
Harnessing rCOS for Tool Support

—The CoCoME Experience⋆

Zhenbang Chen1, Xiaoshan Li2, Zhiming Liu1⋆⋆, Volker Stolz1, and Lu Yang1

1 United Nations University
Institute for Software Technology (UNU-IIST)

2 Faculty of Science and Technology, The University of Macau

Abstract. Complexity of software development has to be dealt with
by dividing the different aspects and different views of the system and
separating different concerns in the design. This implies the need of dif-
ferent modelling notations and tools to support more and more phases
of the entire development process. To ensure the correctness of the mod-
els produced, the tools therefore need to integrate sophisticated checkers,
generators and transformations. A feasible approach to ensure high qual-
ity of such add-ins is to base them on sound formal foundations. This
paper reports our experience in the work on the Common Component
Modelling Example (CoCoME) and shows where such add-ins will fit. In
particular, we show how the formal techniques developed in rCOS can
be integrated into a component-based development process, and where
it can be integrated in and provide extension to an existing successful
commercial tool for adding formally supported checking, transformation
and generation modules.

Keywords: Software development tool, software process, formal methods,
tool design.

1 Introduction

Software engineering is now facing two major challenges on

1. how to handle the huge complexity of the development of a system, and
2. how to ensure the correctness and quality of the software

The complexity of software development is inherent due to many different aspects
of the system, including those of static structure, flow of control, interactions and
functionality, and different concerns of functionality correctness, concurrency,
distribution, mobility, security, timing, and so on. Large software development

⋆ This work is partially supported by the projects HighQSoftD and HTTS funded
by Macao Science and Technology Development Fund, NSFC-60673114 and 863 of
China 2006AA01Z165.

⋆⋆ I started working on separation and integration of models of different aspects and
concerns of systems when I started my study on Master Degree [24] under the su-
pervision of Professor Zhou Chaochen.



requires a large team of people playing different roles and carrying out differ-
ent activities of design, construction, analysis, verification and validation. The
management of the development is complex too.

In practical software engineering nowadays, complexity is dealt with by a
component-based and model-driven development process [8, 9] where

1. the different aspects and views of the system are described in a UML-like
multi-view and multi-notational language, and

2. separation of design and validation of different concerns is supported by
design patterns, object-oriented and component-based designs.

However, there are no rigorous unified theories and tools which support specifi-
cation, verification and validation of the models produced in such a process.

Rigorous verification and validation of a software system requires the appli-
cation of formal methods. This needs a formal version of the requirements speci-
fication, and the establishment of a property to imply that specified requirement
holds as long as the assumptions hold. The assumptions are specifications for
or constraints on the behavior of environment and system elements. In the past
half a century, semantic foundations, formal notations and techniques and tools
of verification and validation have been developed, including testing, static anal-
ysis, model checking, formal proof and theorem proving, and runtime checking.
They can be classified into the following frameworks:

– event-based models [29, 15] are widely used for specification and verifica-
tion of interactions, and are supported by model checking and simulation
tools [30, 2].

– pre-post conditions and Hoare logic are applied to specifications of function-
ality and static analysis. These are supported by tools of theorem proving,
runtime checking and testing [22, 11, 28].

– state transition systems and temporal logics are popular for specification and
verification of dynamic control behaviours. They are supported by model
checking tools [17, 21].

However, each framework is researched mostly by a separate community, and
most of the research in verification has largely ignored the impact of design
methods on feasibility of formal verification. Therefore, the formal techniques
and tools are not good with regard to scalability and they are not easy to be
integrated into practical design and development processes. The notion of pro-
gram refinement [5] has obvious links to the practical design of programs with the
consideration of abstraction and correctness, but the existing refinement calculi
are shown to be effective only for small imperative programs. There is a lack of
a formal foundation for object-oriented and component-based model refinement
until the recent work on formal methods of component and object systems [10,
25, 14, 7].

The formalism, rCOS [14, 7], that we have recently developed, is a rather rich
and mature formalism that models static and dynamic features for component
based systems. It is based on the UTP framework [16], and its accompanying



methodology of separation of concerns [8], have been applied in a case study
of a Point Of Sale terminal within the CoCoME (Common Component Mod-
elling Example) challenge [4]. In this paper, we discuss our experience on how
the construction of formal models and their verification and validation can be
integrated in a use case driven and component-based development process. In
particular, we will show with examples from the CoCoME case studies

1. what the models of the different aspects of the systems are at each stage of
the development, including the requirement elicitation, logic design, detailed
design, code generation,

2. how these models are constructed and derived by application of design pat-
terns that are proved to be a refinement in rCOS, and

3. how verification and validation tasks are identified for the models and what
are the effective tools for these tasks.

With regard to model construction and derivation, we focus on the aspects of
interactions, dynamic behaviour, and static functionality of the system and show
how the design and refinement of constraints on these aspects can be separated,
and how they can consistently form a whole model of the system. For verifica-
tion and validation, we look at consistency between interactions and dynamic
behaviour, component interaction protocols, static analysis and testing of func-
tionality. We discuss how the activities of model construction, transformations,
model verification and validation can be embedded into an existing commer-
cial software development tool, MasterCraft [31]. We have selected this tool,
because it has extensive coverage of the whole software development life-cycle,
from requirements gathering and analysis, through early design stages to imple-
mentation and testing, with support for deployment and maintenance. Finally,
it plays a major role that the producer of MasterCraft, Tata Research Develop-
ment and Design Centre (TRDDC), generously have permitted us to inspect the
tool in detail.

Overview The following Section 2 gives an overview on the main ideas and
theme of our research on the rCOS methodology, and provides the formulation
of the main concepts of model-drien development. In Section 3, we demonstrate,
with our recent experience in the work on CoCOME case study, how the for-
malization of the concepts, models and techniques developed in rCOS can be
integrated in a model-driven development process. The integration unifies the
different formal techniques of verification and validation with correctness by
design. We then discuss in Section 4 how we can enhance the industrial model-
driven tool, MasterCraft, for the support of the integration of formal design,
verification and validation into a practical engineering development process. Fi-
nally Section 5 summarizes our experience and discuss the plan for our future
work.



2 The Basic Ideas Behind rCOS

The motivation of the research on rCOS is to provide a semantic foundation
for model driven development in the combined framework of object-oriented and
component-based framework. Practical software engineering shows that this is
a promising approach to heighten productivity in software development while
maintaining a high quality. It lets developers design systems at a higher level of
abstraction using models or specifications of components which will be produced
and integrated at a later implementation, assembly and deployment stage.

2.1 rCOS formulation of software concepts

A project using model driven development starts with a set of component spec-
ifications which may be given for previously developed components or be newly
introduced for components that are to be developed later. The designers then
proceed to

– build new components by applying component operators (connectors) to the
given ones,

– build new components by programming glue processes,
– define application work-flows as processes that use services from components;

and
– verification and validation are performed on components before composition

and after composition

To provide formal support to such a development process, we formulate in rCOS
the key notions as mathematic structures and study the rules for manipulation
of these mathematic entities. These notions include interfaces, contracts of inter-
faces, components, processes, compositions and refinement relations on contracts,
components and processes. In the next subsection, we give brief introduction to
formulations.

Interfaces and contracts An interface I provides the syntactic type informa-
tion of an interaction point of a component. It consists of two parts, the data
declaration section denoted by I.FDec, that declares a set of variables with their
types, and the method declaration section, denoted by I.MDec, that defines a set
of method signatures each with the form m(T1 in; T2 out). Interfaces are used for
syntactic type checking. The current practical component technologies only pro-
vide syntactical aspects of interfaces and leaving the semantics of interfaces to
informal naming schemes. This is obviously not enough for rigorous verification
and validation. For example, a component with only syntactic interfaces shown
in Fig. 1 has no information about its functionality or behavior.

