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ABSTRACT CCS CONCEPTS

Regression Testing Selection (RTS) reduces the cost of regression
testing by only running test cases affected by code changes. Due
to the bottleneck of single granularity analyses, the latest RTS
techniques tend to analyze with mixed granularities. However, a
better synergy of the existing RTS techniques is still challenging.
Besides, we have found that once existing RTS approaches use
static method-level analysis, handling external library callbacks is
difficult, leading to the missed selection of affected test cases.

To address these difficulties, we introduce a new hybrid RTS
approach, JegEKks, which enhances Ekstazi by integrating static
method call graphs. It combines the advantages of dynamic and
static analyses, improving precision from class-level to method-
level and reducing end-to-end time without sacrificing safety. More
importantly, JegEks safely handles external library calls. Besides,
we propose a new safety metric and implement the checking tool
called Checker to evaluate the safety of RTS tools. We compared
JegEks with four baseline RTS tools in 1000 revisions across 20
open-source projects. The experimental results demonstrate that,
compared with the state-of-the-art RTS tool FineEkstazi, JegEks
had the same level of end-to-end testing time and number of selected
test classes, while FineEkstazi was confirmed to miss test classes
in the experiment. Compared with Ekstazi, JegEks has reduced
end-to-end time by 29% and the number of test classes by 30.9%
while ensuring safety.
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1 INTRODUCTION

Software testing [1, 2] is the industry’s current de facto method
for improving software quality. Regression testing [14, 55] is com-
monly adopted in software development to check the correctness
of the changes for passing the old test cases. However, rerunning
all the test cases after each code change can be very expensive and
even unacceptable [12, 15, 35, 43, 45, 59], especially for the large-
scale software projects, which may contain thousands or even more
than tens of thousands of test cases and need a very long time for
complete rerunning. To address this problem, regression testing
selection (RTS) techniques (7, 13, 18, 27, 32, 48] have been proposed.

RTS aims to improve regression testing efficiency by selectively
identifying and executing only a subset of test cases affected by
code changes. The typical RTS techniques require building the
dependences between tests and program code. When code changes
occur, the RTS identifies which tests are affected by these changes
and runs just those tests again. A perfect RTS technique [47] should
be 1) Safe: it selects all tests affected by code changes; 2) Precise: it
does not select any test that is not affected by code changes.

RTS techniques can be divided into two categories: dynamic and
static. Dynamic RTS [17, 22, 36, 38, 58] collects dependences by
testing previous versions, whereas static RTS [24-26, 44] infers de-
pendencies using static analysis. Besides, according to dependence
granularities, RTS can be divided into control flow level [22, 42],
method-level [8, 37, 50, 58], file-level [17, 25, 52, 57, 61], package-
level [11], and module-level [10, 15, 21, 23, 45, 46] techniques. Many
techniques prioritize precision and focus on fine-grained analysis,
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such as control flow and method-level analyses, which may result
in significant overhead. More recent techniques focus on coarser-
grained analysis, such as file and module-level analyses, which can
reduce overhead but may compromise precision.

Recent studies have demonstrated that file-level RTS (FRTS)
has the shortest end-to-end time compared with the other single-
granularity RTS techniques [17, 20, 25, 32, 57]. Although FRTS has
several advantages over other methods, it still suffers from impreci-
sion and may select redundant tests unaffected by code changes. Li
et al. [31] point out that static method-level RTS (MRTS) is supe-
rior to static FRTS in reducing tests, fault detection efficiency, and
testing cost. On the other hand, fine-grained analysis offers higher
precision but is often considered impractical in regression test pro-
cesses due to the overhead. For example, dynamic MRTS requires
instrumentation for each method, which may introduce significant
runtime overhead and violate the testing’s time constraints. There-
fore, an alternative option is static MRTS, which does not impose an
additional runtime burden. However, static MRTS has limitations,
such as inherited imprecision or unsoundness due to reflection or
dynamic dispatch. Consequently, some hybrid approaches combine
different RTS technologies to improve RTS’s effectiveness, such
as the combination of dynamic and static RTS techniques [30, 44]
and the combination of the RTS techniques with different analysis
granularities [32, 46, 52]. However, the balance between precision
and efficiency is still a challenging problem for RTS.

Besides precision and testing efficiency, RTS’s safety is also an
important problem. RTS safety [39-41, 53] can also be classified
into different levels based on dependence granularities. For exam-
ple, method-level safety entails selecting all test cases that can
access the changed methods during execution. There also exists
work on the safety of static RTS [30, 44], which focuses more on the
dynamic features of the language, such as reflection and dynamic
binding, without discussing the influences of external library call-
backs. Furthermore, the expense of conducting the static analysis
of all external libraries is unaffordable. As far as we know, we are
the first to investigate the impact of external library callbacks on
RTS safety and emphasize the importance of considering external
library callbacks when using static RTS technology.

To further optimize the trade-off between RTS’s precision, end-
to-end testing time, and safety, we have proposed a new hybrid RTS
method, called JegEKs, that integrates dynamic FRTS with static
method-level analysis. On the one hand, we use a finer-grained
static analysis to refine the selection results of dynamic FRTS fur-
ther; on the other hand, dynamic analysis not only offers runtime
information to compensate for the safety problem of static analysis
but also enables an incremental static analysis for static MRTS. To
clarify, dynamic and static analyses are well synergized and comple-
ment each other. This way, the precision can be improved without
extra instrumentation overhead, and irrelevant test classes can also
be safely excluded at the method-level.

To tackle the safety problem caused by external library callbacks,
we over-approximate the method invocations by types. Besides, to
evaluate the safety of RTS tools, we have proposed a new safety
metric with respect to missed test classes and implemented a check-
ing tool, Checker. Specifically, Checker inserts output statements
into all changed methods at runtime and extracts the relation be-
tween test classes and the changed methods from execution logs.
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This process helps precisely identify the test classes affected by the
changes. By comparing the test classes identified by the RTS tool
as affected by the changes, we can determine the number of test
classes missed by the RTS tools.

We have implemented our method based on Ekstazi [16] and
used java-callgraph! for the static method-level analysis. We con-
ducted an experimental evaluation from 3 aspects: reducing the
testing scale, reducing end-to-end time, and missing tests. The ex-
periment contains 1000 CI versions from 20 projects in the GitHub
community. To demonstrate the effectiveness of JcgEks, we com-
pared it with four state-of-the-art RTS tools: Ekstazi?, FineEkstazi®,
HyRTS%, and STARTS”. The reduced testing scale and end-to-end
time demonstrate the precision and effectiveness of JcgEks. The ex-
periment results indicate that: 1) On average, compared to Ekstazi,
FineEkstazi, STARTS, and HyRTS, JcgEks can reduce the testing
scale by 29.0%, 3.1%, 78.2%, and 73.1%, respectively; 2) JegEks can
reduce the end-to-end time by 30.9%, 12.6%, 56.5%, and 86.9%, re-
spectively; 3) On the experimental benchmark, JegEks has the same
safety as Ekstazi, while FineEkstazi has been proven to be unsafe
by our proposed inspection tool Checker.

The main contributions of this article are as follows:

We propose a new hybrid RTS method JegEks that synergizes
dynamic FRTS and static MRTS to improve RTS’s effectiveness
further.

