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Abstract—Infrastructure-as-a-Service (IaaS) clouds provide
on-demand virtual machines (VMs) to users. How to improve
the quality of IaaS cloud services is important for service
providers. Currently, the VMs in an IaaS cloud are usually
deployed with respect to the maximum utilization of resources.
In this paper, we propose an online VM optimization method
for IaaS clouds. Our method mainly optimizes the VM de-
ployment in IaaS clouds according to the traffics among VMs.
VMs are allocated with respect to cabinet capacities at the
beginning. At runtime, we monitor the traffics among VMs
to get the traffic topology, based on which related VMs are
migrated to neighbors to improve performance and reduce
the traffics across cabinets. Preliminary simulation experiments
are conducted on a well-know simulator, and the experimental
results indicate that our method is effective and promising.
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I. INTRODUCTION

Nowadays, cloud computing [1] becomes the main-
stream internet computing paradigm, which provides a
pay-as-you-go style service to cloud users. Basically, there
are three types of services in cloud computing [2]: TaaS,
PaaS and SaaS. IaaS is the abbreviation of Infrastructure-
as-a-Service, where resources are usually provided to users
in the form of Virtual Machines (VMs). In an IaaS cloud,
users can apply VMs on-demand to deploy and run their
applications and provide services to their clients. From
the perspective of users, this way of applying and using
resources can not only save the cost of providing services,
but also improve the reliability. In this background, how to
improve the quality of IaaS services is very important for
service providers.

By using IaaS services, more and more users are migrating
their applications and services from traditional infrastruc-
tures to IaaS clouds [3]. With this trend, the bandwidth usage
of the VMs in laaS clouds is rapidly growing. However,
the hierarchical nature of a data center supporting an IaaS
service places a limit on the backbone bandwidth, which
is shared by all the VMs in the IaaS cloud. During the
VM deployments in an IaaS cloud, the service provider
takes resources utilization as the first factor, but usually
ignoring the traffics among VMs. Therefore, the backbone
bandwidth may become the bottleneck when the number of
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the allocated VMs is huge. This will increase the time of
the data transfer of VMs caused by the applications running
on the VMs. Thus, the performance of the applications may
degrade.

In order to improve the quality of IaaS cloud services,
cloud providers usually use static schedule solutions. For
example, ranking is usually used for computing-intensive
applications [4]. A number of literatures, such as [5] and
[6], optimize VM deployment by considering physical node
resource constraints, e.g., CPU, physical memory and power
consumption, without considering the bandwidth of VMs.
Some clustering based methods [7][8] are proposed to op-
timally deploy communication-intensive applications, where
the communication performance of physical nodes is used
to select the nodes for deployment. Furthermore, an optimal
deployment method using the topology information of de-
ployed applications is proposed in [9], in which it needs an
application specific method to get the topology information.
In an IaaS cloud, the applications running on VMs vary in
many aspects, including implementation language, runtime
platform, efc. For the IaaS provider, it is not practical or
even possible to provide an application specific topology
information collector for each type of applications.

In this paper, we focus on traffic-aware VM deployment
in [aaS clouds and propose novel solutions to address all
above issues. Our VM deployment method has two stages:
build-time and runtime. In the build-time stage, we use a
ranking-based method to sort all cabinets in the decreasing
order with respect to their current VM capacities. Based on
the order, we deploy VMs into top cabinets. At the runtime
stage, we monitor the traffics among VMs dynamically, and
use the multi-scale algorithm in our previous work [9] to ob-
tain traffic topology automatically. Different from previous
work, we obtain traffic topology from a unified level, i.e.,
VM level, without requiring application specific topology
collectors or users to provide the traffic information. Based
on traffic topology, the VMs that have a lot of traffics will
be placed in a neighborhood (e.g., VMs migrated to a same
cabinet) by live migration. Therefore, the performance of
applications can be guaranteed to improve user experience,
and the traffics across cabinets can be reduced.

The main contributions of this paper are three-folds: first,



we propose the problem of traffic-aware VM placement
in the context of IaaS cloud; second, we present a two-
stage traffic-aware deployment method to optimize the VM
deployment in IaaS clouds; third, we have carried out pre-
liminary experiments on a simulation environment, and the
experimental results indicate that our method is promising.

The rest of this paper is organized as follows: Section II
introduces a motivation example and the architecture of
our framework; Section III presents our VM deployment
method; Section IV describes experiments; Section V dis-
cusses the related work and Section VI concludes the paper.

II. MOTIVATION AND ARCHITECTURE
A. Motivation Example

Since more and more scientific applications are moving
to TaaS clouds, we use an MPI application to motivate our
method. Usually, an MPI application will be run multi-times
and has a communication topology [9]. In MPI applications,
more than 40% time is spent in collective communication
operators [10].