A contract is a specification of the semantic details for the interface. How-
ever, different usages of the component in different applications under different
environments may contain different details, and have different properties:



Component

Buffer

put(T   in  ; ) get(;  T  out)

Fig. 1: A component with syntactic interface only

– An interface for a component in a sequential system is obviously different
from one in a communicating concurrent system. A contract for the former
only needs to specify the functionality of the methods, for example in terms
of their pre- and post-conditions. A contract for the later should includes a
description of the communicating protocol, for example in terms of interac-
tion traces. The protocol specifies the order in which the interaction events
happen.

– An interface for a component in a real-time application will need to provide
the real-time constraints of services, but an untimed application does not.

– Components in distributed, mobile or internet-based systems require their
interfaces to include information about their locations or addresses.

– An interface (component) should be stateless when the component is required
to be used dynamically and independently from other components.

– A service component has different features from a middleware component.

Therefore, it is the contract of the interface that determines the external behavior
and features of the component and allows the component to be used as a black
box.

Based on the above discussion, rCOS defines the notion of an a contract of
interface for a component as a description of what is needed for the component
be used in building and maintaining software systems. The description of an
interface must contain information about all the viewpoints among, for exam-
ple functionality, behavior, protocols, safety, reliability, real-time, power, band-
width, memory consumption and communication mechanisms, that are needed
for composing the component in the given architecture for the application of the
system. However, this description can be incremental in the sense that newly
required properties or view points can be added when needed according to the
application. Also, the consistency of these viewpoints should be formalizable and
checkable. For this, rCOS is built on the Hoare and He’s Unifying Theorems of
Programming [16].

The minimal use of UTP In UTP, a sequential program (but possible non-
deterministic) is represented by a design D = (α, P ), where

– α denotes the set of state variables (called observables) of the program

– P is a predicate p(x) ⊢ R(x, x′)
def
= (ok ∧ p(x)) ⇒ (ok′ ∧R(x, x′)), meaning that

if the program is activated ok in a state where the precondition p(x) holds



the execution will terminate ok in a state where the postcondition holds that
post-state x′ and the initial state x are related by relation R.

It is proven in UTP that the set of designs is closed under the classical pro-
gramming constructs of sequential composition, conditional choice, nondetermin-
istic choice, and fixed point of iterations. Refinement between design is defined as
logical implications, and all the above operation on designs are monotonic with
regard to refinements (i.e. the order of implication). These fundamental mathe-
matic properties ensures that the domain of designs is a proper semantic domain
for sequential programming languages. There is a nice link from the theory of
designs to the theory of predicate transformers with the following definition:

wp(p ⊢ R, q)
def
= p ∧ ¬(R;¬q)

that define the weakest precondition of a design for a post condition q.
Concurrent and reactive programs, such as those specified by Back’s action

systems [5] or Lamport’s Temporal Logic of Actions (TLA) [19], can be defined
by the notion of guarded designs, written as g&D and defined by

(α, if g then P else (true ⊢ wait′ ∧ v′ = v))

The domain of guarded designs enjoys the same closure properties as that the
domain. And refinement is defined as logical implication too.

The basic UTP has no notions of objects, classes, inheritance, polymorphism,
and dynamic binding. For a combination of OO and component-based modelling,
we have extend UTP to object-oriented programming [14].

Contracts of interfaces In the current version of rCOS, we only consider
components in applications of concurrent and distributed systems, and a contract
Ctr = (I, Init, MSpec,Prot) specifies

– the allowable initial states by the initial condition Init,
– the synchronization condition g on each declared method and the function-

ality of the method by the specification function MSpec that assigns each
method to a guarded design g&D.

– Prot is called the protocol and is a set of sequences of call events; each is
of the form ?op1(x1), . . . , ?opk(xk). Notice a protocol can be specified by a
temporal logic or a trace logic.

For example, the component interface in Fig. 1 does not say the buffer is a one
place buffer. A specification of a one-place buffer can be given by a contract B

for which

– The interface: B1.I = 〈q : Seq(int), put(item : int; ), get(; res)〉

– The initial condition: B1.Init = q =<>



– The specification:

B1.MSpec(put) = q =<> &true ⊢ q′ =< item >
B1.MSpec(get) = q 6=<> &true ⊢ res′ = head(q) ∧ q′ =<>

– The protocol: B1.Prot is a set of traces that is a subset of

{e1, . . . , ek | ei is ?put() if i is odd and ?get() otherwise}

.

The formulation of contracts supports separation of views, but the different
views have to be consistent. A contract Ctr is consistent, if it will never enter a
deadlock state if its environment interacts with it according to its protocol, that
is, for all 〈?op1(x1), . . . , ?opk(xk)〉 ∈ Ctr.Prot,

wp

„

Init;g1&D1[x1/in1]; . . . ; gk&Dk[xk/ink],
¬wait ∧ ∃op ∈ MDec•g(op)

«

= true

Note that this formalization takes both synchronization conditions and function-
alities into account, as an execution of a method with its precondition falsified
will diverge and a divergent state can cause deadlock too.

We have proven the following theorem of separation of concerns

Theorem 1. (Separation of Concerns)

1. If Cons(I, Init,MSpec,Proti), then Cons(I, Init,MSpec,Prot1 ∪ Prot2)

2. If Cons(I, Init,MSpec,Prot1) and Prot2 ⊆ Prot1, then Cons(I, Init,MSpec,Prot2)

3. If Cons(I, Init,MSpec,Prot) and MSpec ⊑ MSpec1, then Cons(I, Init,MSpec1,Prot)

This allows us to refine the specification and the protocol separately.
We are now current working on an extension to the model of contracts for

specification of the timing information of a component. An interesting and im-
portant point that we would like to make is that the notation for timing aspect
at the contract level should be different from that used for the model of the de-
sign of components. At the contract level, we propose the use of interval based
notation to describe the minimal time and maximal time [te, Te] that the envi-
ronment has to wait when calling an interface method (that is the worst case
execution time of the interface methods), and the minimal time and maximal
time [tw, Tw] that the component is willing to wait to a method to be invoked.
Zhou Chaochen’s Duration Calculus [32] is an obvious choice for reasoning this
interval based timing properties. However, for the design and for verification
of the implementation of a component, clocks or timers in the timed automata
model are more feasible. This indicates the use of different notations at different
level of abstraction in a system development. A challenge is to link the clock
time model for the design of components to the interval-based time model of its
contract. Initial results on this work can be found [26].



Contract refinement A contract Ctr has a denotational semantics in terms
of its failure set F(Ctr) and divergence set F(Ctr1), that is same as the failure-
divergence semantics for CSP (but we do not use the CSP language) [7]. Ctr1
is refined by contract Ctr2, denoted by Ctr1 ⊑ Ctr2, if the later offers the same
provided methods, Ctr1.MDec = Ctr2.MDec, is not more likely to diverge than
the former, D(Ctr1) ⊇ D(Ctr2), and not more likely to deadlock than the former,
F(Ctr1) ⊇ F(Ctr2). We have established a complete proof techniques of refine-
ment by simulation.

Theorem 2. (Refinement by Simulation) Ctr1 ⊑ Ctr2 if exists a total mapping
ρ(u, v′) : FDec1 −→ FDec2 such that

1. Init2 ⇒ (Init1; ρ)
2. ρ ⇒ (guard1(op) = guard2(op)) for all op ∈ MDec1.
3. for each op ∈ MDec1, MSpec1(op);ρ ⊑ ρ;MSpec2(op)

Similarly, contract refinement can also be proved by a surjective upward simu-
lation [7].

Theorem 3. (Completeness of Simulations)If Ctr1 ⊑ Ctr2, there exists a Ctr

such that

Ctr1 �up Ctr �down Ctr2 Ctr1 ⊑ Ctr ⊑ Ctr2

�up and �down denote upwards and downwards simulations, respectively.

