
An Interface Theory Based Approach to Verification of Web Services ∗

Zhenbang Chen, Ji Wang, Wei Dong, Zhichang Qi
National Laboratory for Parallel and Distributed Processing, Changsha, China

{z.b.chen, jiwang, dong.wei}@mail.edu.cn
W.L. Yeung

Department of Computing and Decision Sciences, Lingnan University, Hong Kong, China
wlyeung@ln.edu.hk

Abstract

The verification of web services becomes a challenge in
software verification. This paper presents a framework for
verification of web service interfaces at various abstrac-
tion levels. Its foundation is the interface theory for web
services, in which transaction features are incorporated.
Within the framework, one may check non mutual invoca-
tion, compatibility and refinement of web services at signa-
ture, conversation and protocol levels. At protocol level, we
present a model checking approach to verifying the protocol
properties in Action Set Computation Tree Logic(ASCTL).
The paper also discusses the integration of our framework
into the web service development.

1. Introduction

Web service is emerging as a standard framework for
service-oriented computing. It becomes a new challenge
to ensure the high confidence of web service systems. As
a formal foundation of component-based design, [1] pro-
posed a theory of interface automata for specifying the in-
terfaces of components. [2] presented a web service inter-
face description language, which can describe the interfaces
at three levels, i.e. signature, consistency and protocol.
However, the transaction features have not been considered
in the existing interface theories, while they are essential
features for distributed computing, such as web service sys-
tems. We have extended the formalism of web service inter-
faces proposed in [2] to describe transaction information in
all three levels of signature, conversation and protocol. In

∗Supported by the National Natural Science Foundation of China under
Grant No.60233020, 60303013, 90612009; the National High-Tech Re-
search and Development Plan of China under Grant No.2005AA113130;
the National Grand Fundamental Research 973 Program of China under
Grant No.2005CB321802; Program for New Century Excellent Talents in
University under Grant No.NCET-04-0996.

this paper, we present a multi-level verification framework
to verify web service interfaces. In the framework, the in-
terface behaviour of web service interfaces will be specified
and verified with respect to the expected properties at differ-
ent abstract levels. The remainder of this paper is organized
as follows. Section 2 briefly presents the underlying inter-
face theory, and Section 3 proposes the verification frame-
work and show the details in verifying protocol property.
Section 4 discusses the integration of our framework into
the web service development. Section 5 discusses some re-
lated works and concludes the paper.

2. Web Service Interface Theory

A web service interface description contains some
method declarations, and clients can use the functionali-
ties of web services through method calls. A web service
may provide or request some methods which may return
some different values. An action is an instance of a method
call. In the perspective of action, web service interface be-
haviour contains three parts. The first part is the normal
behaviour of action invocations. If an exception action is
invoked, after which the corresponding fault handling be-
haviour in the description should be taken, which is the sec-
ond part. If an exception action can invoke some success-
ful actions before the exception occurrence, the successful
actions should be compensated by the corresponding com-
pensation behaviour which is the third part of the interface
behaviour. Figure 1 shows a supply chain management sys-
tem with transactions. SellItem is the method provided by
web service Shop, and 〈SellItem, FAIL〉 is one of its pro-
vided actions.

There are different detailed interface descriptions from
web service providers. For this reason, we proposed the
interface theory for describing the transaction information
at three different abstract levels of signature, conversation
and protocol, which is same as [2]. As a shorthand, brief
description of the interface theory will be given as follows.

Shop

Bank Transport

Store

Supplier

Post office

Client
SellItem

Recede

Compensate

ProcPay ShipItem WithDraw

Apologize ChkAvail

ChkStore

RStore

GetOffer

Order

SendLetter

Figure 1. Supply chain management system.

According to the three parts of interface behaviour, a web
service signature interface has three partial functions: S,
SC and SF . The definitions of all functions are same as
A→ 2A, where A is a set of actions. S assigns to an ac-
tion a a set of actions which a can normally invoke. SC
assigns to an action a a set of actions that can be invoked by
the compensation for a. SF assigns to an action a a set of
actions that can be invoked by the fault handling for a.

An action may invoke different action sets in different
cases, which is the reason for proposing conversation inter-
face. A conversation is a set of actions that are invoked to-
gether. A conversation interface also has three partial func-
tions: E , EC and EF . The definitions of all functions are
same as A→ω(A). ω(A) is the set of expressions over the
action set A using the binary operators u and t, and the
constant >. The meanings of functions are similar to those
of signature interface, except that each function assigns to
an action a conversation expression to describe the interface
behaviour.