Suppose a user wants to apply 8 nodes, ie., VMs,
from a IaaS cloud to run an MPI application, which uses
MPI_Scatter (a collective communication operator in MPI)
to distribute a huge size of data. Figure 1 shows the detailed
communication steps. At the beginning, node O contains all
the data sets, labeled by 0 ~ 7. The application needs to
distribute each data set to the corresponding node, e.g., data
set 1 to node 1. In the first step, node O transfers half of
the data sets (4 ~ 7) to node 4. In the later steps, each
node transfers half of its data to a related node, e.g., node
4 transfers the data sets 6 and 7 to node 6. This process
continues until the data distribution is finished.
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Figure 1: Communication steps of MPI_Scatter

This example shows that there is a traffic topology in this
application, e.g., the nodes 0 ~ 3 communicate a lot. There-
fore, the locations of VMs greatly impact the communication
performance of the application. For example, if the nodes
0 ~ 3 are deployed in different cabinets or datacenters, the
MPI_Scatter operation may spend more time to transfer data
if there is a network congestion, since the bandwidth among
cabinets is shared by all the VMs in the IaaS cloud. In

principle, the bandwidth between two VMs across cabinets
is less than that in a same cabinet. Therefore, if we can detect
the communication information of VMs, we can place the
VMs that have a lot of traffics to a same cabinet, e.g., placing
the 0 ~ 3 nodes in Figure 1 into a same cabinet.

However, it is hard to get the traffic topology of the
MPI application when allocating VMs at the beginning.
It is not practical or even impossible to require the user
to provide this information. Though there is an approach
[9] that uses pre-execution to get this information, e.g., we
can use MPI slog2sdk to record the message exchanges
during the pre-execution, this method is MPI specific and
not general. If the user runs another application, such as a
portal system to provide a content service, the pre-execution
needs to be adapted. Therefore, if we can monitor the traffics
among VMs, we can have a general method, which is also
reasonable from the perspective of IaaS service providers.
For example, in Figure 1, if the start-up VM deployment
of the application places the nodes 0 ~ 3 into different
cabinets, by monitoring the traffics among these VMs, we
can optimize the deployment via migrating them into a same
cabinet. Furthermore, the whole optimization procedure is
transparent to the user.

B. Architecture

Figure 2 shows the architecture of our proposed VM
deployment framework. The workflows of our framework
are as follows:
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Figure 2: VM deployment framework

o A cloud user submits a request for applying VMs to run
an application on the cloud. In the build-time stage, the
deployment component uses the Random or Build-time
method to select VMs. The detail of Build-time method
will be introduced in Section III-A.

« The monitor component takes charge of monitoring the
traffic among VMs. Based on the traffic information, in
the runtime stage, the deployment component migrates
VMs using online optimization, the details of which
will be given in Section III-B.

« Some hosts may be in an idle status after migration. In
order to reduce the power consumption, the deployment



component switches the hosts off or to low power
modes.

IIT. ONLINE OPTIMIZATION METHOD

There are two stages of our VM deployment method: first,
at the build-time stage, we rank cabinets with respect to
capacity, and allocate VMs based on the cabinet capacities;
second, at runtime, we monitor the traffics among VMs to
obtain the traffic topology, and then use live migration to do
optimization.

A. Build time Stage

Generally, the VM deployment problem is a variant of the
class constrained multiple-knapsack problem that is known
to be NP-hard [11].

In the build time stage, we use a ranking-based method
to allocate VMs based on the cabinet capacity order. This
ranking method has two steps: first, sort all cabinets in the
decreasing order of their remained VM capacities; second,
select the cabinet with the largest VMs capacity, and allocate
the VMs to this cabinet until the maximum capacity is
reached, then select the next cabinet. The ranking algorithm
is presented in Algorithm 1.

Algorithm 1: Build time stage algorithm

Input: Cabinet list cabinet List, VMs list vm List
1 sortDecreasingCapacity(cabinet List);
2 foreach cabinet € cabinetList do

3 foreach vm € vmList do

4 if cabinet has enough resources for vin then
5 ‘ cabinet.addtovmList (vm)

6 end

7 vmList.delete (vm);

8 end

9 if vmList is empty then Break

10 end

B. Runtime Stage

At runtime, we monitor the traffics among VMs, and
use the multi-scale algorithm in our previous work [9] to
automatically obtain the traffic topology, based on which
VMs are migrated.

As introduced in Section II-B, we use the monitor com-
ponent to monitor the traffic among VMs. The result of
monitoring can be modeled by an undirected weight graph,
and it is assumed that two adjacent nodes in the graph have
data exchanged. We use a simple example of monitor result
in Figure 3 to describe the runtime stage algorithm. In Figure
3, we use 4 VMs to run an application, and the nodes and
the edges represent the VMs and the traffic among VMs,
respectively. The weights on the edges are the amount of
data exchanged among VMs.