Components A component is an implementation of a contract. Formally speak-
ing, a component is turple C = (I, Init,MCode,PriMDec,PriMCode, InMDec), where

– MCode and PriMCode map a public method and a private method m to a guarded
command gm → cm,

– InMDec is the set of required methods in the code, called the required interface.

The semantics [[C]] is a function that calculates a contract for the provided interface
for any given contract InCtr of the required interface

[[C]](InCtr)
def
= ((I,MSpec), Init,PriMDec,PriMSpec)

where the specification is calculated from the semantics of the code, following the
calculus established in UTP.

A component C1 is refined by another component C2, denoted by C1 ⊑ C2 if

1. the later provides the same services as the former, C1.MDec = C2.MDec
2. the later requires the same services as the former C1.InMDec = C2.InMDec, and
3. for any given contract of the required interface, the resulting provided contract of

the later is a refinement of that of the former, C1(InCtr) ⊑ C2(InCtr), holds for
all input contracts InCtr.

Note that the notion of component refinement is used for both component correctness
by design and component substitutability in maintenance. One of the major objectives
of rCOS is to prove design patterns as refinement rules, and automate refinement rules
as model transformations. We hope this will help to reduce the amount of verification
required.



Simple connectors To support the development activity, the semantic framework
also needs to define operators for connecting components, resulting in new contracts,
constructs for defining glue processes, and constructs for defining processes. In sum-
mary, the framework should be compositional and support both functional and behav-
ioral specification. In rCOS, simple connectors between components are defined as
component compositions. These include plugging (or union), service hiding, service re-
naming, and feadback. These compositions are shown in Figs. 2-4.

C1

put get1

C2

get

put1
put1

Fig. 2: Plug Composition

C1

put

C2

get

put1
put1

Fig. 3: Hiding after Chaining

C1

put

C2

get

put1
put1

Fig. 4: Feedback

2.2 Coordination

From an external point of view, components provide a number of methods; but does not
themselves activate the functionality specified in the contracts; we need active entities
that implements a desired functionality by coordinating the sequences of method calls.
In general, these active entities do not share the three features of components [13].

In [7], we introduce processes into rCOS. Like a component, a process has an inter-
face declaring its own local state variables and methods, and its behavior is specified
by a process contract. Unlike a component that is passively waiting for a client to call
its provided services, a process is active and has its own control on when to call out to
required services or to wait for a call to its provided services. For such an active process,
we cannot have separate contracts for its provided interface and required interface, be-
cause we cannot have separate specifications of outgoing calls and incoming calls [13].
So a process only has an interface and its associated contract (or code). For simplicity,
but without losing expressiveness, we assume a process like a Java thread does not



provide services and only calls methods provided by components. Therefore, processes
can only communicate via shared components. Of course, a component can also com-
municate with another component via processes, but without knowing component that
it is communicating with.

Let C be the parallel composition of a number of disjoint components Ci, i = 1 . . . k.
A glue program for C is a process P that makes calls to a set of X of provided methods
of C. The composition C‖ [X]P of C and P is defined similarly to the alphabetized
parallel composition in CSP [30] with interleaving of events. The gluing composition is
defined by hiding the synchronized methods between the component C and the process
P. We have proven that (C‖ [X]P )\X is a component, and studied the algebraic laws
of the composition of processes and components. The glue composition is illustrated
in Fig. 5, where in Fig. 5(a) C1 and C2 are two one-place buffers and P is a process
that keeps getting the item from C1 and putting it to C2. In Fig. 5(b), the get of C1
and put of C2 are synchronized into an atomic step by component M ; and M proves
method move(){get1(; y);put2(y; )}, that process P calls.

(a)

C1

put

C2

get

put1get1

P
(b)

                    move

C1

put1
C2

get2

put2get1

P

M

Fig. 5: (a) Gluing two one-place buffers forms a three-place Buffer, (b) Gluing two
One-place buffers forms a two-place buffer

An application program is a set of parallel processes that make use of the services
provided by components. As processes only interact with components via the provided
interfaces of the components, interoperability is thus supported by the contracts which
define the semantics of the common interface description language (IDL), even though
components, glue programs and application programs are not implemented in the same
language. Analysis and verification of an application program can be performed in the
classical formal frameworks, but at the level of contracts of components instead of
implementations of components. The analysis and verification can reuse any proved
properties about the components, such as divergence freedom and deadlock freedom
without the need to reprove them.

2.3 Object-orientation in rCOS

The variables in the field declaration section can be of object types. This allows us to
apply OO techniques the design and implementation of a component. In our earlier work
[14], we have extended UTP to formal treatment of OO program and OO refinement.
This is summarized as follows.



Classes In rCOS, we write a class specification in the following format:

class C [extends D]{
attr T1 x = d, . . . ,Tk x = d
meth m(T in;V return) {

pre: c ∨ . . . ∨ c
post: (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R)

∧ . . . . . .
∧ (R; . . . ; R) ∨ . . . ∨ (R; . . . ; R) }

. . . . . .
meth m(T in;V return) {. . . . . . }

. . . . . .
invariant Inv }

The initial value of an attribute is optional, and an attribute is assumed to be public
unless it is tagged with reserved words private and protected. If no initial value is
declared it will default to null.

Each c in the precondition represents a condition to be checked; it is a conjunction
of primitive predicates.

A design p ⊢ R for a method is written as Pre p and Post R. And R in the post-
condition is of the form c ∧ (le′ = e), where c is a condition, le an assignable expression
and e an expression. An assignable le is either a primitive variable x, or an attribute
name a or le.a. An expression e can be a logically specified expression such as the
greatest common divisor of two given integers.

We allow the use of indexed conjunction ∀i ∈ I : R(i) and indexed disjunctions
∃i ∈ I : R(i) for a finite set I. These would be the quantifications if the index set is
infinite. The reader can see the influence of TLA+ [19], UNITY [6] and Java on the
above format.

OO refinement OO design is to design object interactions so that objects interacts
with each other to realize the functionality specified in the class declarations. In rCOS,
we provide three levels of refinement:

1. Refinement of a whole object program. This may involve the change of anything
as long as the behavior of the main method with respect to the global variables
is preserved. It is an extension to the notion of data refinement in imperative
programming, with a semantic model dealing with object references, method invo-
cation, and polymorphism. In such a refinement, all non-public attributes of the
objects are treated as local (internal) variables.

2. Refinement of the class declaration section: Classes1 is a refinement of Classes
if Classes1 • main refines Classes • main for all main. This means that Classes1
supports at least as many services as Classes.

3. Refinement of a method of a class in Classes. Obviously, Classes1 refines Classes
if the public class names in Classes are all in Classes1 and for each public method
of each public class in Classes there is a refined method in the corresponding class
of Classes1.

Very interesting results on completeness of the refinement calculus are available in [23].
In an OO design there are mainly three kinds of refinement: Delegation of func-

tionality or responsibilities, attribute encapsulation, and class decomposition.



Delegation of functionality Assume that C and C1 are classes in Classes, C1 o
is an attribute of C and T x is an attribute of C1. Let m(){c(o.x′, o.x)} be a method
of C that directly accesses and/or modifies attribute x of C1. Then, if all other vari-
ables in the method c are accessible in C1, we have Classes ⊑ Classes1, where Classes1
is obtained from Classes by changing m(){c(o.x′, o.x)} to m(){o.n()} in class C and
adding a fresh method n(){c[x′/o.x′, x/o.x]}. This is also called the expert pattern of
responsibility assignment.

This rule and other refinement rules can prove big-step refinement rules, such as
the following expert pattern, that will be repeatedly used in the design of POS.