We are the first to investigate the scenarios involving external
library callbacks and propose an approach to ensuring RTS’s
safety. Besides, we propose a metric to evaluate the safety of RTS
tools with respect to missed test classes.

We have implemented a prototype tool for JegEks. In addition,
we have developed a safety checking tool called Checker with
respect to the safety metric.

We evaluated JegEKks’s effectiveness by conducting a large-scale
experiment on 1000 CI revisions of 20 real-world projects. JegEks
reduces the number of test classes by 29.0% and end-to-end time
by 30.9% compared to the Ekstazi, and Checker confirms the
unsafety of FineEkstazi.

2 MOTIVATION EXAMPLE

It is common for developers to utilize libraries or frameworks
during development. These libraries often require developers to
implement specific interfaces and pass the implemented classes as
parameters back to the library for API calls. This scenario is known
as external library callbacks. However, existing static analysis tech-
niques face challenges in analyzing external libraries, and there is
a lack of research addressing this issue. To our knowledge, we are
the first to address handling external library callbacks in RTS.

Besides, traditional RTS techniques often employ dynamic or
static analysis at specific levels of granularity. To illustrate this,
we provide an example demonstrating the techniques used for
regression testing selection at the dynamic file-level and static
method-level. We have included two figures that depict the example
program and its corresponding dependences. Figure 1 describes a

Uhttps://github.com/gousiosg/java-callgraph
http://ekstazi.org
Shttps://github.com/EngineeringSoftware/fine-ekstazi
*http://hyrts.org
Shttps://github.com/TestingResearchlllinois/starts
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1 //Library classes

2 interface Lib1{

3 void m(); /+abstract method=/
4}

5 class Lib2{

6 void call(Lib1 11){ 11.m(); 3}
7%

// Application classes

class A implements Lib1{

@Override void m(){...}

void n( ) {...} // changed method

}

class B extends A{

@Override void m(){ C c = new C(); c.k();}
void p() {...}

S VNG A W
[

10 class C{

11 void k( ) {...} // changed method

12 3}

1 // Test classes

2 class T1{

3 void t1(){ B b = new B(); b.p(); }
4}

5 class T2{

6 void t2(){

7 Class<?> clz = Class.forName("B");
8 Constructor ¢ = clz.getConstrutor();
9 Object o = c.newInstance();

10 Method m = clz.getMethod("'m");

11 m.invoke (0);

12 3

3}
14 class T3{
15  void t3(){

16 Lib2 1ib2 = new Lib2();
17 lib2.call(new B());

18 3

19 3

Figure 1: Motivation Example

- - extends Lib| fe----m--| f ~— constructors | | T\ =
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(a) Dynamic FRTS (b) Static MRTS

Figure 2: Different dependence representations
Java program P divided into three parts. The interface Lib1 and
class Lib2 are in the external library that program P relies on. The
classes A, B, and C are the classes under test (represented as CUT
later). The classes T1, T2, and T3 are the test classes. For the sake
of brevity, we omit the constructors of all classes in the subsequent
descriptions. We assume that the methods A.n() and C.k() are
changed in the revision, which only affects the test classes T2 and T3.
Figure 2 shows the different dependence representations for
two RTS technologies. Figures 2a and 2b show the dependence
graphs of dynamic FRTS and static MRTS techniques, respectively.
In Figure 2a, the dashed lines illustrate the call dependence re-
lationships between classes, while the solid lines represent the
inheritance relationships between classes. Both types of lines indi-
cate class-level dependences. In Figure 2b, the dashed lines denote
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Figure 3: The dependence representation of JcgEks

the call dependence relationships between methods, while the solid
lines represent the call dependence relationships between subclass
constructors and parent constructors. Both types of lines indicate
method-level dependences.

Dynamic FRTS. This technique (the representative tool is Ek-
stazi) dynamically collects dependent files while executing test
cases. Taking T2 as an example, it calls B.m(), where B.m() calls
C.k(). Given that class B extends class A, the constructors of classes
B, A, and C are all executed consecutively. Therefore, T2 depends on
classes A, B, and C. While T3 relies on classes B, A, C, Lib1 and Lib2
due to the upcasting of B and the invocation of Lib2.call(). Sup-
pose any method or field in the dependence file of these test classes
is semantically changed, causing the checksum of the bytecode
file to change (e.g., the method body of A.n() is changed in the
new revision). In that case, although unnecessary, T1 needs to be
selected for re-execution. Therefore, due to its coarse-grained anal-
ysis, FRTS may select many unnecessary test classes for retesting,
which is safe but imprecise.

Static MRTS. This technique is based on the method call graph
but lacks some information in runtime, such as reflection and dy-
namic binding. As shown in Figure 2b, due to the limitation of static
analysis in handling reflections, T2.t2() is unable to collect any
method dependences on CUT. T3 can only collect the dependences
of Lib2.call(), which will miss the method B.m() that T3 will
actually execute. Therefore, the test classes T2 and T3 are missed.
There are two reasons for this problem: 1) Static analysis methods
face challenges in addressing issues related to dynamic binding;
2) Static analysis methods may only analyze the code within the
project but ignore the analysis of the external library code.

Discussion. In general, although dynamic FRTS has advantages
over other granularity RTS in end-to-end time, it is still imprecise
as it selects many unnecessary test classes. The dynamic MRTS,
although much more precise, can incur significant instrumentation
overhead. Although static RTS does not have instrumentation over-
head, its limitation to tracking the actual execution of code and
analyzing external libraries can easily miss necessary tests (e.g.,
the reflection in T2.t2(), dynamic binding, and external library
callbacks in T3.t3()) and also additional selections. Therefore, our
work aims to improve the efficiency and precision of dynamic FRTS
through a hybrid RTS technique. Besides, we aim to select more
precise test classes without compromising safety while minimizing
the end-to-end regression testing time as much as possible.

JcgEks. To handle the situations in the motivation example,
Figure 3 shows the dependences constructed by JegEks. Among
them, only B. p() remains for method T1.t1()’s dependence, while
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Figure 4: The framework of JcgEks

T2.t2() has added a dependence for reflection calling B.m(), and
T3.t3() can handle the scenario of external library Lib2.call()
callback B.m(). These three examples highlight the benefits of our
approach. Firstly, in example T1.t1(), we showcase the improved
precision in dependence for FRTS. Secondly, in T2.t2(), we empha-
size the enhanced safety achieved by analyzing reflections. Lastly,
in T3.t3(), we demonstrate the reinforced safety measures when
analyzing external library calls.

Then, for the test class T1, the changed method A.n() does not
affect any test classes. In contrast, dynamic FRTS, due to its coarse
granularity, will select T1. However, JegEks does not choose T1
because it combines method call graphs to improve the selection’s
precision. For the test class T2, it is difficult for static analysis to
handle reflection. As a result, the call graph does not contain an
edge from T2.t2() to B.m(), leading to the missing test class T2
by static MRTS. In contrast, JegEks, by collecting the reflection-
based method call information during runtime, will supplement the
call graph with the missing edge from T2.t2() to B.m(), thereby
enabling the selection of the affected test class T2. For the test
class T3, the changed method C.k() affects B.m() on the method
call graph, thereby impacting class B. JegEks checks whether the
types of each parameter in Lib2.call() are affected by the code
changes, then JcgEKks identifies that the parameter’s type Lib1 is a
superclass of class B. Here, JcgEks over-approximates that there is
a potential callback through Lib2.call to B.m(), thereby reaching
the changed method C. k(). Hence, JcgEKks selects T3, which static
MRTS misses.