From Figure 3, we can observe that there are a lot of
traffic in the VM pairs (1, 2) and (3, 4), and less traffic in
(2, 3). Discovering the traffic topology is a key step of the
runtime stage. In this paper, we formulate the traffic topology
discovery problem as a graph partitioning problem: we want
to find the structure of adjacency, in which nodes are joined
together in a tightly knit structure, which means that the
nodes within a same structure have more traffic with each
other. And, there is less traffic among structures. Though
the problem of graph partitioning is well studied, the algo-
rithms for graph partitioning, such as k-means and spectral
clustering [7], are not ideally suited to our framework. The
reason is these algorithms require users to specify the sizes
of clusters. However, this assumption is not practical for
cloud computing, since a cloud user or provider may not be
the developer of the applications to be deployed.

Figure 3: An example of monitor result

In our previous work [9], we use a multi-scale clustering
algorithm to discover the topology of an undirected weight
graph. The multi-scale clustering algorithm does not assume
any particular number of clusters. However, the multi-scale
clustering algorithm is proposed for static schedule, and not
suitable for the scenario in this paper. Figure 4 demonstrates
the problem. In this example, there are 4 VMs, and the
numbers on the lines show the traffics among VMs. In the
build-time stage, suppose we deploy the VMs 1 ~ 3 in a
same cabinet, and the 4th VM in another. Using the multi-
scale clustering algorithm in [9], we have the traffic topology
with two groups: (1, 2) and (3, 4). Therefore, at runtime, the
3rd VM is migrated to the cabinet at where the 4th VM is
located. However, this will result in a poor performance.
After migration, the traffic value between two cabinets is 3,
but the before value is 2. The performance will be decreased
since more traffic among cabinets will increase the time for
transferring data. To tackle this problem, we modify the
multi-scale clustering algorithm by adding a cost function
for a VM placement. Based on the cost function, whether
to migrate VMs can be determined.

The cost function of a VM placement is the total traffic
that is needed for crossing the cabinets, and is defined as

C= Zw(vi,vj) (1)

where v; and v; are the two VMs that deployed in different
cabinets. w(v;, v;) is the traffic value between v; and v;. A



Figure 4: Another example of monitor result

VM can be migrated to another cabinet only if:

Cafter < Cbefore (2)

where Clreer is the total traffic among the cabinets after
migration, and Cycfore i the value before migration.

Algorithm 2: The runtime stage algorithm

Input: Cabinet list cabinetList, VM partition
vmCluster, Host list hostList
1 vmCluster=discoverTopology ();
2 if Cyufier < Cpefore then
3 foreach v € vmCluster do
4 foreach vm € v do
5 ‘ vm.mirgate ();
6 end
7 end
8 end

Based on the cost function, our runtime stage optimization
can ensure the decrease of the total traffic among cabinets.
Algorithm 2 shows the runtime stage algorithm.

e Step 1 (Ist line): using the multi-scale algorithm to
discover the traffic topology.

o Step 2 (2nd line): calculate the total traffic among cabi-
nets before and after migrate via (1), and migrate VMs
based on the traffic topology only if Cyfier < Chefore-

o Step 3 (3rd-8th lines): do the migration, where v is the
set of the VMs that in a same cluster, and the VMs in
v are migrated into a same cabinet.

IV. EXPERIMENTS AND EVALUATION

In this section, we evaluate our traffic-aware VM deploy-
ment method by the experiments carried on a simulation
environment. We first describe the setup of our experiments,
and then give the evaluation results.

A. Experiment Setup

We carried out our simulation experiments on CloudSim-
3.0 [12][13], which is a framework for modeling and simu-
lation of cloud computing infrastructures and services.

Our simulated experimental environment has one datacen-
ter consisting of 6 cabinets, and each cabinet has 4 hosts.
The topology and configuration of the infrastructure are

500Mb/s

Cabinet 1 Cabinet 2

Cabinet 6

Figure 5: Experimental Datacenter Infrastructure

given in Figure 5. The hosts insides a cabinet are connected
by an 1Gb/s edgeswitch, and cabinets are connected by a
500Mb/s aggswitch. CloudSim can simulate edgeswitches
and aggswitches. We use an MPI benchmark called NPB
(NAS Parallel Benchmarks) [9] as the application running on
VMs. NPB is a widely used MPI Benchmark, which consists
of the programs designed to help evaluate the performance
of supercomputers. In order to simulate real applications
on cloud, we obtained the traces of a NPB program on a
small scale real infrastructure, and modeled the workload in
CloudSim based on the traces. Two NPB applications are
used in the preliminary experiments:

o App_4: This application is deployed on 4 VMs, and
uses a balance binary tree as the traffic topology. The
1st VM communicates with the 2nd VM, and the 3rd
VM communicates with the 4th one. At last, the 3rd
VM sends data to the 1st VM.

o App_8: This application is deployed on 8 VMs, and the
traffic topology is the same with that in Figure 1.

