
FDSE: Enhance Symbolic Execution by
Fuzzing-based Pre-Analysis
(Competition Contribution)

Guofeng Zhang1,2,3, Ziqi Shuai1,2,3, Kelin Ma1,2, Kunlin Liu1,2,3, Zhenbang
Chen 1,2?, and Ji Wang1,2,3

1 College of Computer, National University of Defense Technology, Changsha, China
2 State Key Laboratory of Complex & Critical Software Environment, National

University of Defense Technology, China
3 State Key Laboratory of High Performance Computing, National University of

Defense Technology, Changsha, China
{zhangguofeng16, szq, kelinma, klliu18, zbchen, wj}@nudt.edu.cn

Abstract. FDSE serves as an automatic test generation tool designed
for C programs based on symbolic execution. FDSE employs fuzzing-
based pre-analysis and combines static symbolic execution and dynamic
symbolic execution to improve the effectiveness of test generation. FDSE
achieves 5132 scores and is ranked 4th in the branch coverage track of
Test-Comp 2024.

Keywords: Symbolic Execution · Fuzzing · Test-Case Generation.

1 Test Generation Approach

Test case design is one of the most labor-intensive tasks in software engineering.
Automatic test case generation helps the test case designers reduce labor and
improve testing quality. Existing techniques usually accept more than one type
of software artifact (e.g., source code and software models) as input. Then, these
techniques utilize existing methods (e.g., optimization [10] or program analysis
[11]) to generate test cases. Besides, some approaches combine different methods
to achieve better effectiveness and efficiency [1].

Symbolic execution (SE) [5] is one of the underlying techniques that can be
used for automatic test case generation. Current SE methods can be categorized
into static symbolic execution (SSE) and dynamic symbolic execution (DSE).
SSE simulates the execution of the program using symbolic inputs. During anal-
ysis, SSE maintains many execution states. When encountering a branch state-
ment, SSE forks states to explore both branches. Many SSE engines have been
developed, such as KLEE [4] and SPF [9], to name a few. DSE combines symbolic
execution and concrete execution to further improve SE’s effectiveness and effi-
ciency. Specifically, DSE executes the program using concrete input and collects
path constraint of current execution. Then, based on the path constraints, DSE
constructs the new constraint for generating new input that steers the program
? Jury Member and Corresponding Author

https://orcid.org/0000-0002-4066-7892


2 Zhang. Author et al.

Fig. 1: FDSE’s Workflow in Test-Comp.

to different program path. In principle, SSE and DSE provide different means of
systematically exploring the program’s path space.

FDSE is mainly a SE-based test case generator. In most cases, FDSE uses DSE
to generate tests. To mitigate DSE’s disadvantage in handling the programs with
long-time execution or large symbolic data, e.g., the programs with large sym-
bolic arrays, loops, or many branches, FDSE employs a fuzzing-based pre-analysis
and combines SSE to improve DSE’s effectiveness and efficiency of generating
tests for the benchmarks of Test-Comp.

2 Framework

Figure 1 illustrates the Test-Comp version of FDSE. Firstly, we compile the C
program into bytecode and instrument the bytecode to generate a fuzzer for pre-
analysis. During fuzzing, we record the runtime features of the program, such
as the number of input variables or branches and the size of allocated arrays.
Secondly, we selectively employ DSE or SSE according to the number of static
branches, which is calculated by a simple static analysis. If the number exceeds
a threshold, e.g., 10,000 in the competition, FDSE employs SSE because DSE
may face the challenge of long-time execution. Otherwise, FDSE continues to
use DSE. Hence, either DSE or SSE is applied to analyze a benchmark program.
Finally, when employing the DSE engine, selective symbolization of the variables
is performed based on the information generated by fuzzing, aiming to mitigate
the problem of large symbolized arrays. Furthermore, the DSE engine limits
the number of loop unfolding times to prevent path explosion. This fuzzing-
based pre-analysis is based on the following two observations of the Test-Comp
benchmarks.

– When the program utilizes large loops to initialize a large-sized symbolic
array4, DSE maintains a huge number of symbolic variables internally, which
hinders the analysis’s efficiency and frequently exceeds memory limits. To
mitigate this, we employ fuzzing for pre-analysis to generate the parameters
that restrict the scale for DSE.

4 For example, the benchmark standard_copy2_ground-1.c



Title Suppressed Due to Excessive Length 3

#define N 100000
int main() {
int a1[N], a2[N], a3[N], i;
for(i=0; i<N; i++) {
a1[i]=input(); a2[i]=input();

}
for(i=0; i<N; i++) a3[i]=a1[i];
for(i=0; i<N; i++) a3[i]=a2[i];
for(i=0; i<N; i++)
assert(a1[i]==a3[i]);

return 0;
}

Fig. 2: standard_copy2_ground-1.c Fig. 3: Selective Symbolization in FDSE

– For programs that contain a large number of static branches 5, executing
a terminated path needs much time, which hinders the overall efficiency
of DSE. To tackle this problem, we propose using SSE instead of DSE to
analyze such programs, as SSE can perform better in this scenario.