3 APPROACH

Figure 4 shows JcgEks’s framework, which follows the typical
dynamic RTS technique and consists of two phases: the selection
phase and the execution phase. During the execution phase, JcgEks
instruments and collects two types of runtime information for each
test class: reflections and class dependences, which are stored in
the metadata used in the next revision’s selection phase. In the
selection phase, JcgEKks selects all test classes that are affected by
the changes in the revision, which will be executed in the execution
phase. To improve the precision of test class selection, JegEks uses
the method call graph and refines it with the runtime information
collected in the execution phase, reducing the number of test classes
affected by the revision’s changes.

The primary innovation of JegEks lies in the selection phase, as
illustrated in Figure 4. This stage can be described in four steps:

e Calculate the checksum of each class and method in the new
revision based on code differences (3.1).
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e Comparison of the checksum differences to initially select the
affected testing classes at the file-level (3.2).

e Generation of a method call graph enriched with runtime infor-
mation (3.3).

o Further refinement of the affected test classes(3.4).

In Section 3.5, we propose a metric to evaluate the safety of RTS at
the method-level and an approach Checker for obtaining the met-
ric’s value, providing a basis for comparing the safety of different
RTS tools. Finally, in Section 3.6, we discussed how JegEks handles
field changes and the design philosophy of Checker.

3.1 Metadata Computation

A Java project P is a tuple (C, M, E), where C represents the
class set of the project, M is the method set of the project, and
E C M x M is the edge set representing the method calls of P. In
addition, we use 7~ C C to represent the set of test classes in P.
We introduce the following definitions, where ck is the hashing
function of the Java bytecode after removing debugging information
[32]: CH = {c +> ck(c) | c € C A ck(c) € Z} maps each class in P to
their hash values; MH = {m +> ck(m) | m € M A ck(m) € Z} is the
mapping of all methods in P to their hash values. A method m =
(class, name, paras), representing the class to which the method
belongs, the method name, and the set of parameter types.

JcgEks’s metadata differs from that of Ekstazi. The metadata
structure consists of four maps: (D, H, R, S), where

e D= {t+— CH;|t € TACH; C CH} stores the class dependence
hashes of each test class ¢.

e H ={c+— MH.|c € CAMH, C MH A c.methods =
dom(MH,)} stores the checksums of all methods in each class
¢, where c.methods represents the method set of class ¢, and
dom(f) represents the domain set of function f.

e R={t— E, |t €T ANE, C E} records the reflection-based
method invocations when executing t, where each invocation
pair in E, is from method mg,. to my;.

oS ={cH Cs|ce CACs C C} stores each class’s direct
superclass and directly implemented interfaces.

Both R and S are obtained at runtime to tackle the limit of static
analysis, e.g., missing superclasses in external libraries. We instru-
ment reflection code and construction methods to obtain R and S,
respectively. The first step needs to calculate the two checksum
maps D and H, denoted as Dy and Hpe,y in the new revision.

3.2 Test Classes Selection

Algorithm 1 shows the second step of JegEks, which uses the
difference between the old and new checksums to get the changed
methods and select the test classes affected by the changed classes.
The inputs of the algorithm are the new revision checksums Dy ¢y
and Hpey calculated in the first step, the old revision checksums
D,1q and H,j4 extracted from MetaData, and the new revision’s
all test class set 7. The output is the set of modified methods and
the preliminarily selected set of test classes 7.

Algorithm 1 checks for any dependent class changes for each
test class ¢ (Line 2). We use ¢ € dom(Dyew[t]) to denote that c is a
key of the map Dpe[t] (Line 3). If the checksums of the class c are
different between the old and new revisions(Line 4), the test class ¢
will be added to the affected class set 7 (Line 5), and then traverse
all methods of class ¢ in the new revision (Line 6). If method m also
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Algorithm 1 Get changed methods and initial test classes

Algorithm 2 Refine the affected test classes

Input: T, Dnews Doia» Hnew, Hota
Output:
T7: The set of initial selected test classes
M’: The set of changed methods.

1: T M «—0,0

2: fort € 7 do

3: for ¢ € dom(Dpery[t]) do

4 if Dpewltllc] # Dosaltl[c] then

5: T «— T U{t} > affected test classes
6: form € dom(Hpew[c]) do

7: if m € dom(H,4[c]) then

8: if Hpewlc][m] # Horalc][m] then

9: M — M U {m} > changed methods
10: end if

11: else

12: M — M U {m} > new methods
13: end if

14: end for

15: end if

16: end for

17: end for

18: return (77, M)

exists in the old revision, but the checksum changes, it indicates
that m is a changed method and is added to the set M’ (Lines 7-9).
If m does not exist in the old revision, it means that m is a new
method added in the new revision, and it is also added to M’ (Lines
11-12). Please note that if ¢ is a new test class, it will not be filtered
through subsequent steps but will be enforced.

Based on the traditional dynamic FRTS step of selecting the
initial set of affected test classes 7, our algorithm incorporates
method-level checksum checking to calculate the changed methods
simultaneously. This step outputs the initially selected set 7 of
the affected test classes and the set M’ of the changed methods,
which will be used to refine test class selection in the fourth step.

3.3 Call Graph Generation

The third step is to merge the method call graph CG constructed
by static analysis with R in MetaData to generate CG’. The def-
inition of CG is as follows: CG = {mgyc > Myg; | msre € M A
Mgs; € M} is a map whose key represents the caller method, and
whose value is a set of callee methods. R records the reflection-
based method invocations obtained at runtime. We instrument
the Constructor.newlnstance() and Method.invoke() to trace the
reflection-based invocations of the construction and normal meth-
ods, respectively. Note that all caller methods used as keys in the CG
belong to the analyzed project, and the values may contain callee
methods from the library. Because the key of map R is a test class,
each time the test is executed, R only updates the items related to
the test class execution, and the other parts are not updated. The
data structure of CG’ is also a map, where keys are the callers, and
values are the sets of callees. When merging R into CG, add the
mys; of each pair (mg,¢, myg;) in R[] to the callee set CG[mg,],
indicating that mg, calls mg,; by reflection.

When an object calls a method after its upcasting, static analysis
may only obtain a method call to a superclass. However, due to
dynamic binding, the corresponding subclass method is executed.
Therefore, adding method call edges to the call graph is necessary,
from superclasses’ to subclasses’ methods. Although this approach
may result in selecting redundant test cases during the subsequent
traversal of the call graph, this over-approximation improves safety.