Theorem 4 (Expert Pattern). Given a list of class declarations Classes and its
navigation paths r1. . . . .rf .x(denoted by le), {a11. . . . .a1k1 .x1, . . . , aℓ1. . . . .aℓkℓ

.xℓ}, and
{b11. . . . .b1j1 .y1, . . . , bt1. . . . .atjt .yt} starting from class C, let m() be a method of C
specified as

C :: m(){ c(a11. . . . .a1k1 .x1, . . . , aℓ1. . . . .aℓkℓ
.xℓ)

∧ le′ = e(b11. . . . .b1s1 .y1, . . . , bts1. . . . .btst .yt) }

Then Classes can be refined by redefining m() in C and defining the following fresh
methods in the corresponding classes:

C :: check(){return′=c(a11.getπa11x1
(), . . . , aℓ1.getπaℓ1

xℓ
())}

m(){if check() then r1.do-mπr1
(b11.getπb11

y1
(), . . . , bs1.getπbs1

ys
())}

T(aij) :: getπaij
xi

(){return′=aij+1.getπaij+1
xi

()} (i : 1..ℓ, j : 1..ki − 1)

T(aiki
) :: getπaiki

xi
(){return′=xi} (i : 1..ℓ)

T(ri) :: do-mπri
(d11, . . . , ds1){ri+1.do-mπri+1

(d11, . . . , ds1)} for i : 1..f − 1

T(rf ) :: do-mπrf
(d11, . . . , ds1){x

′ = e(d11, . . . , ds1)}

T(bij) :: getπbij
yi

(){return′=bij+1.getπbij+1
yi

()} (i : 1..t, j : 1..si − 1)

T(bisi
) :: getπbisi

yi
(){return′=yi} (i : 1..t)

where T(a) is the type name of attribute a and πvi
denotes the remainder of the

corresponding navigation path v starting at position j.

This pattern informally represents the fact that a computation is realized by obtaining
the data that distributed in different objects via association links and then delegating
the computation tasks to the target object whose state is required to change.

If the paths {a11. . . . .a1k1 .x1, . . . , aℓ1. . . . .aℓkℓ
.xℓ} have a common prefix, say up to

a1j , then class C can directly delegate the responsibility of getting the x-attributes and
checking the condition to T(aij) via the path a11. . . . , aij and then follow the above
rule from T(aij). The same rule can be applied to the b-navigation paths.

The expert pattern is the most often used refinement rule in OO design. One feature
of this rule is that it does not introduce more couplings by associations between classes
into the class structure. It also ensures that functional responsibilities are allocated to
the appropriate objects that knows the data needed for the responsibilities assigned to
them.

Encapsulation The encapsulation rule says that if an attribute of a class C is only
referred directly in the specification (or code) of methods in C, this attribute can be
made a private attribute; and it can be made protected if it is only directly referred in
specifications of methods of C and its subclasses.



Class decomposition During an OO design, we often need to decompose a class
into a number of classes. For example, consider classes C1 :: D a1, C2 :: D a2, and
D :: T1 x,T2 y. If methods of C1 only call a method D :: m(){...} that only involves
x, and methods of C2 only call a method D :: n(){...} that only involves y, we can
decompose D into two D1 :: T1 x;m(){...} and D2 :: T2 y;n(){...}, and change the
type of a1 in C1 to D1 and the type of a2 in C2 to D2. There are other rules for class
decomposition in [14].

An important point here is that the expert pattern and the rule of encapsulation
can be implemented by automated model transformations. In general, transformations
for structure refinement can be aided by transformations in which changes are made
on the structure model, such as the class diagram, with a diagram editing tool and
then automatic transformation can be derived for the change in the specification of the
functionality and object interactions. For details, please see our work in [23].

3 Integrating rCOS Support into Model-Driven

Development Process

In a realistic project there are more activities than just design. These activities are
performed by project team members in different roles, such as Administrator, Analysis
Modeler, Architecture Modeler, Design Modeler, Construction Manager, Construction
Programmer, Model Manager, and Version Manager [31]. The concepts of activities
and roles define at which point various models, that are also informally called artifacts,
are produced by which roles, and what different analysis, manipulation, checking and
verification are performed, with different tools. The concept of roles is also useful for
the control of the work flow in that different roles are allowed to access and modify
certain models in the development environment. These concepts and ideas have been
implemented in the industrial tool, MasterCraft, for model transformation [31]. In
this section, we use the our experience with the in the recent work on the Common
Component Modelling Example (CoCoME) to show how the rCOS methodology can be
integrated into a model-driven development processes in supporting the development
activities. We first introduce the modelling example, that is followed by a summary of
the application of rCOS.

3.1 POST—the common modelling example

The point of sale system (POST) was originally used as a running example in Larman’s
book [20] to demonstrate the concepts, modeling and design of object-oriented systems.
An extended version is now being used as the case study in the Common Component
Modeling Contest (CoCOMe) [4].

POST is a computerized system typically used in a retail store. It records sales,
handles both cash payments and credit card payments as well as inventory update.
Furthermore, the system deals with ordering goods and generates various reports for
management purposes. The system can be a small system, containing only one terminal
for checking out customers and one terminal for management, or a large system that
has a number of terminals for checking out in parallel, or even a network of these large
systems to support an enterprise of a chain of retail stores. The whole system includes
hardware components such as computers and bar code scanners, card readers, and
a software to run the system. To handle credit card payments, orders and delivery of
products, we assume a Bank and a Supplier that system POST with which can interact.



In the common modelling excise requires each team to work on a common informal
description of the system, and carry out a component-based modelling and design. Vari-
ous of aspects should be modelled and analysed, including functionalities, interactions,
middlewares, and extra-functionalities (also known as non-functional requirements)
such as timing. It is required to generate code for the implementation too.

The problem description that we received is largely based on use case descriptions.
There can be many use cases for this system, depending on what business processes the
client of the system want the system to support. One of the main use cases is processing
sales, that is denoted by the use case UC1: Process sales. An informal description can
be given as follows.

This use case can perform either express checkout process for customers with only
a few items to purchase, or a normal checkout process. The main course of interactions
between the actors and the system is described as follows.

1. The cashier sets the checkout mode to for express check out or for normal check
out. The system then sets the displaylight to green or yellow accordingly.

2. This use case starts when a customer comes to the checkout point with their items
to purchase.

3. The cashier indicates the system to handle a new sale.
4. The cashier enters all the items, either by typing or scanning in the bar code, if

there is more than one of the same item, the cashier can also enter the quantity.
The system records each item and its quantity and calculates the subtotal.
In the express checkout mode, only a limited number of items are allowed to
checkout.

5. At the end of inputting the items, the total of the sale is calculated. The cashier
tells the customer the total and asks her to pay.

6. The customer can pay by cash or a credit card:

(a) If by cash, the cashier enters the amount received from the customers, and the
system record the cash payment amount and calculate the change. The cashier
gives the change to the customer.

(b) If the customer chooses to pay by a credit card, the cashier enters the card
information (manually or by the card reader). The system sends the credit
payment to the bank for authorization. The payment can only be made if a
positive authorization reply is received.

The inventor of the sold items are updated and the completed sale is logged in the
store.

7. The customer leaves with the items they purchased at the end of the process.

There are exceptional courses of interactions. For example, the entered bar code is not
known in the system, the customer does not have enough money for a cash payment,
or the authorization reply is negative. Systems needs to provide means of handling
these exception cases, such as canceling the sale or change to another way of paying
for the sale. At the requirements level, we capture these exceptional conditions as
preconditions.

Other use cases include UC2: Order products, that orders products from the sup-
plier; UC3: Manage inventory, that include changing the amount of an item (after
receiving deliveries from the product supplier), changing the price of a product, and
adding a new product, and deleting a new product; UC4: Produce monthly reports on
sales that is to show the reports of all sales in the last 30 days and information of profit
and loss; and UC5: Produce stock reports , that produces the reports on stock items.



3.2 Development of POST with rCOS

There has been a wide view that object-oriented and component-based design should
be bottom up. We in fact take a use-case driven, incremental and iterative Rational
Unified Development Process [18].

