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ABSTRACT

The robustness of deep neural network (DNN) is critical and chal-
lenging to ensure. In this paper, we propose a general data-oriented
mutation framework, called Styx, to improve the robustness of
DNN. Styx generates new training data by slightly mutating the
training data. In this way, Styx ensures the DNN’s accuracy on the
test dataset while improving the adaptability to small perturbations,
i.e., improving the robustness. We have instantiated Styx for im-
age classification and proposed pixel-level mutation rules that are
applicable to any image classification DNNs. We have applied Styx
on several commonly used benchmarks and compared Styx with
the representative adversarial training methods. The preliminary
experimental results indicate the effectiveness of Styx.
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1 INTRODUCTION

The success of Deep learning (DL) techniques can’t cover up the
fact that it is still challenging to ensure the safety and security of
DNN-based applications, especially in safety-critical areas, such as
autonomous driving [5] and flight control systems [4]. One repre-
sentative threat is the existence of adversarial examples [15], which
are produced by adding imperceptible perturbation to the original
example but cause the DNN to produce wrong outputs.

Adversarial training [2] is an effective method for improving
DNN’s robustness w.r.t. adversarial examples. The basic idea of
adversarial training is to retrain the DNN with the adversarial
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examples to improve the DNN’s robustness. However, the improved
robustness sacrifices the DNN’s test accuracy. For example, when
we use BIM [6] to train a CNNmodel for CIFAR-10, the test accuracy
drops from 75.62% (using traditional training) to 53.84%.

According to DNN’s back-propagation training mechanism [12],
we observe that there may be a balance between robustness and test
accuracy. If we only slightly mutate the training dataset, the model
trained on the mutated dataset will have a similar test accuracy
with the one trained by the original dataset. On the other hand, the
model trained by the mutated training dataset will be more robust
to the adversarial examples generated by small perturbations. Based
on this observation, we propose a general mutation framework,
called Styx. It generates the new training dataset by slightly mu-
tating the training dataset to improve the robustness of DNN while
maintaining the test accuracy1. In this paper, we instantiate Styx
in the area of image classification and propose several pixel-level
mutation rules. The results of the preliminary experiments on the
representative benchmarks indicate the effectiveness of Styx.

2 BASIC FRAMEWORK

Figure 1 shows the basic procedure of Styx, which has a two-stage
procedure. The first stage is to use Styx to generate a new training
dataset which is produced by slightly mutating the original data.
The second stage contains the training and evaluation. We train
different DNN models by the original training dataset and the new
training dataset. After that, we use different adversarial attacking
methods to evaluate the robustness of the model as follows: for the
set of correctly classified samples in the test dataset (denoted by
datasetc ), we apply an adversarial attack to each sample indatasetc ;
if the new sample is misclassified, it is an adversarial example. We
record the number of samples that can be successfully attacked
(represented by #attacked) and define the robustness of the model:

Robustness = 1 −
#attacked
#datasetc

(1)

We instantiate Styx to the applications employing image classi-
fication DNNs and provides the following four mutators:

• Zero Mutation: To eliminate the influence of these pixels
to the prediction, we reset the value of the pixel to be zero.

• Average Mutation: Replacing the value of the pixel with
the average pixel value around it.

• Random Mutation: Using a random value to replace the
pixel’s value.

• Gaussian Noise Mutation: Mutating the value of a pixel
by adding Gaussian noise to the original value.

1This is the reason why we call the framework Styx, which is a river offering invul-
nerability powers. Here we strengthen the training data by mutation.
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Figure 1: The basic procedure of Styx.

3 PRELIMINARY EVALUATION

Experimental Setup.Our evaluation uses three benchmarks:MNIST,
Fashion-MNIST and CIFAR-10. We use the standard model struc-
tures (i.e., the multilayer perceptron "MLP" and the convolutional
neural network "CNN") provided in Keras for the benchmarks. Dur-
ing evaluation, we use BIM [6] and DeepFool [8] as the attack-
ing methods and calculate the robustness by the Formula 1. IBM’s
adversarial-robustness-toolbox2 is the implementation of these at-
tacking methods. The experiments were carried out on a server
with 8 cores and 32G memory. The GPU is RTX 2080 and the OS is
Ubuntu Linux 16.04.
Experimental Results. Figure 2 shows the test accuracy result
of different training methods. The test accuracy under adversarial
training decreases compared with the other two training methods.
Styx has a similar test accuracy with that of the traditional training.
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Figure 2: The Accuracy Evaluation.

Figure 3 shows the average robustness of these models. For 10
comparisons (i.e., 2 attacks × 5 models), Styx improves the robust-
ness by 9.8% (BIM) and 1.9% (DeepFool) on average, respectively.
These results indicate Styx’s effectiveness.
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(a) Robustness under BIM
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(b) Robustness under DeepFool

Figure 3: The Robustness Results.

4 RELATEDWORK AND OUR PLAN

Existing methods for defending against adversarial attacks and im-
proving the robustness of DNN can be divided into three categories:
adversarial retraining [2, 8, 15], network modification [9, 10], and
pre-detection [3, 13]. These methods are challenged by the prob-
lems, including specific attacking defense, scalability, feasibility, etc.
2https://github.com/IBM/adversarial-robustness-toolbox

Styx is close to adversarial training. Styx uses a mutated training
dataset for network training and prevents the over-fitting problem
of the specific attacking method.

Measuring the robustness of DNN is also an active topic. In
[8], the authors quantify the robustness of DNN by measuring the
minimal perturbation that results in adversarial examples. In [1], the
authors propose two different metrics: adversarial frequency and
adversarial severity. Furthermore, many coverage criteria designed
for DNN have been proposed, such as neuron coverage [11], k-
multisection neuron coverage [7], the coverage criteria inspired by
MC/DC [14], to name a few. Different from them, we measure the
DNN’s robustness from the perspective of attacking methods, and
the measurement is more intuitive and realistic.

The next step lies in several aspects: 1) investigate more general
mutation rules; 2) recommend the mutation strategy that results
in the best robustness result; 3) apply Styx to more representative
benchmarks with respect to more attacking methods.
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