Demonstration. We use a benchmark program in Test-Comp to demonstrate
the fuzzing-based pre-analysis. Figure 2 shows an example program that contains
four loops with a size of 100,000 and requires 200,000 input variables (i.e., sym-
bolic variables). SE is impractical to explore the path space of this program. The
key idea is to employ fuzzing first to generate seed inputs and symbolize a part
of input variables during SE, which can improve efficiency while ensuring high
coverage. Consider the program in Figure 2. The first step is to employ fuzzing
to generate input seeds, as shown in Figure 3. These seeds contain 200,000 vari-
ables, each with a random value X. Since only eight static branches exist, FDSE
uses the DSE engine. During DSE, FDSE limits the boundary of each loop, al-
lowing the loop body to be unrolled up to a configured number of times. This
configuration is determined by the information collected by fuzzing. FDSE unrolls
the loop only 50 times if the fuzzer detects that the loop body is executed more
than 100 times. Then, DSE reads the input seeds obtained from fuzzing. For this
example, DSE only symbolizes the first 100 variables due to the 50 times of loop
unrolling. The remaining variables only have concrete values. When generating
test cases, the generated values of symbolic variables are concatenated with the
values of the subsequent concrete variables in the input seed. Thus, DSE can
still generate a complete test case.

3 Result and Discussion

FDSE is optimized and achieves 5132 scores (4th place) in the branch coverage
track. Our tool performs well in many sub-categories, such as Arrays, BitVec-
tors, and Hardness. Thanks to Test-Comp’s competition, we have identified

5 For example, the program Problem05_label40+token_ring.01.cil-1.c



4 Zhang. Author et al.

several shortcomings in our DSE engine beyond the common challenges (such as
path explosion and constraint solving [2]).

– Our DSE engine does not apply any simplification rule to reduce symbolic
expressions, which results in redundant expressions and makes the tool crash
on some Hardware benchmarks due to exceeding memory limits.

– Our DSE engine is limited in environment modeling, e.g., the common sys-
tem libraries. When programs call these system libraries, the relevant path
constraints are lost, making it difficult to improve coverage, particularly in
the tasks in BusyBox, DeviceDriverLinux64, and AWS-C-Common.

– Our DSE engine is still limited in handling large symbolic arrays. Restricting
the number of symbolic variables limits the path exploration ability, which
may fail to cover deep branches.

– We do not prioritize or minimize the generated tests, which results in redun-
dant test cases and leads to validator timeout. For example, in the Combi-
nations category, over 20% of tests were not executed.

– FDSE is only optimized for branch coverage track. Smarter SE search strate-
gies for branch and error coverage are expected.

4 Software Project and Data Available

The DSE engine’s implementation of FDSE is based on SymCC [8]. The SSE en-
gine is KLEE [4]. The fuzzing component is implemented in C++ and based on
LLVM6[6]. The employed constraint solver of DSE is Z3 [7]. The command line
interface is implemented in Python.

In Test-Comp 2024, FDSE participated in coverage-branches and coverage-
error categories, where we only optimize FDSE for coverage-branches. The
benchexec tool information module is fdse.py, and the benchmark description
is fdse.xml. To use our tool script, the parameters of the property file, time
budget, and benchmark path must be set as follows:
fdse –testcomp –property-file=<..> –max-time=<..> –single-file-name=<..>

Our symbolic execution engine treats each benchmark as running on a 64-bit
architecture and always tries to maximize code coverage. The test suite generated
is written to the directory fdse_output/test-suite. According to the definition
of Test-Comp rules, the test suite includes a metadata XML file and a test-case
XML file that follows the required format.

FDSE, developed by the National University of Defense Technology, can be
found at https://github.com/zbchen/fdse-test-comp. FDSE is accessible for down-
load as a binary artifact on Zenodo, and the specific version available for down-
load is testcomp24 7, and it is publicly accessible under the Apache-2.0 license
terms. Moreover, Test-Comp 2024 [3] 8 provides users with scripts, benchmarks,
and FDSE binaries to facilitate the replication of competition results.
6 LLVM’s version is 10.0.1.
7 https://zenodo.org/records/10203198
8 https://test-comp.sosy-lab.org/2024

https://github.com/zbchen/fdse-test-comp


Title Suppressed Due to Excessive Length 5

Acknowledgement This research was supported by National Key R&D Pro-
gram of China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429
and 62002107).

References

1. Anand, S., Burke, E.K., Chen, T.Y., Clark, J.A., Cohen, M.B., Grieskamp, W.,
Harman, M., Harrold, M.J., McMinn, P.: An orchestrated survey of methodologies
for automated software test case generation. J. Syst. Softw. 86, 1978–2001 (2013)

2. Baldoni, R., Coppa, E., D’Elia, D.C., Demetrescu, C., Finocchi, I.: A survey of
symbolic execution techniques. ACM Computing Surveys (CSUR) 51, 1–39 (2016)

3. Beyer, D.: Automatic testing of C programs: Test-Comp 2024. Springer (2024)
4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation

of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, December 8-10, 2008, San Diego, California, USA, Proceedings.
pp. 209–224. USENIX Association

5. King, J.C.: Symbolic execution and program testing. Commun. ACM 19, 385–394
(1976)

6. LLVM: Https://llvm.org
7. de Moura, L.M., Bjørner, N.S.: Z3: An efficient smt solver. In: International Con-

ference on Tools and Algorithms for Construction and Analysis of Systems (2008)
8. Poeplau, S., Francillon, A.: Symbolic execution with symcc: Don’t interpret, com-

pile! In: USENIX Security Symposium (2020)
9. Păsăreanu, C.S., Rungta, N.: Symbolic pathfinder: symbolic execution of java byte-

code. Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (2010)

10. Shahbazi, A., Miller, J.: Black-box string test case generation through a multi-
objective optimization. IEEE Transactions on Software Engineering 42, 361–378
(2016)

11. Tillmann, N., de Halleux, J.: Pex-white box test generation for .net. In: Tests and
Proofs. pp. 134–153 (2008)


	 FDSE: Enhance Symbolic Execution by Fuzzing-based Pre-Analysis(Competition Contribution)