The sketch of the development process In each iteration, a number of use
cases are captured, modeled and analysed at the requirements stage. Each use case is
modeled as a contract of a component that provides services to the actors of the use
case. The fields of the contract declare the domain objects involved in the realization of
the use case. The classes of these objects are organized as a class diagram representating
the structural view of the data and objects of the components. The contracts should
be analyzed and the consistency of the contracts should be checked.

The contracts of the use case components are then designed and organised into
bigger components to form the component-based architecture for the application soft-
ware components with identified object-oriented interfaces. We call this step the logical
design of the iteration. This involves object-oriented refinement of each use case com-
ponent, identifies interactions among objects in different components, and compose
components (i.e. use cases) by simple connectors. The resulting model is the logical
component model.

The model of logical design should be further refined by class decomposition, data
encapsulation and refactoring. We call this step the detailed design. The detailed de-
sign also involves replacing the object-oriented interfaces with concrete and appropriate
interaction mechanisms (or middlewares) such as RMI, CORBA or shared event chan-
nels.Verification and validation, such as runtime checking or testing (unit testing), can
be applied to components before and after introducing the concrete middlewares.

Code can be constructed for each component and static analysis, unit testing and
runtime checking can be done on the components.

Before or after coding, the design of the GUI, the software controller of the hard-
ware devices and their interactions with the application software components can be
modeled and designed. This is done in a purely event-based model following the the-
ory of embedded system design. The business components, GUI components hardware
controllers and middlewares are integrated and deployed.

Requirements modelling of POST A use case is modelled as a contract of a
component, that corresponds the concepts of use case controller class in our earlier
object-oriented modelling [8]. To help practical software engineers to understand the
formal models, the protocol of a use case contract is illustrated by a UML sequence
diagram that defines all the possible traces of the interaction between the actors and
the system in the use case. The guarded design specification of each interface method is
further divided into the guard, the control state transition, and the data functionality.
The guards and the control state transitions are shown by a UML state diagram, and
the data functionality of a method is specified as unguarded design. For such a style of
modelling and their formal integration, we refer to our paper [8]. The protocol of use
case process a sale UC1 is modelled by the sequence diagram in Fig. 6 and its state
diagram is given in Fig. 7.

The specification of the functions of the use case and and the component invariant
are given as follows.



Cashier

:Cashdesk

startSale()

finishSale()

enterItem(Barcode, Quantity)
loop

[1..*]loop

alt
cardPay(Card)

alt

enterItem(Barcode, Quantity)

[1..max]

cashPay(Amount, Amount)

startSale()

finishSale()

cashPay(Amount, Amount)

[not(ExMode)]

[ExMode]

loop [*]

loop [*]

enableExpress()

disableExpress()

loop [*]

Fig. 6: Sequence Diagram

complete
ExMode

¬complete
ExMode

 ¬complete
ExMode

¬complete
¬ExMode

complete
¬ExMode

¬complete
¬ExMode

enterItem
(B

arcode,int)

finishSale()finishSale()

enterItem
(B

arcode, int)

* <max
enterItem(Barcode, int) enterItem(Barcode, int)

E
xM

o
de

 &
 d

is
ab

le
E

xp
re

ss
()



¬E


E
xM

ode &
 enableExpress()

Init

ExMode¬ExMode complete
ExMode

cashPay(double; double)

startSale()startSale()complete
¬ExMode

ca
sh

P
ay

(d
ou

bl
e,

 d
ou

bl
e)



ca
rd

P
ay

(C
ar

d
)

disableExpress()
enableExpress()

startSale()startSale()

Fig. 7: Design Sequence Diagram

Use Case UC1: Process Sales
Component Cashdesk{
meth enableExpress() {

Pre: true;
Post: light.display′ = green };

meth disableExpress() {
Pre: true;
Post: light.display′ = yellow }

meth startSale() {
Pre: true;
Post: /** a new sale is created and its lines initialized to empty,
and its dates correctly recorded **/;
sale′ = Sale.New()}

meth enterItem(long c, double q) {
Pre: store.cat.find(c) 6= null /**the input barcode c is valid **/
Post: /** a new line is created with its barcode and quantity set to
c and q, and**/;
∧ line′=LineItem.New(c/barcode, q/quantity)
/**the subtotal of the line is set, and **/
∧ line.subtotal′=store.cat.find(c).price × q)
/**add line to the current sale **/
∧ sale.lines.add(line′) }

meth cashPay(double a; double c) {
Pre: a ≥ sale.total /** amount is no less then the total **/
Post: /** the Cashpayment of the sale is created, and**/
∧ sale.pay′ = CashPayment.New(

a/amount, a − sale.total/change)
/** the change is returned, and then the completed sale is logged
in store, and **/
∧ c′ = a − sale.total;store.sales.add(sale)
/** the inventory is updated **/
∧ ∀l ∈ sale, lines,∀p ∈ store.cat : (

if p.barcode = l.barcode then p.amount′ = p.amount − l.quantity) }



meth finishSale() {
Pre: true;
Post: /** sale is set to complete, and;
∧ sale.complete′ = true
/** sale’s total is calculated **/
∧ sale.total′=addAll[[l.subtotal|l ∈ sale.lines]] }

meth cardPay(Card c) {
Pre: /** the card is valid **/
valid(c, sale.total) /**authorized by the bank **/;
Post: /** the CardPayment of the sale is created, and then
the completed sale is logged in store, and **/
∧ sale.pay′ = CardPayment.New(c/card);

store.sales.add(sale)
/** the inventory is updated **/
∧ ∀l ∈ sale.lines,∀p ∈ store.cat : (

if p.barcode = l.barcode then
p.amount′ = p.amount − l.quantity) }

}

The structure of the data and classes of the objects are declared as class declarations
in rCOS and can be illustrated by a UML class diagram. Then the state space of the
component is the set of the object diagrams of the class diagram. Fig. 8 shows the class
diagram of use case UC1 and Fig. 9 is an example of an object diagram.

CashDesk

mode: String

enableExpress( )
disableExpress( )
startSale( )
enterItem(Long code,Long qty)
finishSale( )
cashPay(Double amount,Double change)
cardPay(Card)

LineItem

barcode: Long
quantity: Long
subtotal: Double

Sale

complete: Boolean
total: Double
date: Date

Payment

CardPayment

card: Card

CashPayment

amount: Double
change: Double

Store

Item

barcode: Long
price. Double
amount: Long

1

Clock

1

1

1

1

1
0..1

1

*

*

1

*

*

1

1

*

lines

cat

sales

CardBank
1

*

*

11 *

issuer card
connection

store

clock

line

sale

pay

Fig. 8: Class Diagram of Process Sale

:CashDesk

mode: String

enableExpress( )
disableExpress( )
startSale( )
enterItem(Long code,Long qty)
finishSale( )
cashPay(Double amount,Double change)
cardPay(Card)

:LineItem

barcode: Long
quantity: Long
subtotal: Double

LineItem(Long,Long)
setSubtotal(Double)

:Sale

complete: Boolean
total: Double
date: Date

Sale(Boolean,set(LineItem),Double,Date)
addLine(LineItem)
getLines( )
setComplete( )
total( )
getTotal( )
makeCashPay(Double amount,Double change)

:Payment

:CardPayment

card: Card

CardPayment( )

:CashPayment

amount: Double
change: Double

CashPayment(Double,Double)
getChange( )

:Store

find(Long code)
addSale(Sale)
updateInventory(Long code,Long qty)}
getCatalog( )

:Product

barcode: Long
price. Double
amount: Long

update(Long)

1

:Clock1

1

1

1

1

0..1

1

*

*

*

*

*

1

1

*

lines

catalog

sales

:Card

:Bank

authorize(Card c, Double amount)

1

*

*

11 *issuer card

connection

store

clock

line

sale

pay

Fig. 9: Object Diagram of Process Sale

The execution of an invocation to an interface method changes from one object dia-
gram to another [14, 23]. The behaviour of the use case components (the methods used
above) will be implemented in an abstract class, and the used methods and arguments
indicate its abstract interface:

public abstract class Cashdesk implements Sale sHand le r I n t e r f a c e {



protected boolean exmode ;
public abstract void enab leExpress ( ) ;
public abstract void d i sab l eExp re s s ( )
public abstract void s t a r t S a l e ( ) ;
public abstract void ente r I tem( Barcode code , int quant i ty ) ;
public abstract void f i n i s h S a l e ( ) ;
public abstract void cardPay (Card c , double a ) ;
public abstract void cashPay (double a ) ;

}

Requirements consistency Static consistency between methods in the diagrams
and the functional specification, their types, and navigation paths must be consistent.
This step is usually done by some tools like a compiler, but is done manually in the
case study due to a lack of machine readable specifications.