A conversation is a set of actions, which does not have
any sequence information. For indicating the sequences of
action invocations, we propose extended protocol automa-
ton, which is a triple (A,L, δ), where A is a set of actions,
L is a set of locations, and there are two special locations
⊥,£ in L, ⊥ is the return location, and £ is the excep-
tion location, and δ ⊆ (L \ {⊥, £}) × Terms(A) × L is the
transition relation set. Terms(A) is the term set whose ele-
ments indicate different modes of method invocations, such
as thread creation, choice, and parallel executions. A pro-
tocol interface has an extended protocol automaton G and
three partial functions: R, RC and RF , whose meanings
are similar to those in signature interface, except that each
function assigns to an action the start location in the ex-
tended protocol automaton. The definitions of all functions
are same as A → L.

Signature interface and conversation interface describe
the static invocation relations of web service interfaces.
Protocol interface describes dynamic web service interface
behaviour. Given a protocol interface T and an action
a ∈ dom(R), the interface behaviour invoked by a can be
transformed into a labeled transition system (LTS).

Compared with the interface theory in [2], we extend it
with transaction description mechanism at all three levels.
In each level, we add compensation function and fault han-
dling function, through which the semantics of the interface
can incorporate features of long running transaction.

3. Verification Framework

For ensuring the high confidence of web service systems,
it is desired to verify web service interfaces with respect to
the expected properties. The presented web service inter-
face theory provides the foundation for verification. Ac-
cording to three abstract levels, we propose a verification
framework for verifying web service interfaces. The sketch
of the framework are shown in Figure 2. The verification
can be taken on signature, conversation and protocol levels,
and non mutual invocation, compatibility and substitutivity
can be checked in each level. The compatibility and sub-
stitutivity between web service interfaces will be checked
with respect to a set of conditions derived from the inter-
face theory. In conversation and protocol levels, part of the
expected properties will be application-related, and will be
specified and verified specially.

Signature Verification

C
om

patibility

Substitutivity

Protocol Verification

Protocol Property

Conversation Verification

Conversation Property

N
on M

utual Invocation

W
eb Service Interfaces

Figure 2. Sketch of verification framework.

For a web service system, if two actions can invoke each
other mutually, the system resource may be exhausted even-
tually. Therefore it is desired that the mutual invocation
should be forbidden in web service systems. Because sig-
nature interface describes direct invocation relation between
web service interfaces, the non mutual invocation property
can be checked on it. A signature interface is non mutual
invocation if any two supported actions can not invoke each
other mutually. For conversation and protocol interface, we
can calculate their underlying signature interfaces, on which
we can check the non mutual invocation property.

Conversation interface can describe different cases for
the same action invocation. Some non-temporal properties
can be verified on it. The property can be specified by con-
versation property (CP), whose form is defined as follows,
where a ∈ A,D ⊆ A and a /∈ D.

CP :: a → ¦D | a → ¤D | a9 D | a9 ∀D | a9 ∃D

The meanings of different property forms are given as
follows: 1) a → ¦D specifies that action a can invoke a con-
versation which includes all actions inD, 2) a → ¤D spec-
ifies that every conversation invoked by action a includes
all actions in D, 3) a 9 D specifies that every conversa-
tion invoked by action a does not include all actions in D,
4) a 9 ∀D specifies that every conversation invoked by
action a does not include any action in D, 5) a9 ∃D spec-
ifies that action a can invoke a conversation which does not
include any action in D.

Some temporal properties can be verified on protocol in-
terface. The protocol property must be formed in a → ϕ,
where a∈dom(R) and ϕ is the formula in Action Set Com-
putation Tree Logic (ASCTL), whose definition is given as
follows, where D ⊆ A.

χ :: true | false | D | ¬χ | χ ∧ χ′

ϕ :: true | false | ¬ϕ | ϕ ∧ ϕ′ | Eγ | Aγ

γ :: [ϕ{χ} U {χ′}ϕ′] | [ϕ{χ} U {χ′}ϕ′]
Compared to ACTL in [4], the syntax and semantics of

ASCTL are similar except that the action set is used instead
of the single action. So, for the semantics of ASCTL, the
labels of transitions in LTS model are action sets, and we
define A |= D iff A∩D 6= ∅, where A is the transition label
and D is the action set in ASCTL formula. The derived
ASCTL operators, such as EF, AF, EG and AG, are defined
as in [4].

