
Symbolic Verification of Fuzzy Logic Models
Siang Zhao∗†, Zhongyang Li∗†, Zhenbang Chen∗†§, Ji Wang∗‡

∗College of Computer, National University of Defense Technology, China
†Key Laboratory of Software Engineering for Complex Systems, National University of Defense Technology, China
‡State Key Laboratory of High Performance Computing, National University of Defense Technology, China

{zhaosiang16, zbchen, wj}@nudt.edu.cn
§Corresponding author

Abstract—Fuzzy logic is widely applied in various applications.
However, verifying the correctness of fuzzy logic models can
be difficult. This extended abstract presents our ongoing work
on verifying fuzzy logic models. We treat a fuzzy logic model
as a program and propose a verification method based on
symbolic execution for fuzzy logic models. We have developed and
implemented the environment models for the common functions
and the inference rules in fuzzy logic models. Our preliminary
evaluation shows the potential of our verification method.

Index Terms—fuzzy logic model, verification, symbolic execu-
tion, SMT

I. INTRODUCTION

Fuzzy logic [1] has a long history of development [2] and
has been widely applied in many areas for controlling and
decision-making. However, it is challenging to ensure the cor-
rectness and reliability of fuzzy models or fuzzy model-based
systems for safety-critical applications or systems employing
fuzzy logic models.

A fuzzy logic model M takes a set of inputs (denoted
by I) and produces an output (denoted by O). In general,
M = (I,O,F ,R,D) consists of three computation com-
ponents: fuzzification (denoted by F) maps inputs in I to
the fuzzy sets by a set of fuzzification functions. Inference
(denoted by R) contains a set of rules, each of which specifies
the logical relation between the fuzzy values of inputs and
output. Defuzzification (denoted by D) defines the functions
for transforming a fuzzy value to a continuous output value.
Figure 1 illustrates a fuzzy logic model for controlling the
boiling time of eggs.

big egg

small egg

)()(1 inputbigEggoutputlongTime -=)()(1 inputsmallEggoutputshortTime -=

5675.0,3125.4 == shortTimeshortTime Sc

4765625.1,0625.5 == shortTimelongTime Sc
4.8543»

+

+
=

longTimeshortTime

longTimelongTimeshortTimeshortTime

SS
ScSc

output

0.75

0.25

long time

short time

fuzzification defuzzification

0.25

4.3125 5.0625

0.5675

1.4765625

Fig. 1. A fuzzy model example

This model takes one input (i.e., the egg’s weight) and
produces the boiling time as the output. There are two fuzzifi-
cation functions for big and small eggs and two defuzzification
functions for long and short boiling times, respectively. The
fuzzy values of long or short time equal the values of big or
small eggs. Suppose the egg’s weight is 60 grams. The degrees

of membership for big and small egg functions are 0.75 and
0.25, respectively. Therefore, the fuzzy values of membership
for long and short periods are 0.75 and 0.25. Suppose that
we use the centroid method [3] for defuzzification, which
computes the output as follows:

output =
cs × Ss + cl × Sl

Ss + Sl

where cs and cl represent the abscissa of the centroids of
the shaded areas of yellow and blue, respectively; Ss and
Sl represent the areas of the yellow and blue rectangles,
respectively. For this example, cs, cl, Ss and Sl are 4.3125,
5.0625, 0.5675 and 1.4765625, respectively. Therefore, the
output value is 4.854. The functions and rules would be more
complex for real-world fuzzy logic models.

A fuzzy logic model is usually designed manually by
its designer, and the quality of the model depends on the
designer’s expertise. Testing or simulation [4] is the main
method for ensuring the correctness of the model. However,
verifying the correctness of fuzzy logic models is challenging.
For example, back to the model in Figure 1, no matter how
small the egg is, it would be boiled for at least 3.75 minutes
to ensure it is cooked. However, for more complex models, it
is hard to manually ensure the model’s reliability. Very little
work exists on verifying fuzzy logic models [5] [6]. Arnett et
al. [7] propose to use Z3 [8] for verifying fuzzy logic models
by abstracting the model into a polynomial one. However, their
approach has two limitations: 1) the abstraction method needs
to be more general; 2) the scalability is a problem due to Z3’s
weakness in solving floating-point constraints.