Input: 7/, M’, CG’, S, Dyerw, Lib.
Output: 77: The set of affected test classes.
1: T« 0
2: AM — {m, | dm, € M’ em. can reach m, in CG'}
3: AC « {c | Am € AM e ¢ = m.class V c€Ancestor(S, m.class)}
4: fort € 77 do

5 W «— t.methods

6 while W #0At ¢ T do

7: msye < W.pop()

8: if ms,c € AM then

9: T — T*U{t} > select test classes
10: break

11: end if

12: for mys;, € CG'[ms,c]do

13: if mys;.class € Lib then

14: if mgs,.class € ACV mgss.paras N AC # 0 then

15: T — TU{t} > external library check
16: break

17: end if

18: else

19: if mygs.class € dom(Dyer[t]) then

20: W — WU {mgs,} > expand worklist
21: end if

22: end if

23: end for

24: end while

25: end for

26: return 7

This step builds a method call graph that contains runtime informa-
tion. We incrementally generate a static call graph for the new code
version when the code is changed. Besides, using runtime informa-
tion from metadata can improve the precision and completeness
of the call graph. Hence, our call graph construction combines
dynamic and static analyses.

3.4 Test Classes Refinement

The final step of our approach is to refine the test classes unre-
lated to the changed method set M’ from the test classes set 7’
produced by the second step (3.2), using the call graph CG’ gener-
ated in the third step (3.3). Algorithm 2 shows the details of this step.
The inputs of the algorithm are 77, M’, CG’, and Dy, obtained in
the previous step, as well as the classes inheritance map S from the
MetaData and the external libraries Lib. The output is the set of test
classes 7* that are affected by the changed methods M’. Firstly,
taking all methods in M’ as the sources, recursively search in a
reversed manner for the callers on the call graph CG’ to get the set
AM of the affected methods (Line 2, where m, can reach m, in CG’
represents that there exists a path from m. to m, in the call graph
CG’). Then, use the inheritance map of classes S and AM to compute
the affected superclasses and the implemented interfaces set AC
(Line 3), which contains library classes. Since the mapping S records
the superclass of all classes, we use all classes of the methods in
AM as sources. Then, we recursively query S for the superclasses
or interfaces of each source class. Besides all the source classes, the
recursively inherited superclasses and implemented interfaces of
each source class (denoted by Ancestor(S, m.class) in Line 3) will
also be added to AC.

Check in sequence whether the test classes in 7 are affected by
M’ (Line 4). Add all methods in test class t to the worklist ‘W as
search sources (Line 5) and iteratively check whether the method
msrc belongs to the AM (Line 8). If it belongs to AM, it indicates
that mg,. may call the M’. Then, add test class t to 7* and end
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the loop (Lines 9-10). Traverse all callees in the set CG’[ms] (Line
12). If the callee my,; belongs to an external library (Line 13), and
the affected class appears in the class or parameter types of my;
(Line 14), also add t to the 7%, then end the loop (Lines 15-16). If
the my,;.class belongs to the dependent class of the current test
class t, add myg; to the ‘W as the source for subsequent searches
(Lines 19-20).

If the call graph CG’ is complete, we can determine whether
the current test class can reach the changed methods directly by
AM on Line 8, without the need to expand the worklist as done
on Line 20. However, due to external library calls, the call graph
CG’ may lack the edges of external libraries, which could lead
to false negatives in reachability analysis. To ensure the safety
of JegEKks, the algorithm must continuously expand the worklist
and perform an over-approximate analysis on the affected classes
using the external library check at Line 14. Specifically, in Line 14,
the affected class set AC is used to handle the scenario where the
affected class is either upcasted to an external library class or passed
as an argument to an external invocation, subsequently resulting
in a callback. As the behavior of the library is invisible, there is
a possibility of the external library calling the changed method
set M’. We over-approximate that as long as any element in AC
appears in the class or parameters of the external library calls, the
test class ¢ is considered to be related to the changed methods.

During the execution phase, the checksum of each test class’s
class and method will be updated. If the test classes with check-
sum changes are selected in the second step but filtered out in the
fourth step, they will not be executed. JegEks will automatically
update the checksum of these test classes to avoid affecting the
next selection phase.

3.5 Safety Checking

We define method-level RTS’s safety as follows: if a test class
executes a changed method during runtime, the test class is affected
by the change. If an RTS tool is safe at method-level, it should select
all the test classes affected by the changes. To measure the safety
of each RTS tool, we use LR to define the proportion of missed test
classes for each RTS technique on each revision. Given a revision r,
LR(r) is defined in Equation 1, where Ts represents the set of the
test classes selected by the RTS technique on r, T, represents the set
of test classes affected by the changes in r, and #T, represents the
set T,’s size. If no test classes are affected in the current revision,
LR is defined as NULL.

T To # 0

LR(r) {NULL Otherwise W

The higher the score of LR, the more likely this RTS tool may

miss the test class, resulting in limited safety. Then, given the set R

of all the revisions, we use the ALR in Equation 2 to represent the

average proportion of missed test classes, where MR = {r; | r; €

R A LR(r;) # NULL} represents the set of the revisions containing
test classes affected by the changes in the revision.

_ Zr;eMR LR(ri) @)
- #MR
To obtain the precise set of test classes affected by changes, we

have implemented a tool called Checker, which utilizes the ASM
framework to insert output statements into the changed methods

#(Ts 7To)

ALR
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and then runs all test classes. By examining the relationship be-
tween test classes and output statements in the test execution log,
we can get the test classes affected by the revision changes, i.e., T,
in Equation 1.

Checker’s basic procedure consists of the following four steps:

o Similar to JegEks, calculate checksums for each method in the
project and compare the checksum differences with the previous
version to extract the changed methods;

e Based on the ASM framework, dynamically instrument output
statements that report the executing test class;

e Execute all the test classes;

e By analyzing the execution logs, we can identify the test classes
executing the instrumented statements, which indicates their
dependence on the changed methods.

3.6 Discussion

Although JcgEks refines the dynamic FRTS’s results by method
call information, JegEks does support other types of code changes.
If the external library version is changed due to modifying the
pom.xml, JegEks will degrade to Ekstazi for file-level selection as
there are no method changes within the project. Besides the code
changes in a method, there may be changes to the fields in the
revision. There are two cases for field changes: static or non-static
field changes. For non-static field changes, the changes alter the
hash value of the constructor method (i.e., <ClassName><init>()V)
of the field’s class; for static field changes, the changes will alter the
hash value of the constant pool construction method of the class (i.e.,
<ClassName><clinit>()V). When there are field changes, JcgEks
will identify these corresponding methods as changed methods.
Hence, JegEks will keep all the test classes that depend on the fields.
However, JegEks cannot support the situations where the revision
does not change any class files but changes the testing’s behavior,
e.g., modification to the external non-Java programs executed by
some test classes.

To identify the changed methods, like JcgEks, Checker records
the hash values of each method in the current revision. Checker
then identifies the methods in the next revision where the hash
values have changed as changed ones. Since Checker and JcgEks
utilize the same way to locate changed methods, Checker can also
support field changes. On the other hand, the soundness and preci-
sion of Checker and JcgEks depend on correctly identifying the set
of changed methods. If a changed method is missed, both JegEks
and Checker may not be sound, i.e., missing affected test classes;
if a non-changed method is identified as changed, Checker and
JcgEks may become imprecise, i.e., believing some test classes are
affected when they actually are not.