Dynamic consistency ensures that the separately specified behavior in the sequence
diagram, the state diagram and the trace are consistent. Informally, the consistency
must ensure that whenever the actors follow the interaction protocol defined by the
sequence diagram, the interactions will not be blocked by the system, i.e. no deadlock
should occur. Formally speaking, this requires that the traces are accepted by the state
machine defined by the state diagram. Also, the sequence diagram should completely
define the set of traces that can be accepted by the state diagram. While, the sequence
diagrams specifies the traces in a denotational manner, the state diagram decries the
flow of control in an operational semantics and thus model checking and simulation
can be easily applied. The state diagram allows verification of both safety and liveness
properties.

As all three specifications mechanisms are based on regular techniques and can be
interpreted as defining languages of traces, we translate them manually into CSP speci-
fications and use the FDR model checker to prove trace equivalence of the sequence and
the state diagram. Likewise, we can generate PROMELA specifications for the SPIN
model checker to check additional properties such as certain liveness or application
specific properties.

Logical design The logical design step has two kinds of activities. First each use
case contract is refined from its functional specification through application of design
patterns, the Expert Pattern [9] in particular. This step delegates the functionality
responsibilities to the internal domain objects (i.e. those of the fields). This derives
a refinement of the use case sequence diagram into a design sequence diagram. For
example, applying the expert pattern to the use case operation of UC1 we can refine
it to the design sequence diagram shown in Fig. 10. We can specify the other use cases
and refine them in the same way. For the formal refinement of the use cases in rCOS,
we refer the reader to the rCOS solution to CoCoME [?].

After the initial object-oriented refinement we can identify further components. For
use case UC1, we single out the component << Clock >> and << Bank >> from
the component << SalesHandler >>. We also, compose the use cases for “order prod-
ucts”, “manage inventory items”, “produce sales reports” and “produce stock reports”
into one component called << Inventory >>. From the design sequence diagrams of
the use cases (and formally the refined design of the use case operations specified in
rCOS), we can organize the interaction among objects from the different components
into provided and required interfaces of the identified components. This then transforms
the model of the use case contracts into a logical component architecture as shown in



:Cashier

:Clock

sale:Sale:CashDesk
:Product:Store

li:LineItem

:CashPayment

startSale( )

New( )

enterItem(code,qty)

date( )

find(code)
find(code)

New(code,qty)

setSubtotal( )

addLine(li)

finishSale( )
setComplete( )

total( )

cashPay(amount,change)
getTotal( )

makeCashPay(amount,total)
New(amount,change)

getChange( )

addSale(sale)

updateInventory(code,qty)
update(qty)

cardPay(card)
makeCardPay(card)

:CardPayment

New(card)

addSale(sale)

updateInventory(code,qty)

update(qty)

Alt

loop

:Bank

authorize(card,amount)

Fig. 10: Design Sequence Diagram of Process Sale

Fig. 11. The rCOS specification of the refined component << SalesHandler >> can
be given as

component SalesHandler required interface ClockIf { date() }
required interface BankIf { authorize(..) } required interface

StoreIf { update (..), find (..), addSale(..) } provided interface

SaleIf { startSale , enterItem, finishSale , cashPay, cardPay }

protocol { ( [ ?enableExpress ( ?startSale (?enterItem)(max) ? finishSale ?cashPay)∗

| ?disableExpress ( ?startSale (?enterItem)∗ ? finishSale
[ ?cardPay | ?cashPay ] )∗ ] )∗ }

class Cashdesk implements SaleIf

This notation thus combines aspects of an rCOS component (provided/required inter-
face and class implementing the provided methods) and contract (protocol). Call-ins
in the protocol are indicated by a question mark. A process can be recognized by a
protocol which starts with a call-out, denoted by an exclamation mark following the
method name. Further decomposition of the component << Inventory >> into the
three layer architecture consisting of << Application >>, data representation compo-
nent << Store >> and << Database >> is shown in Fig. 12.

Notice that in the logical component models, interfaces are object-oriented inter-
faces, meaning that the interactions are through direct object method invocations.

Detailed design In the detailed design, refinement translates the specifications in
the logical design into an object-based programming language resembling Java. In
this step, class decomposition, refactoring [12] and data encapsulation, that proved as
refinement rules in the object-oriented rCOS [14], can be applied.

Significant algorithms for specifications of methods of classes are designed. Such a
method usually does not need to call methods outside its owning class. The specification
of such a algorithms often uses quantifications over elements of an multi-object (or a
container object). In rCOS, this is resolved through standard patterns like iteration,



:CashDesk

mode: String

enableExpress( )
disableExpress( )
startSale( )
enterItem( )
finishSale( )
cashPay( )
cardPay( )

:LineItem

barcode: Long
quantity: Long
subtotal: Double

:Sale

complete: Boolean
total: Double
date: Date

:Payment

:CardPayment

card: Card

:CashPayment

amount: Double
change: Double

:Store

:Item

barcode: Long
price. Double
amount: Long

11

1

1

0..1

1

*

*

*

1

<<SalesHandler >>

<<Inventory >>

<<Clock>>

date( )

CashDeskIf

<<Bank>>
valid( )

sale

lines

line

pay

cat

OrderIf

ManageIf <<Supplier>>

SupplierIf

enableExpress( )
disableExpress( )
startSale( )
enterItem(Long,Long)
finishSale( )
cashPay(Double,Double)
cardPay(Card)

CheckOutIf

<<Light>>

LightIf

Fig. 11: The logical component-based model

although for example for database accesses it might be possible to refine them into
SQL queries. The correctness of those patterns has been formally proved in previous
rCOS literature.

This representation allows almost direct translation into Java. We invite the reader
to observe the introduction of the intermediate classes which finally break down the
store.catalog.find() in class Cashdesk down to the set-implementation, which is given
again as a purely functional specification, under the assumption that a corresponding
data structure is available in the target language:

class Cashdesk:: enterItem(Barcode code, int qty) {
if find(code) 6= null then {
line:=LineItem.New(code, qty);
line.setSubtotal(find(code).price × qty);
sale.addLine(line) }

else { throw exception e } }
find(Barcode code; Product r) {r:=store.find(code)}

class Store:: find(Barcode code; Product r) {r:=catalog.find(code)}
class set(Product):: find(Barcode code; Product returns)

Pre ∃p : Product • (p.barcode = code ∧ contains(p))
Post returns.barcode’ = code

class Sale:: addLine(LineItem l) {lines.add(l)}
class LineItem:: setSubtotal(double a) {subtotal :=a }



:LineItem

barcode: Long
quantity: Long
subtotal: Double

:Sale

complete: Boolean
total: Double
date: Date

:Payment

:CardPayment

card: Card

:CashPayment

amount: Double
change: Double

:Store

:Item

barcode: Long
price. Double
amount: Long

1

1

*

*

<<Data>>

lines

cat

1 0..1pay

:Order

complete: Boolean

** sale order

<<DataBase >>

JDBC

<<Application >>

<<Inventory >>

StoreIf

ManageIf

OrderIf

CashDeskIf

Fig. 12: The components of << Inventory >>

class Cashdesk:: finishSale() { sale.setComplete(); sale.setTotal() }
class Sale:: setComplete() { complete:=true }

setTotal() { total:=lines.sum() }

Separately, abstract interfaces for the classes containing a translation of the pre- and
post-conditions into the Java Modelling Languages (JML) have been carried out. These
can be checked at runtime, and we plan to use them for further static analysis in future
work: The JML code snippet of the enterItem() design is shown on the left of Fig. 13.
Notice that the code in the dotted rectangle gives the specification of the exception.