The non mutual invocation checking and conversation
property verification are straightforward, and model check-
ing method is used to verify protocol properties. The
method for model checking is same as [4], which used sym-
bolic model checking method based on fixed point calcula-
tion [6] for ACTL verification. The verification process of
protocol property is shown in Figure 3.

Model Checking for (M ⊧ϕϕϕϕ ?)

Transformation

Protocol

Interfaces

LTS M of action a invocation

Property a � ϕϕϕϕ

ASCTL formula ϕϕϕϕ

Result

Figure 3. Protocol property verification.

First, the corresponding LTS of the property should be
generated, and the LTS only contains the transitions whose
labels are external action sets. Next, we can use the pre-
sented method to verify the ASCTL formula in the property.

Given two web service interfaces, we want to check
whether they can cooperate properly. First, two services can

 s0 s1 s2
{<ChkAvail,FAIL>} {<ChkStore,FAIL>}

 s3
{<GetOffer,OK>,<Order,OK>} {<Apologize,OK>}

 E

 s5

s6

{<ChkStore,OK>}

{<GetOffer,OK>,<Order,OK>}

{<ChkAvail,OK>}

 s7 {<ProcPay,FAIL>}

 s8
{<RStore,OK>}

s10

{<ProcPay,OK>}

{<ShipItem,FAIL>} s11

{<Apologize,OK>}

{<Compensate,OK>}

s15
{<ProcPay,FAIL>}

{<ProcPay,OK>}

s19
{<ShipItem,FAIL>}

 s12 s13
{<RStore,OK>} {<Apologize,OK>}

 s16 s17
{<RStore,OK>} {<Apologize,OK>}

 s20
{<Compensate,OK>}

 s21 s22
{<RStore,OK>} {<Apologize,OK>}

 s4
{<SendLetter,OK>}

 E s9
{<SendLetter,OK>}

 E s14
{<SendLetter,OK>}

 E s18
{<SendLetter,OK>}

 E s23
{<SendLetter,OK>}

Figure 4. LTS of 〈SellItem, FAIL〉 invocation.

not support same actions. Second, the new service interface,
which is composed by them, should be well-formed. To en-
able top-down design, it is desired to replace a web service
in a system with a new web service without affecting the
running of the system. After replacement, all parts of the
system can still cooperate properly as before. The main idea
of the substitutivity is the new web service should guaran-
tee more and assume fewer than the old web service. Intu-
itively, for a web service, the defined methods of interface
are the guarantees, and the remote calls are the assumptions.

Protocol Property Result

〈SellItem,FAIL〉 → AF {〈SendLetter,OK〉} True
〈SellItem,FAIL〉 → True
¬ E [{¬ {〈ProcPay,OK〉}} U {{〈Compensate,OK〉}}]
〈SellItem,FAIL〉 → False
¬ E [{¬ {〈Compensate,OK〉}} U {{〈RStore,OK〉}}]
〈SellItem,FAIL〉 → ¬ E [{¬ {〈Compensate,OK〉}} True
U {{〈RStore,OK〉}} EF {〈Compensate,OK〉}]

Table 1. The protocol property and the corre-
sponding verification result.

After composing, the supply management system con-
tains six web services. We can verify some proper-
ties of the composed system interface. For indicat-
ing the compensation and fault handling behaviour, the
LTS of the 〈SellItem, FAIL〉 action invocation is shown
in Figure 4, which is the projection to the external ac-
tions. The protocol properties for 〈SellItem, FAIL〉 and
the corresponding results are shown in Table 1. The for-
mula AF{〈SendLetter, OK〉} represents that the shop must
send an apologetic letter for the failure of purchasing.
¬E [{¬{〈ProcPay, OK〉}} U {{〈Compensate, OK〉}}] rep-
resents that the compensation for the payment must not oc-
cur before the payment. ¬E [{¬{〈Compensate, OK〉}} U
{{〈RStore, OK〉}}] represents that it will never happen that
if the compensation for the successful checking availability
occurs, no compensation for the payment has occurred be-
fore. The last property represents that if the compensation
for the payment occurs, it must not occur after the compen-

sation for the successful checking availability. This prop-
erty is verified to ensure the behaviour model satisfies the
requirements of long running transaction.