Besides, in principle, Checker aims to establish a mapping be-
tween changed methods and their affected test classes. At the im-
plementation level, Checker instruments output statements into
the changed method to output the names of the currently executed
test class and the changed method, which can be used to estab-
lish the mappings. There may exist some other implementation
methods, such as the one based on the existing code coverage mea-
surement tools (e.g., JaCoCo [51]). Although the basic idea of using
instrumentation to establish mappings is similar, Checker describes
the mapping from test classes to change methods more accurately
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Table 1: Projects Information

Proj Name Head | kLOC | Test Class Test | Time(s)
P1 number cc76516 36.3 73.7 19727 41.1
P2 imaging ca8be30 44.7 153 979 45.4
P3 gerrit 675593d 7.8 24.7 117.6 46.3
P4 configuration | 8119b6b 53.4 171 2932.8 47.0
P5 codec 7ca5b56 24.1 63.8 1247.8 48.7
P6 statistics d82aebb 46.6 73.9 27694.1 52.8
P7 JSqlParser 8378ea4 87.4 125.1 1747.7 57.1
P8 lang 552fead 90.0 187 5360.6 58.8
P9 math | alacl85 148.0 253 2865.6 69.6

P10 net f019bab 25.7 54.4 432.8 78.7

P11 io 920a132 523 201 2534.1 100.7

P12 accumulo 92331ea 441.0 159.7 555.1 102.9

P13 dbep 914196 32.2 49 1494.4 106.2

P14 HikariCP 4b796b5 11.7 33.6 129.2 125.0

P15 mg 109239 47.5 130.1 3747.7 169.5

P16 flink-ml bc24667 57.7 103 581.3 277.8

P17 email-ext 4740859 46.1 38.2 325 298.7

P18 openmrs | 24edc54 264.6 314 4465.7 317.5

P19 rocketmq 2d66e95 107.3 216.6 764.5 465.1

P20 celeborn | 6b64b1d 190.0 28 116.4 735.7

Avg. 90.7 122.7 3890.9 162.2
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Table 2: Selected test classes
Proj || Ekstazi(%) | JegEks(%) | JegEks_NE(%) | FineEkstazi(%) | HyRTS(%) | STARTS(%)

P1 7.06 4.48 3.8 1.76 N/A 100
P2 5.82 2.61 2.61 2.61 N/A 27.52
P3 19.43 12.55 10.93 10.12 11.74 65.18
P4 5.03 3.68 3.68 0.99 N/A 100
P5 8.15 5.8 5.8 5.33 N/A 12.7
P6 9.07 7.85 7.85 7.44 N/A 100
P7 68.51 68.43 65.87 59.79 N/A 717.46
P8 8.24 1.39 1.34 1.66 N/A 33.96
P9 14.39 11.23 9.8 12.21 N/A 100
P10 1.84 1.29 1.1 56.25 N/A 100
P11 6.67 3.28 3.18 2.89 N/A 13.78
P12 91.36 91.23 91.23 52.29 N/A N/A
P13 18.16 12.04 11.22 9.39 N/A 36.94
P14 60.71 30.06 27.08 26.49 N/A N/A
P15 18.75 12.14 12.07 3.69 N/A 25.6
P16 24.47 17.18 16.7 16.99 N/A 33.59
P17 59.42 13.09 12.57 56.02 N/A N/A
P18 19.9 15.06 13.18 7.58 N/A 61.59
P19 2091 13.2 13.11 3.65 100 44.23
P20 39.29 33.57 32.86 N/A 100 55
Avg. 25.36 18.01 17.3 17.74 70.58 58.09

Table 3: End-to-end testing time

than code coverage measurement-based approaches, require less
instrumentation, and run more efficiently.

4 EXPERIMENT AND EVALUATION

We evaluate the effectiveness of JcgEks and answer the follow-
ing research questions:

e RQ1: How much can JcgEks reduce tests compared to other
tools?

e RQ2: How much can JegEks reduce end-to-end time compared
to other tools?

e RQ3: How does JegEks compare to other tools in terms of safety?

e RQ4: How does JegEks compare against other tools when using
state-of-the-art RTS checking tools?

4.1 Experimental Setup

Benchmarks. In order to enhance the capability of Ekstazi and
JcgEks with a broader range of projects, we upgrade both Ekstazi
and JcgEKks to support both JUnit4 and JUnit5 test cases. Table 1
lists 20 projects employed in our experiment. Columns "Proj" and
"Name" present the IDs and names of the projects, which are sorted
in the ascending order of execution time. All the selected projects
are open-source projects on GitHub, and many have performed well
in prior RTS research. Similar to the existing work [32], we select
50 consecutive revisions with Java file changes for each project,
and column "Head" presents the first revision of the 50 revisions.
Column "KLOC" presents the number of thousands of lines of code
for each subject. Columns "Test Class", "Test", and "Time" respec-
tively show the average number of test classes, the average number
of tests, and the end-to-end testing time to run all the test classes.

Experiment Design. To evaluate JcgEks’s effectiveness, we
compare it with four baselines: Ekstazi (dynamic FRTS) [17], Fi-
neEkstazi (hybrid RTS) [32], STARTS (static FRTS) [26], and HyRTS
(hybrid RTS) [57]. To inspect the regression testing time and the
safety of RTS, we also run RetestAll and Checker, which run all the
test classes without and with Checker’s safety instrumentations,
respectively. To investigate the impact of external library calls on
safety, we conduct a study on JegEks without analyzing external
library calls, denoted by JegEks_NE. In total, we run eight tasks

Proj || Ekstazi(%) | JegEks(%) | JegEks_NE(%) | FineEkstazi(%) | HyRTS(%) | STARTS(%)

P1 37.71 30.41 29.68 35.04 N/A 91.48
P2 35.9 22.25 23.79 20.7 N/A 51.54
P3 37.8 28.51 26.57 23.76 55.51 152.92
P4 29.79 21.28 21.06 23.19 N/A 87.87
P5 20.33 17.66 18.89 17.66 N/A 20.33
P6 23.48 214 21.21 22.73 N/A 87.69
P7 90.54 91.59 90.02 84.41 N/A 98.42
P8 3231 20.41 19.39 16.5 N/A 46.09
P9 37.5 31.03 28.02 329 N/A 85.92
P10 9.02 6.99 6.99 87.29 N/A 94.41
P11 15.89 10.82 10.82 11.12 N/A 27.21
P12 86.98 84.55 80.47 46.65 N/A N/A
P13 48.96 37.76 36.63 36.06 N/A 94.35
P14 74.64 38.96 36.4 34.56 N/A N/A
P15 41 25.25 24.13 17.46 N/A 36.76
P16 58.21 39.42 34.49 46.11 N/A 35.42
P17 117.34 30.36 26.65 107.1 N/A N/A
P18 69.17 39.4 31.84 33.92 N/A 60.5
P19 4335 2221 21.41 12.47 668.89 55.54
P20 68.45 55.59 55.77 N/A 86.33 74.41
Avg. 48.92 33.79 32.21 37.35 270.24 70.64

of RetestAll, Checker, Ekstazi, JegEks, JcgEks_NE, FineEkstazi,
STARTS, and HyRTS on each of the 50 revisions in the 20 projects.

All experiments are conducted on an 80-core server with Intel(R)
Xeon(R) Platinum 8269CY CPU @ 2.50GHz CPU and 194GB of
memory, running Ubuntu Linux 20.04. For the tools HyRTS and
STARTS, we execute all projects on the Oracle Java 64-Bit Server
version 1.8.0_11, while for other tools, we run all projects on the
Oracle Java 64-Bit Server version 11.0.14. Besides, due to the imple-
mentation problem, FineEkstazi did not select any test classes to
run on program P20, so the relevant data is missing on this project.
In addition, because HyRTS supports only JUnit4 and JDK8, while
STARTS only supports JDKS, they cannot support all the projects
in the experiment.