/*@ public normal_behaviour 

@  requires (\exists Object o; theStore.theProductList.contains(o); 
@          ((Product)o).theBarcode.equals(code)); … 

@  ensures  theLine != \old(theLine) && 

@   theLine.theBarcode.equals(code) &&… 

@ also 

@ public exceptional_behaviour 

@   requires !(\exists Object o; theStore.theProductList.contains(o); 

@          ((Product)o).theBarcode.equals(code)); 

@   signals_only Exception; 

@*/ 

public void enterItem(Barcode code, int  qty) throws Exception; 
 

public void enterItem(Barcode code, int  qty) 
 throws Exception{ 

if (find(code) != null ) { 
line = new LineItem(code, qty); 
line.setSubtotal(find(code).price * qty); 
sale.addLine(line); 
t = true; 

} else { 
throw new Exception(); 

} 
} 

Fig. 13: JML Specification and Implementation.

In the detailed design, some of the object-oriented interfaces are replaced by ap-
propriate interaction mechanisms and middlewares, for example

– We keep the interface StoreIf between the application layer and the data represen-
tation layer as an oo interface.

– As all the SalesHandler instances share the same inventory, we can introduce a
connector by which that the cash desks get product information or request the



CashDesk

LineItem

Sale

Payment

CardPayment CashPayment

Store Product

11

1

1

0..1

1

*

1
*

1

<<SalesHandler>>

<<Inventory>>

find(...)
addSale(...)
update(...)

SaleIf
StoreIf

<<BusController>> <<InputController>>

<<Terminal>>

<<BarcodeScanner>>

SaleIf

SaleIf

SaleIf

<<Printer>>
enableExpress( )
disableExpress( )
startSale( )
enterItem(...)
finishSale( )
cashPay(...)
cardPay(...)

PrinterIf

<<Bank>>

<<Clock>>

BankIf

ClockIf

authorize(...)

date( )

GUIIf

Fig. 14: Component diagram of Process Sale

inventory to update information of a product by passing a product code. This can
be implemented asynchronously using an event channel.

– The interaction between the SalesHandler instances and Bank can be made via
RMI or CORBA.

– The interaction between the Inventory instance and the Supplier can be made via
RMI or CORBA.

Design of GUI and controllers of hardware devices In our approach, we
keep the design of application independent from the design of the GUI, so that we
do not need to change the application. The GUI design only concerned about how to
link methods of GUI objects to interface methods of the application components to
delegate the operation requested and to get the information that are needed to display
on the GUI. So in general, the application components should not call methods of the
GUI objects. Also, no references should be passed between application components
and GUI components (the so called service-oriented interfaces should be used). This
requires that all information that are to display on the GUI should be ready in the
application components and corresponding interface operations should be provided by
the application components to the GUI components. There are existing GUI builders
can be used.

Each SalesHandler instance is connected to a bar code scanner, a card reader, a
light, a cash box, and a printer. The hardware controllers also communicate with the
GUI objects. For example, when the cashier presses the startSale button at his cash
desk, the corresponding SalesHandler instance should react and the printer controller
should also react to start to print the header of the receipt. The main communication
can be done by using events which are sent through event channels. An obvious solution
is that each SalesHandler has its own event channel, called checkOutChannel. This
channel is used by the CheckOut instance to enable communication between all device



 

� � � � � � � � � 	
 � � � � � � � �  � � � � � � � � � � � � � � � � � � �� � � � �  

  �  ! "� � � � � � � � � 	
 � � � � � � � �  � � � � � � � � � � � � � � � � � � �# $ % &
  �  ! "


 � �'  � ( $ % " 
 $ ) $ � * +* $ � , - � � &
 

� $ .�
 

 

 

* $ � , - � � & / 0 1
 
 $ ) $
 $ ) $
 $ ) $ 2 � � � 3 4 5 � 6 � 7 � � 3 32 � � � 3 4 5 � 6 � 7 � � 3 3 89:; � � � ) <( � � � = � � � % ( �

Fig. 15: SCA based Implementation

controllers, such as LightDisplayController, CardReaderController and the GUIs. The
component, the device controllers and the GUI components have to register at their
checkOutChannel and an event handlers have to be implemented and a message mid-
dleware, such as JMS, are needed to call the event event handlers. All the channels can
be organized as component called EventBus. Component-based model of the system
with the hardware components is shown in Fig. 14.

After all the components discussed in the previous subsections are designed and
coded, the system is ready for deployment, that we leave out of this paper.

Service component architecture based implementation Based on the de-
sign of classes and components, additionally to the Java implementation of the business
log, we implemented the system using Service Component Architecture (SCA) [3] and
its supporting platform Tuscany Java SCA [1]. SCA provides a language-independent
way to define and compose service components in the system, and it also supports
different language-specific ways to implement the components. The SCA component
specification can be generated from rCOS component description. The component im-
plementation can be coded with respect to the component function features and the
corresponding rCOS class design. We have implemented a prototype CoCoME system
that contains six different distributed applications. The system components and their
implementation and running information included in the sale process are shown in Fig.
15. The bold black rectangles represent the independent applications that can be de-
ployed and run on different machines. The Bank and Store components are published
as Web services, whose WSDL method description can be generated from the method
definitions in rCOS component description, and the SOAP protocol binding on HTTP
is used for the communications between applications. In addition, the Bank and Store
components currently will create a new component instance for handling each client
request.

During the development process, from the rCOS design, the most appropriate im-
plementation technology can be used for different components, such as the Ruby lan-
guage for the Store component, and we can also build the application based on the
generated Java implementation from the rCOS design. The implementation only took
two days. This process also corresponds to the spirits of Agile Software Development
(Extreme Programming and Adaptive Software Development) [27].



4 Enhance Industrial Tool Support: MasterCraft

MasterCraft [31] is developed by TRDCC to support efficient development of soft-
ware system. In MasterCraft, different activities at different stages of development are
performed by project participants in different roles. We see this distinction as very
important, as it allows us to define at which point in the development process should
various models (or informally called artifacts) be produced, and different kinds of ma-
nipulation, analysis, checking and verification be performed, with different tools. We
make the particular roles responsible for assuring the correctness of the resulting soft-
ware system.

Shared Pool

CommonPool

Component

UserWorkspace

ApplicationWorkspace

Model

AnalysisModel

Element

isModeled

1..3
*

1

isResponsibleFor

isResponsibleFor

worksIn

1

releasesModels* 1

releasesComponents

*

1

DesignModel

ReleasedComponent

assembles

+released

dependsOn

*
*

Analysis Modeler

Design Modeler

Model Manager

Construction Manager

Construction Programmer

ImplementationModel

manages

*

*

<<dependsOnReleasedComponents>>

<<dependsOnReleasedModels>>

<<dependsOnReleasedModels>>

produces

*

*

produces

*

*
elementImplementedIn

*

*

mayRelease* *

uses *

*

GUIElementDiagram CodeClass
+methodBody

...

Fig. 16: MasterCraft: class diagram of process-oriented concepts.