This extended abstract presents our recent progress in veri-
fying fuzzy logic models. Our key idea is to treat a fuzzy logic
model as a program and apply program verification techniques
for verification. Our key observation is that there are no input-
related loops inside the programs implementing fuzzy logic
models. Therefore, we propose using symbolic execution [9]
to systematically explore the path space of a model’s program
and verify the correctness of the model. We implemented our
method in a prototype and conducted preliminary experiments
on representative fuzzy logic models. The experimental results
show the potential of our method’s effectiveness.

II. VERIFICATION FRAMEWORK

Figure 2 shows our verification framework. The verifier
takes two inputs: a fuzzy logic model and the properties. The

A Fuzzy
Logic Model Generator

Environment
Models

Symbolic
Execution

Engine

SMT Solver

Properties

Target Program

Verified

Counter
Example

Symbolic Verifier for
Fuzzy Logic Models

Fig. 2. Our Verification Framework

properties are relations between the model’s inputs and output,
which can be specified as the pre and post-conditions [10] in
program verification. Quantifier-free first-order logic formulas
of input and output variables can specify the properties. Our
verifier’s outputs are the verification results, i.e., the model
is verified to satisfy the properties or counter-examples exist.
The model’s designer can use the counter-examples to replay
and fix the model. Next, we explain the key components of
our framework.
Generator & Environment modeling. These two components
are related. Although each original fuzzy logic model is imple-
mented and executed with a fuzzy model library, we developed
the environment models for verification. First, we can improve
the scalability of verification by pruning redundant cases; Sec-
ond, customization makes it easy to make the approximations
for non-linear D. Until now, our environment models support
the most common fuzzification and defuzzification functions
and the functions for all the logic operators of fuzzy inference
rules. Therefore, based on environment models, the generator
generates target programs by invoking the predefined functions
in the environment models. It also converts the properties into
assertions in the target program, which will be verified later
by symbolic execution.
Symbolic execution engine. We employ symbolic execution
to systematically explore the path space of the model’s target
program. We use path conditions and symbolic values along
the path to check the properties. More specifically, we add the
pre-conditions of the inputs to each path’s path condition at the
beginning; When a path terminates, we use its path condition
PC to check the validity of the post-condition. For example, if
the post-condition is C, we query the SMT solver whether the
formula PC ∧ ¬C is satisfiable. If it is satisfiable, we find a
counter-example, i.e., the solution of PC∧¬C; Otherwise, the
path satisfies C, and symbolic execution continues to explore
and check other paths. If all the paths are explored, and no
counter-example is found, the model is verified to satisfy the
property.
SMT Solver. The SMT solver component is also crucial for
our verification framework. Intensive (and non-linear) floating-
point computations are inside the fuzzification and defuzzi-
fication functions. Besides, many elementary mathematical
functions may also be used. Hence, employing the bit-vector
SMT theories (e.g., BVFP) for a precise representation is
not feasible. In early experiments, we found that verification
with the Z3 takes an unacceptably long time, even if the
model is simple. In practice, we consider each input as a
real number and employ real arithmetic SMT theory for

program representation. Hence, the employed SMT solver
in our framework is a real arithmetic solver. Although real
arithmetic solvers cannot support some operations, e.g., bit and
logic operations, these operations are rare for the functions in
fuzzy logic models.

When users provide the model and the properties, our
framework can automatically verify the model with respect
to the properties. Note that our verification framework does
not precisely encode floating-point operations due to using real
arithmetic SMT solving. Hence, the counter-example may be a
false positive and needs to be confirmed by concrete execution.

III. PRELIMINARY EVALUATION

We have implemented our framework in a prototype. The
target program and the environment models are Python pro-
grams. We have designed and implemented a dynamic sym-
bolic execution [11] engine for Python programs. We chose
DSE because, for interpreted languages, DSE is the only
option. The SMT solver is dReal [12], which supports real
arithmetic SMT solving of non-linear constraints and many
elementary mathematical functions (e.g., power functions, and
trigonometric functions).