4.2 ROQ1: Reduction of Test Selection

Table 2 shows the average proportion of test classes selected
(%) for each project by the six tools. Projects not supported by Fi-
neEkstazi, HyRTS, and STARTS are marked with "N/A". It can be
seen that among all the projects, the comparison of the test class
ratios selected by these six tools is: HyRTS > STARTS > Ekstazi >
FineEkstazi > JcgEks > JegEks_NE. On average, Ekstazi, JcgEks,
JcgEks_NE, FineEkstazi, HyRTS, and STARTS selected 25.4%, 18.0%,
17.3%, 17.7%, 70.6%, and 58.1% of all test classes, respectively. Com-
pared with Ekstazi, JegEks_NE, FineEkstazi, HyRTS, and STARTS,
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Figure 6: The ratio of end-to-end time

JegEks can reduce the selection of test classes by 29.0%, —4.1%,
3.1%, 73.1%, and 78.2% on the projects that both tools can support
(rather than the average of all projects), respectively. The above
data indicates that our tool JegEKs is superior to the state-of-the-art
RTS tool FineEkstazi in reducing the number of test classes.

Compared to FineEkstazi, which also uses call graph-based fil-
tering, JegEKs filtered out 3.1% more test classes. This is because
FineEkstazi does not finely handle reflections and external library
calls, and once dynamic dependences are not a subset of static
dependences, method call graph filtering cannot be used. On the
contrary, JegEks handles external library calls more safely, improv-
ing selection precision further.

Figure 5 illustrates a boxplot of the proportion of the test classes
selected from these five tools among 20 projects to the RetestAll.
Due to the limited available data, we do not display data about
HyRTS in the boxplot but instead list the relevant data in subsequent
tables. The x-axis displays all projects, while the y-axis shows the
proportion of test classes each tool selects in each project. The
median value is marked as a line, while the average value is marked
as a pentagram. The same representations apply to Figure 6 below.

As indicated by Figure 5, compared with the percentage of se-
lected test classes, the static FRTS tool STARTS performs the worst.
In contrast, the dynamic RTS tools (Ekstazi, JcgEks, JcgEks_NE,
and FineEkstazi) have higher selection precision and can filter out

more test classes. Among the four dynamic RTS tools, Ekstazi has
only file-level analysis. The other three tools have added further
analysis and filtered more test classes, indicating Ekstazi’s lower
selection precision than the other three tools. The proportions of
test classes selected by JcgEks, JcgEks_NE, and FineEkstazi are
not significantly different, indicating that the selection precision of
the hybrid RTS has reached a bottleneck.

4.3 RQ2: Reduction of End-to-End Times

An important metric for evaluating RTS techniques is the end-
to-end time, which includes not only the test execution time but
also the overhead brought by extra analysis. Table 3 illustrates each
project’s average end-to-end time proportion (%) by the six tools.
As indicated by the table, the comparison of the end-to-end time for
these 6 tools is: HyRTS> STARTS> Ekstazi> FineEkstazi> JcgEks>
JcgEks_NE. On average, Ekstazi, JegEks, JegEks_NE, FineEkstazi,
STARTS and HyRTS need 48.9%, 33.8%, 32.2%, 37.4%, 70.6%, and
270.2% of the RetestAll time, respectively. Without dealing with
external libraries, JegEks_NE can reduce end-to-end time by 4.7%
compared with JcgEks, which indicates that the end-to-end time
can be reduced more if we do not consider the dependences of
external libraries. However, the RTS’s safety may have problems,
which will be studied in the next subsection.
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Table 4: Results of missed test classes

Proj JcgEks_NE FineEkstazi HyRTS STARTS
# | ALR(%) # | ALR(%) # | ALR(%) # | ALR(%)
P1 2 3.09 85 43.67 | N/A N/A 0 0
P2 0 0 1 3.57 | N/A N/A 0 0
P3 0 0 4 6.09 1 3.85 0 0
P4 0 0 3 1.21 | N/A N/A 0 0
P5 0 0 1 0.31 | N/A N/A 0 0
P6 0 0 40 17.97 | N/A N/A 0 0
P7 1 0.64 33 1.99 | N/A N/A 0 0
P8 0 0 0 0 | NA N/A 0 0
P9 0 0 76 19.49 | N/A N/A 0 0
P10 0 0 1 476 | N/A N/A 0 0
P11 0 0 4 7.24 | N/A N/A 0 0
P12 0 0 0 0 | NA N/A | N/A N/A
P13 21 10.02 35 10.72 | N/A N/A 8 29
P14 0 0 3 0.99 | N/A N/A | N/A N/A
P15 0 0 221 41.74 | N/A N/A 0 0
P16 8 4.18 73 23.59 | N/A N/A 1 1.52
P17 0 0 0 0 | NA N/A | N/A N/A
P18 41 4.38 275 52.6 | N/A N/A 14 4.6
P19 0 0 383 68.71 0 0 0 0
P20 0 0 N/A N/A 1 0.71 1 0.57
Avg. 3.65 1.12 | 65.16 16.03 | 0.67 1.52 1.41 0.56

Figure 6 illustrates the percentage of end-to-end time to RetestAll
for all projects executed by each tool. From the overall boxplots,
STARTS still has the longest end-to-end time because it selects
more test classes and spends more extra time on static analysis.
As shown in P3, the average end-to-end time of STARTS is almost
1.5 times that of RetestAll, mainly due to the short testing time of
P3 and the overhead resulting from static analysis. On P2 and P3,
JegEks, which also used static analysis, has a much lower end-to-
end time than STARTS, indicating the efficiency of JcgEks due to
the incremental building of the static call graph. The end-to-end
time of the three hybrid RTS methods is still lower than the FRTS
tool Ekstazi, and there is almost no significant difference between
these three tools, indicating that JegEKks is consistent with state-of-
the-art tools in reducing the end-to-end time of regression testing.
It should be noted that compared to Ekstazi, JcgEks does not reduce
end-to-end time in each revision. On some revisions, JcgEks may
take longer because the extra analyses of JcgEKks (e.g., call graph
building and instrumentations) do not reduce the test classes but
introduce overhead.

Furthermore, we found that JegEks can reduce more end-to-end
time compared to Ekstazi on projects with longer testing times. The
reason is that the proportion of static analysis time is smaller, and
improving analysis accuracy from file-level to method-level brings
higher benefits. In addition, we calculated the average time spent
on static analysis in different revisions of each project, with static
analysis time not exceeding 5% of end-to-end time. Moreover, the
static analysis time does not increase exponentially on larger-scale
projects. This can be attributed to our incremental construction of
static call graphs, significantly reducing the time required for static
analysis.

