic sequence as
many as possible. Based on the decision tree, we can construct the
solving strategy by composing the tactic sequences by the if-then-
else operator in the strategy DSL. The conditions are the learned
predicates in the decision tree.

Discussion. Solving strategy synthesis introduces overhead. It
is challenging to achieve a tradeoff between the solving perfor-
mance and the extra synthesis overhead. To reduce the overhead
of synthesis, we use the offline trained DNN models in the first
and second steps to avoid online training. Besides, we observe that
the SMT formulas generated during the symbolic execution of a
program are similar. Hence, we do not need many SMT formulas
for synthesis, which also reduces the overhead.

3 PRELIMINARY RESULTS AND OUR PLAN

We have implemented our method on KLEE with Z3 as the back-
end solver 2. We train the DRL model and the DNN models by
Pytorch. The synthesis procedure is implemented in Python 3.6.
We have carried out the preliminary experiments on GNU coreutils,

2KLEE’s version is 2.1-pre, and Z3’s version is 4.6.2

a commonly used benchmark for KLEE-based symbolic execution
methods. Each program is analyzed for 30 minutes. On the 86 core-
utils programs, we can improve the number of the explored paths
for 49 programs. For the remaining 37 programs, we have no effect
on 8 programs but decrease the number of paths for 29 programs.
On average, we improve the number of explored paths by 11.4%
(—56.8% ~ 70.7%). The average synthesis time is 87s (54s ~ 146s).

For the next step, our plan is as follows: 1) extensive experiments
on coreutils and other types of benchmarks, such as floating-point
programs; 2) implementation and validation of our method on other
types of symbolic execution engines, such as JPF-based engines
for Java programs; 3) online adjustment of the DNN models in our
method to improve the precision and effectiveness.

4 RELATED WORK

As far as we know, we are the first to synthesize a program-specific
solving strategy under the background of symbolic execution. There
are few existing work of finding optimal solving strategies for SMT
solving. In [8], the authors mutate the default solving strategy to
search the optimal strategy for a set of SMT formulas. FastSMT [1]
employs DNN to learn the optimal strategy for SMT benchmarks.
FastSMT inspires our work. However, our work targets the online
synthesis of solving strategy for symbolic execution.
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