We have conducted a preliminary evaluation of twelve fuzzy
logic models. Many of them are examples from different
fuzzy logic libraries. There are nine atomic models and three
composite models. The number of inputs is usually one or
two. The largest number of inputs is six, and the model is
composite. For atomic models, the number of outputs is one.
Only two composite models have two outputs. The number
of inference rules ranges from 2 to 49. Our prototype can
verify all the models, and the properties are given from our
understanding of the models (i.e., the models should satisfy the
property). The verification time of ten models is below half a
minute. For the other two models (i.e., the ones with the largest
number of inputs and rules, respectively), our prototype needs
more than 7 hours for verification.

IV. RELATED WORK AND FUTURE PLANS

Very little work exists on verifying fuzzy logic models.
Besides the work in [7], Ding et al. [13] convert a fuzzy logic
model into a hybrid automaton and use the existing model
checking tool to verify the model’s stability. As far as we
know, our framework is the first general verification framework
for fuzzy logic models and the first work on verifying fuzzy
logic models on the code level.

There are the following aspects for the next step: 1)
more extensive evaluations on more fuzzy logic models; 2)
investigation of the scalable verification method for composite
models; 3) our framework is limited to continuous functions,
which is also a challenge for verification; 4) tool development
to make it easier to use.

ACKNOWLEDGMENT

This research was supported by National Key R&D Program
of China (No. 2022YFB4501903) and the NSFC Programs
(No. 62172429 and 62032024).

REFERENCES

[1] L. A. Zadeh, “Fuzzy sets,” in Fuzzy sets, fuzzy logic, and fuzzy systems:
selected papers by Lotfi A Zadeh. World Scientific, 1996, pp. 394–432.

[2] S. Chiu, “Using fuzzy logic in control applications: beyond fuzzy pid
control,” IEEE Control Syst, vol. 18, no. 5, pp. 100–104, 1998.

[3] M. H. Center, “Defuzzification methods in mathworks,”
https://ww2.mathworks.cn/help/fuzzy/defuzzification-methods.html.

[4] K. S. Rattan, M. A. Clark, and J. A. Hoffman, “Design and analysis of a
multistage fuzzy pid controller,” in 2015 American Control Conference
(ACC). IEEE, 2015, pp. 5726–5731.

[5] H. Fang, H. Zhu, and J. He, “Smt-based symbolic encoding and formal
analysis of hml models,” Mobile Networks and Applications, vol. 21,
pp. 35–52, 2016.

[6] P. J. Prieto-Entenza, N. R. Cazarez-Castro, L. T. Aguilar, S. L. Cardenas-
Maciel, and J. A. Lopez-Renteria, “A lyapunov analysis for mamdani
type fuzzy-based sliding mode control,” IEEE Transactions on Fuzzy
Systems, vol. 28, no. 8, pp. 1887–1895, 2019.

[7] T. J. Arnett, B. Cook, M. Clark, and K. Rattan, “Fuzzy logic controller
stability analysis using a satisfiability modulo theories approach,” in
AIAA-17, 2017, p. 1773.

[8] L. d. Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS.
Springer, 2008, pp. 337–340.

[9] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[10] C. Morgan, Programming from specifications. Prentice-Hall, Inc., 1990.
[11] M. Irlbeck et al., “Deconstructing dynamic symbolic execution,” MSR-

TR, vol. 40, p. 26, 2015.
[12] S. Gao, S. Kong, and E. M. Clarke, “dreal: An smt solver for nonlinear

theories over the reals,” in CADE. Springer, 2013, pp. 208–214.
[13] Z. Ding, Y. Zhou, and M. Zhou, “Stability analysis of switched fuzzy

systems via model checking,” IEEE Transactions on Fuzzy Systems,
vol. 22, no. 6, pp. 1503–1514, 2014.