4.4 RQ3: Safety Comparison

Table 4 shows the results of missed test classes. Checker cal-
culates the results. Because Ekstazi and JegEks do not miss any
test classes in all projects, they are not listed in the table, proving
JcgEks’s safety in our experiment. The table’s symbol "#” repre-
sents the total number of missed test classes on the project. It will
accumulate if the same test class is missed in different revisions.
The ALR in the head of the table corresponds to the ALR metric
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1 public class GerritConnection

2 extends Thread implements Connector{
3 @Override

4 void run(){

5 - if (linecount > @) {

6 + if (readCount == @ || linecount > @) {

7 sleep (SSH_RX_SLEEP_MILLIS);

(a) The changed method

public class StreamWatchdogTest {
public void testFullTimeoutFlow(){
GerritConnection ¢ = new GerritConnection();
Thread cThread = new Thread(c);

cThread.start();

G W =

(b) A test class affected by the changed method

Figure 7: External library call in a revision
defined in Equation 2, representing a project’s average missing
selection rate. For example, in the P1 project, Ekstazi and JegEks
did not miss any test classes, JegEks_NE missed 2 test classes, and
FineEkstazi missed 85.

JcgEks_NE, FineEkstazi, STARTS, and HyRTS have varying de-
grees of missed test classes. The ALR score of FineEkstazi is signifi-
cantly higher than other tools, while the ALR score of JcgEks_NE,
STARTS, and HyRTS is similar. We have the following results by
manually analyzing the missed test classes of different tools.

o JcgEks_NE missed test classes due to external library calls. As
indicated by the table, the occurrence of missed test classes is
relatively dense. Checking external library calls can improve the
safety of RTS techniques.

e There are two main reasons why STARTS missed test classes in

4 projects. One reason is that static methods cannot handle re-

flections, and the other is that external library callbacks are not

handled. In projects P13, P16, and P18, although both STARTS and

JegEks_NE miss test classes, due to the coarser analysis granular-

ity of STARTS (static file-level analysis), some test classes missed

by JcgEks_NE were selected through STARTS’s coarse-grained
analysis, resulting in a lower number of missed test classes.

HyRTS missed test classes in 2 projects because HyRTS instru-

ments and collects dependences for each method, and the missed

test classes are affected by the changed methods implemented in

Scala code, on which the instrumentation failed.

e The ALR score of FineEkstazi is much higher than other RTS tools,
mainly due to 3 reasons. The first one is the implementation is-
sue. FineEkstazi divides code changes into 13 types, and some test
classes affected by changes are filtered based on change semantics.
Our tool Checker found that when code changes contain multiple
types of changes, FineEkstazi may miss the test classes due to
imprecise semantic perception. For example, in one revision of
P1, both the constructor and the "throw" statement were changed.
Based on FineEkstazi’s classification, changing only the "throw"
statement will not select any test class, while changing the con-
structor will select the affected test class. However, FineEkstazi
did not keep the test classes affected by the changed constructor.
The second reason is that dynamic binding issues were incorrectly
handled in FineEkstazi. The last one is that external library calls
were not handled.

Figure 7 shows a case caused by external library callbacks from
the gerrit-events project (P3) revision ef2078c. As shown in Figure
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7(a), the code change in the revision only includes one line for the
run() method in the class GerritConnection. It should be noted
that the changed class is a subclass of the external library class
Thread, while the changed method is to override the method of
the superclass. In the test class StreamWatchdogTest as shown in
Figure 7(b), upcasting the GerritConnection object and using it
as a parameter to initialize the Thead object. In line 5, the start ()
method of the Thread object is called, and it will call back the
run() method of the class GerritConnection in the Java native
method starts@().Even worse, native methods do not contain Java
bytecode, so existing RTS technologies cannot statically analyze
method-level dependences. JcgEks over-approximates to handle
external library calls safely.

4.5 ROQ4: Evaluation by RTSCheck

To further evaluate JegEks, we used RTSCheck [60], a frame-
work for testing RTS tools, to test the six tools: Ekstazi, JcgEks,
JcgEks_NE, FineEkstazi, HyRTS, and STARTS. RTSCheck consists
of 3 components: AutoEP, DefectsEP, and EvoEP. Since the four RTS
tools being tested operate in a JDK11 environment, but DefectsEP
is designed for JDK8 projects, we cannot use the DefectsEP com-
ponent. Additionally, the experimental design of EvoEP is similar
to that of Checker and achieves the same safety checking effects,
so we do not use the EvoEP component either. AutoEP has contin-
uously developed programs through automatic code generation,
test generation, and code evolution. We only used AutoEP in this
experiment and adapted it to the JDK version required by each tool.

Unlike Checker, RTSCheck uses seven rules to classify the quality
of RTS tools into three violation categories: R1 and R2 generate
safety violations; R3, R4, and R5 generate precision violations; R6
and R7 generate generality violations. Only violating one of R1,
R5, R6, or R7 can prove the existence of a bug in the RTS tool.
Violating the remaining rules does not indicate the RTS tool has
a bug. Table 5 shows the number of RTSCheck violations found
in Ekstazi, JegEks, JcgEks_NE, FineEkstazi, HyRTS, and STARTS.
The results show that these six tools only violated R2 and R3 rules.
A violation of R2 means that the tool selects zero test classes, but
all the other tools select all the test classes, indicating a possible
safety violation on the revision. A violation of R3 means that the
tool selects all the test classes on the revision.

As indicated by R2’s results, all the RTS tools except FineEkstazi
do not have any violations. FineEkstazi does not select any test
classes on two revisions. We further inspected the reason for the
violations. These two revisions contain method overloading, i.e.,
adding a new method with the same name as an existing method
but different parameter types. For FineEkstazi, adding new meth-
ods does not change the method call relations, so FineEkstazi does
not select any test classes. However, the program calls the newly
added method in the new version. For example, suppose a test class
calls Class1’s method foo(long x) by c.foo(2). When a new
method foo(int x) is added to Class1 in the revision, method
foo(int x) will be called instead of foo(long x) with respect to
Java’s specification of method overloading. These violations indi-
cate FineEkstazi’s unsafety in handling this situation. JegEks and
JegEks_NE can correctly update the method call graph and select
the affected test classes. As shown by R3’s results, all the hybrid RTS
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Table 5: Number of violations detected by RTSCheck

Rule Ekstazi | JegEks | JcgEks NE | FineEkstazi | HyRTS | STARTS
R1 0 0 0 0 0 0

R2 0 0 0 2 0 0

R3 2370 331 331 249 253 2378
R4 0 0 0 0 0 0

R5 0 0 0 0 0 0

Ro6 0 0 0 0 0 0

R7 0 0 0 0 0 0

tools (JegEKks, JcgEks_NE, FineEkstazi, and HyRTS) select fewer
test classes than file-level RTS tools (Ekstazi and STARTS), indicat-
ing the better precision of the hybrid RTS techniques. Since the
program generated by AutoEP does not involve external libraries,
JcgEks and JegEks_NE have the same number of R3 violations.

Regarding safety checking, there are two differences between
RTSCheck and Checker. First, RTSCheck does not provide detec-
tion rules for external library callbacks, so it cannot detect such
safety violations. Second, Checker can provide the Oracle set of
affected test classes. RTSCheck’s R2 is a voting-based approach that
performs differential testing by running multiple RTS tools to test
the difference in the numbers of selected test classes. RTSCheck’s
R2 results can indicate a possible safety violation but cannot di-
rectly prove the existence of a safety violation due to the lack of
Oracle. Here, the safety checking results of FineEkstazi indicated
by RTSCheck’s R2 results are consistent with those of Checker, ie.,
both RTSCheck and Checker indicate FineEkstazi is unsafe. Besides,
the results of JegEks_NE, HyRTS and STARTS are different from
those of Checker because RTSCheck does not consider the scenario
of external library callbacks.