4. Integration of the Verification Framework
into Development Process

The verification framework can be employed in the
process of web service development, to achieve a high as-
surance of the developed systems. Figure 5 shows an out-
line for incorporating verification activities in the develop-
ment process.

Preliminary Design

Requirements

Detailed Design

Implementation

Publish

Signature Interfaces

Conversation Interfaces

Protocol Interfaces

Conversation Property

Protocol Property

Protocol Interfaces

Specifying properties

Non mutual invocation property satisfied

Specified properties satisfied

Verification

Protocol properties satisfied

Formalizing

Verification
Development Condition

Specifying Property

Development Process

Figure 5. Integration of the verification frame-
work into development process.

After acquiring requirements, the designer can specify
some properties according to the requirements. When the
designer finishes preliminary design, signature interface can
be used for formalizing the interface description and non
mutual invocation property can be checked. If the non mu-
tual invocation property is satisfied, the designer can con-
tinue to do detailed design, otherwise some modification in
preliminary design should be taken. When detail design is
finished, some requirement properties specified before can
be verified. If all requirements are satisfied, the designer
can give the detailed design to the implementor, who may
implement the actual web services by some composition
languages, such as BPEL4WS[3]. After finishing imple-
mentation, the requirement properties should be verified on
implementation model to ensure the correctness and con-
sistency. If some requirement properties are not satisfied
during these two steps, the designer or implementor should
modify its design or implementation to ensure the require-
ment satisfied. Finally, the verified web service interfaces
can be published to the web service registry and web ser-
vices can be deployed to some service engines. The verifi-
cation framework can also be used as the foundation for the
registry to test the web services to be published.

5. Related Works and Conclusions

There are some researches on formalization and verifi-
cation of web service interfaces [7, 8, 9]. Most of them
have focused on formalization and verification using for-
malisms such as Petri-nets, state machine and process al-
gebra. Their approaches are deficient in modeling and ver-
ifying the transaction behaviour of web service interfaces,
especially in compensation and fault handling. Based on
extending the formalism in [2], the approach presented in
this paper can rigorously describe and verify the transaction
behaviour of web service interfaces.

The paper presents a verification framework for the web
service interfaces based on the interface theory. Differ-
ent aspects of web service interfaces can be verified in the
framework. In signature level, non mutual invocation can be
checked. Conversation property can be verified on conver-
sation level. Protocol property which is specified in ASCTL
can be verified using model checking on protocol level. Be-
sides that, compatibility and substitutivity can be checked
on each level.

6. References

[1] L. de Alfaro, T. A. Henzinger, Interface automata, presented
at the 8th European Software Engineering Conference held
jointly with 9th ACM SIGSOFT International Symposium
on Foundations of Software Engineering Vienna, Austria,
2001.

[2] D. Beyer, A. Chakrabarti, T.A. Henzinger, Web Service In-
terfaces, presented at 14th International World Wide Web
Conference, Chiba, Japan, 2005.

[3] F. Curbera, Y. Goland, et al, Business Process Execution
Language For Web Services, Version 1.0, 2002.

[4] R. Meolic, T. Kapus, Z. Brezocnik, Verification of concur-
rent systems using ACTL, presented at the IASTED Inter-
national Conference on Applied Informatics AI’2000, Inns-
bruck, Austria, 2000.

[5] R.D. Nicola, A. Fantechi, S. Gnesi, and G. Ristori, An ac-
tion based framework for verifying logical and behavioural
properties of concurrent sytems, presented at 3th WorkShop
on Computer Aided Verification, Aalborg, Denmark, 1991.

[6] J.R. Burch, E.M. Clarke, D.E. Long, K.L. McMillan, and
D.L. Dill. Symbolic Model Checking for Sequential Circuit
Verification, IEEE Transactions On Computer-Aided De-
sign of Intergrated Circuits and Systems, Vol. 13, No. 4,
1994.

[7] R. Hamadi, B. Benatallah, A Petri net-based model for web
service composition, presented at 14th Australasian Data-
base Conference, Adelaide, South Australia, 2003.

[8] H. Foster, S. Uchitel, J. Magee, J. Kammer, Compatibil-
ity for Web Service Choreography, presented at 3th IEEE
International Conference on Web Services, San Diego, CA,
2004.

[9] X. Fu, T. Bultan, J. Su, Analysis of Interacting BPEL Web
Services, presented at 13th International World Wide Web
Conference, New York, USA, 2004