To evaluate our deployment method, we simulate the
scenarios of running each application on the VMs deployed
by 4 different deployment methods:

Random: the hosts to allocate VMs are selected ran-
domly, and no optimization happens at runtime.

Build-time: optimization happens at build-time, by using
the build-time optimization method in Section III-A. During
the runtime stage we do not optimize.

Runtime: the VMs are selected randomly at build-time,
and the optimization is carried out at runtime by using our
runtime optimization method in Section III-B.

Build & Run: optimization happens both in build-time
and runtime stages, which shows the overall advantage of
our deployment method.

B. Experiment Results and Evaluation

We use the following metrics in our experiments.

« Execution time: the execution time of a job is defined
as the duration between sending out a job and receiving
the correct result.



o Data exchanged: the data exchanged is the amount of
the data exchanged among cabinets.

In each experiment, we change the number of workloads
form 10 to 100 with a step value of 10. We obtain the traffic
topology via monitoring the first 5 workloads, and migrate
VMs based on the traffic topology. Figures 6a and 6b show
the results of running App_4 on 4 VMs and App_8 on 8
VMs, respectively. Each execution time in Figure 6 is the
average execution time of running 20 times with a workload.
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Figure 6: Execution time of different deployment methods

From Figure 6, we can draw following conclusions:

(1) In all cases, Built & Run method performs better than
the rest methods.

(2) Random method performs worst in all cases. The
reason is the VMs are distributed in different cabinets, and
much traffic is needed among cabinets.

(3) In Figure 6a, Runtime method is better than Build-time
method. However, in Figure 6b, Built-time method is better
than Runtime method. The reason is: when an application
only needs few VMs, such as App_4, the VMs in a same
topology group can be migrated to a same cabinet; however,
when an application needs many VMs, such as App_8, a
cabinet may not be able to store the VMs in a same topology
group, which makes the performance after migration worse.

The bandwidth among cabinets is shared by all VMs. If
we can restrict the communications among VMs only among
neighbor nodes, i.e., in the same cabinet, we can reduce
the time of data transfer and have a better utilization of

bandwidth. Figure 7 shows the size of the traffics across
cabinets resulted from different methods. We can observe
that in all case, Built & Run method has the least traffic
among cabinets, and Random method has the largest. The
result of the comparison between Build-time and Runtime
methods is similar to that of Figure 6.
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Figure 7: Data exchanged among cabinets

We also analyze the impact of the start time of online
migration. In this experiment, we use 100 workloads on 4
VMs, and the start time of the migration range from the
5th workloads to the 85th workloads with a step value of
5. Figure 8 shows the execution time of different start time.
We can observe that the execution time of the application
is gradually increased, which implies that migrating early
achieves a better performance.
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Figure 8: Impact of the start time of migration



V. RELATED WORK

To improve the quality of IaaS services, a number of
practices use VM placement to improve the performance.
Existing work focuses on using VMs placement methods to
optimize SLA requirement or the utilization of resources.
Chaisiri er al. [14] propose an optimal virtual machine
placement algorithm, which minimizes the cost for hosting
virtual machines in a multiple cloud provider environment.
In [15], a dynamic SLA-aware VM placement algorithm is
proposed for cloud computing. Elmroth and Larsson [16]
propose the interfaces for placement and migration of the
VMs in federated clouds. Different from previous work, our
method focuses on the traffic among VMs, and is a hybrid
method by combing static and dynamic optimizations. In
addition, our method gets traffic information from a unified
level, and provides a transparent optimization for IaaS cloud
services.

VI. CONCLUSION AND FUTURE WORK

To improve the quality of TaaS cloud services, we propose
a traffic-aware VM deployment in this paper. Our hybrid
deployment method has a built-time optimization to allocate
VMs with respect to the resource utilization at the beginning,
and a runtime optimization to reallocate VMs by using the
traffic information among VMs. According to the experi-
ments carried out on a simulation environment, our method
can not only improve the performance of the applications
running on VMs, but also the utilization of the bandwidth
in IaaS clouds.

The work in this paper is still in progress. There are two
directions for the next step: first, we want to consider the
cost saving of IaaS clouds in terms of our method, both from
user and service provider perspectives; second, we plan to
carry out larger experiments in the simulation environment,
and also the experiments in a real experimental environment.
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