5 DISCUSSION

Other factors affecting RTS’s safety. In this paper, we pro-
pose an approach to ensure RTS’s safety in the case of external
library callbacks and support the analysis of reflection and dynamic
binding. However, it is important to acknowledge that various
factors can impact the safety of RTS techniques. These factors
include the changes in file artifacts [61], the changes to environ-
ment variables, the alterations in database contents [54], and more.
Currently, mainstream RTS tools do not fully analyze these depen-
dences. Therefore, there is a need for future exploration to address
these challenges and improve the overall safety analysis of RTS
tools. By considering these additional factors and incorporating
them into the analysis, we can enhance the effectiveness and com-
prehensiveness of measuring RTS’s safety.

Trade-off between efficiency and safety. Our study shows
that a trade-off between efficiency and safety should be achieved
when using RTS techniques. We found that the safe JegEks ap-
proach for handling external library calls is less efficient than the
unsafe JegEks_NE approach. However, it should be noted that
although JegEks_NE is unsafe, it does not result in missing test
cases on some projects, which may be due to structural differences
between different projects. In some specific scenarios, sacrificing
safety for efficiency may be acceptable. For instance, Memon et
al. [35] propose an unsafe RTS approach to avoid the huge cost of
precisely calculating dependences in testing, based on code changes
frequency rather than relying on the dependences between changed
codes and tests. Machalica et al. [33] use a large dataset of historical
test results to train a model that precisely predicts test failures.
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Mehta et al. [34] propose a lightweight statistical model for test
selection that reports over 99% of errors. Zhang et al. [56] combines
ML-based RTS with analysis-based RTS, thereby improving the pre-
cision and efficiency of RTS. These examples show that balancing
the safety and efficiency of RTS technology for different scenarios
will be interesting work in the future.

Finer grained combination. During our experiment, we calcu-
lated the time spent on the static analysis part of JegEks and found
that it accounted for an average of 5% of the end-to-end time. This
suggests that fine-grained static analysis could potentially support
large-scale system analysis. Another tool, RETEST [22], combined
dynamic class-level instrumentation and static control-flow level
analysis, which also shows promise for fine-grained static analysis.
HyRTS [32], based on dynamic FRTS, not only studied the inte-
gration of method-level analysis but also further investigated the
integration of more fine-grained dynamic analysis. The conclusion
is that the basic block-level dynamic analysis is not cost-effective.
However, this conclusion was based on dynamic RTS, and there is
no experimental evidence of integrating fine-grained static analysis
with dynamic FRTS. Therefore, it is also interesting to investigate
hybrid fine-grained static analysis with dynamic FRTS.

6 RELATED WORK

Hybrid RTS. Hybrid RTS techniques can be categorized into
two main groups: dynamic and static mixing and different granular-
ity mixing. TestTube [10] combines static and dynamic analysis to
test C-implemented software systems selectively. Bible et al. [6] con-
ducted empirical research comparing coarse-grained TestTube and
fine-grained DejaVu [42] and found that the hybrid dynamic RTS
combining the two approaches can outperform TestTube in terms of
precision equivalent to DejaVu. RETEST [22] utilizes dynamic and
static analysis while collecting dependences at different granulari-
ties to handle Java’s object-oriented characteristics. Dejavoo [36]
employs a two-stage static RTS approach, conducting preliminary
analysis at the class-level and refining it at the control-flow level to
enhance analysis capabilities for large systems. DeFlaker [4] uses a
mixture of static class-level and dynamic statement-level analysis
to monitor code changes’ coverage. HyRTS [57] is the first hybrid
dynamic RTS technique, combining method-level and file-level
analysis to outperform state-of-the-art dynamic FRTS techniques.
However, analyzing at a more fine-grained basic block level is not
cost-effective. Shi et al. [44] utilized dynamic analysis to track reflec-
tions and studied the impact of reflection on FRTS to enhance static
FRTS’s safety. MEST [30] also addressed the reflection problem in
RTS by combining dynamic analysis with static MRTS to ensure
the safety of static analysis. In the latest research, FineEkstazi [32]
claims that RTS approaches have reached the "performance wall".
Hence, it classifies the semantics of code changes to identify seman-
tic changes that do not require re-running test cases, essentially
combining static analysis and dynamic FRTS.

Compared to the related work, our tool JcgEks falls under the
category of hybrid RTS. However, it differs from HyRTS [57] of
multi-granularity mixing in dynamic RTS. We combine both dy-
namic and static analysis, as well as different levels of granularity.
In contrast to MEST [30] emphasizing dynamic analysis to enhance
the safety of static MRTS, our approach focuses on leveraging static
analysis to improve the effectiveness of dynamic FRTS. Additionally,
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while FineEkstazi [32] proposed static rules for combining dynamic
FRTS with semantic changes, our approach, combined with static
method call graphs, safely handles the issue of external library calls
and proposes metrics and tools for RTS safety.

Safety of RTS. To ensure the safety of RTS, it is important to
select all tests affected by code changes. Reflection in Java is a
significant challenge for static analysis. There has been a lot of
related work [3, 5, 9, 19, 28, 29, 49], Bodden et al. [9] is the first
to study the impact of reflection on static analysis security. They
highlighted the limitation of Java’s static analysis in supporting
reflection and proposed a solution by inserting runtime checks for
reflective calls. Soetens et al. [50] conducted empirical research
on RTS tools that implement static binding and dynamic binding,
respectively. They found that static binding occasionally fails to
select certain test cases, while dynamic binding offers better safety.
Shi et al. [44] comprehensively addressed static RTS’s unsafety
caused by reflection. They employed a similar approach as Bodden’s
work [9] to track reflection calls using dynamic analysis during
test execution. MEST [30] also recognized the problem of imprecise
reflection and dynamic binding in static MRTS and improved its
safety through dynamic analysis.

Compared with the above work, our work goes beyond by not
only supporting dynamic collection of reflection and dynamic bind-
ing dependences, building upon the research of Shi et al. [44] and
MEST, but also examining the influence of external library calls on
RTS safety. To our knowledge, no prior research has specifically
addressed handling external libraries in static MRTS scenarios. We
have thoroughly analyzed and discussed the occurrence of this
issue and proposed a solution to address it.

7 CONCLUSION

This paper proposes a new hybrid RTS method JcgEks. It inte-
grates dynamic FRTS and static MRTS, combining dynamic and
static analysis advantages at different granularities. Based on this,
we discuss the unsafety of static RTS analysis caused by exter-
nal library calls and propose a solution. Furthermore, to measure
the safety of the RTS tool, we propose a metric and design an ap-
proach to statistically count the number of missed test classes at
the method-level granularity. Experimental results demonstrate
that JegEks surpasses other state-of-the-art RTS tools in precision,
end-to-end time, and safety. We believe this work can serve as the
first step in research on external library calls, and the RTS safety
checking tool we provide promotes the development of RTS safety
research.

Data Availability. Our artifact is available at the following URL:
https://github.com/zbchen/JcgEks.
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