4.1 Concepts in MasterCraft

MasterCraft introduces a body of concepts and a hierarchy of artifact repositories, de-
signed to support team collaboration on development of the models and code. Fig. 16
shows the relations among these concepts as a class diagram. At the top-level of com-
ponent repositories is the application workspace, representing the whole modelling and
development space of an application. The application workspace is further partitioned
into components. Different from conventional component-based software development



(CBSD) focusing on architecture, MasterCraft is oriented towards organizing the devel-
opment activities in the individual components. Nevertheless, a component is character-
ized by its interface (consisting however only of the component’s provided operations)
and its dependencies on other components.

As analysis and design models are created in the individual components of the
application workspace, stable versions of these models can be released into the shared
pool. This allows developers of other components, depending on the components already
released, to use stable versions of the models. In order to preserve consistency, once
the model has been released, it is “frozen” and any subsequent change starts a new
modelling cycle; this is also reflected by a change in the version identifier of the new
model.

The models in MasterCraft are created as instances of a metamodel based on UML.
Besides the modelling constructs already available in UML, MasterCraft introduces a
few technology-oriented concepts, such as database queries (eventually translated into
classes), and also several concepts for modelling the graphical user interface (GUI)
of the application. The GUI interacts with the application by invoking operations
provided by a classes.

In parallel with the shared pool, the common pool is a repository of code arti-
facts, where stable implementations of components are released. Such stable releases
of component implementations can be used by developers of dependent components.

While a single programmer (a Construction Programmer, as the role will be named
later) works on the assigned tasks for a component (such as classes to be coded), the
development takes place in a separate development area called user workspace. Only
after the tasks are completed (including unit testing), the code is committed into the
application workspace.

4.2 Developing software with support of MasterCraft and rCOS

In MasterCraft, the members of the development team are assigned different roles in the
development process: Administrator, Analysis Modeler, Design Modeler, Construction
Manager, Construction Programmer, Model Manager, and Version Manager. Each role
gives different rights to access the project artifacts. We describe the support of rCOS
with respects to the different roles and their tasks and activities in the project.

Support to administrator At the very beginning of the development, the Ad-
ministrator is responsible for creating user accounts and components, and assigning
roles to project participants for acting on the components they are involved in. As the
development of the application progresses, if a version control system is in use, the
Version Manager may store snapshots of the whole application workspace (the models
and code it contains) in the version control system repository, and if needed, restore
them as a separate application workspace for parallel development.

The administrator starts by creating the components identified as groups of related
use cases, such as << SalesHandler >> for use case UC1, << Inventory >> for use
cases UC2-UC5, and component << EnterPrise >> for the use cases related the the
whole enterprise management. Next, the administrator creates user accounts, let’s say
Alice and Brian, and assigns them roles. In this case, Alice may become both Analysis
Modeler and Design Modeler for << SalesHandler >> and << Inventory >>, and
Brian may be granted these roles for the << EnterPrise >> component. Furthermore,
we have Martin who is assigned the global role of Model Manager.



Support to analysis modeler An Analysis Modeler starts work on a component
by studying its textual requirements. Based on the textual requirements, the Analysis
Modeler creates a model of the requirements for the model. This model consists of
conceptual class diagrams, use case diagrams, and behavioral models, i.e. the use case
sequence diagrams and state diagrams, of the use cases, the specification of the con-
tracts of the use case handlers. For example, Alice has to create the models in Figs. 6-9
and the rCOS specification of the contract. The Analysis Modeler may iterate over this
model, creating a new refined model based on the original analysis model. The Anal-
ysis Modeler can declare a dependency on another component and, if the component
depends on other components, the Analysis Modeler first fetches the models of these
supplier components from the shared pool. Upon completing the model, the Analysis
Modeler is responsible for verifying that the model is consistent, and validating that it
realizes the requirements. Prototyping can be done and JML-based run-time checking
can be applied in addition to the analysis of the requirements specification outlined in
Section 3.2.

Note that for formal analysis and its automated tool support, MasterCraft must
be extended by adding translators of the UML diagrams into machine readable textual
specifications in rCOS. Formal verification and validation tools, such as FDR, SPIN
and JML or static checkers must be integrated into MasterCraft so that these tools can
be invoked by the analysis modeller. For this, programs for converting rCOS specification
to inputs of the tools should be implemented.

The Model Manager can afterwards release the model into the shared pool, making
it available for Analysis Modelers working on components depending on this compo-
nent. The release is not to simply drop the model there. The Model Manager should
check on the consistency of the model with the others by removing redundancy and
integrating identical modelling elements. After being released into the shared pool, the
model in the application workspace is frozen, and any additional changes would start
a new modelling cycle. Before releasing the model into the shared pool, the model
manager has to ensure that the Analysis Modeler has validated the model.

Support to design modeller A Design Modeler (e.g. Alice) fetches from the
shared pool the released model of requirements of a component (<< SalesHandler >>
resp.) assigned to her, and refines the analysis model into a logical design model. This
involves the application of the expert pattern for refining the use case sequence diagram
to a design sequence diagram. The conceptual classes from the analysis model are also
refined into design classes.

Then the Design Modeler decompose a component into composition of internal com-
ponents, and compose a number of components together to for a component model. For
example, the original design of << SalesHandler >> is designed into the composition
of << SalesHandler >>, << Clock >> and << Bank >> and mark the later two
as components already implemented. The Design modeller may also decide on which
objects should be persistent, and defines database mapping and primary keys for these
classes. This is the case for the decomposition of the << Inventory >> component
into the three layer architecture in Fig. 12. Further, the Design Modeler defines the
component interface in terms of class operations and queries provided, and may declare
additional dependencies on other components. This is case for Alice. She has to declare
that component << SalesHandler >> requires services from << Inventory >> to
get product description and to log a completed sales via interface CashDeskIf. It is the
same for << Inventory >> that requires services from << Supplier >> via interface



SupplierIF. Note that before commencing the work on the design model, the Design
Modeler needs to fetch models of the supplier components from the shared pool.

The design modeller then transform the logical design to a detailed by further
refinement rules and patterns, such as class decomposition, refactoring, data encapsu-
lation and synchronization on access to persistent data, and selection of appropriate
middlewares replace the object-oriented interfaces in the logical design.

Just as the Analysis Modeler, the Design Modeler may also iterate over the design
model, refining it into a new version. Upon completing the work on the design model,
the Design Modeler is responsible for verifying its consistency, and validating it with
respect to the analysis model.

To have formal support from rCOS, MasterCraft should be extended with model
transformations that automate the design patterns and other refinement and refactoring
rules. Application of refinement rules and design patterns are often constrained by
conditions on the models before and after after the transformation. Tools for checking
these conditions on the models should be integrated into the MasterCraft environment
too. In the current version, MasterCraft has automated transformations to generate
code for database quires and for synchronization control on access to shared data. We
are now working on QVT implementations of the expert patter, data encapsulation and
transformation of an object-oriented model to a component-based model.

Support in construction tasks. The Construction Manager is the key role re-
sponsible for construction tasks. The Construction Manager starts by exporting the
design model of a Component into an external representation, and invokes code gen-
eration tools, which generate code templates for all the classes. The code template of
a class contains for each attribute of the class its declaration and accessor methods.
For persistent classes, the code template also contains database interaction methods
for transferring the state of the class between its attributes and a relational database.
Further, the code template contains declarations of all the operations declared for
the class. However, implementations of the operations defined in the design model
are missing. Subsequently, the Construction Manager assigns coding of these opera-
tions (as well as coding of Queries) to Construction Programmers by defining a User
Workspace for each selected Construction Programmer. A Construction Programmer
starts work by fetching the workspace. After coding and unit testing the assigned op-
erations and Queries, the Construction Programmer builds the workspace. Finally, the
Construction Manager accepts the code by synchronizing the workspace, and eventu-
ally dissolves the workspace. After receiving code for all the tasks assigned to different
Construction Programmers, the Construction Manager integrates the code together.
After integration testing of the code of the Component, the Construction Manager
releases the compiled binary code of the component into the common pool, making it
available for development of other, dependent components.

Therefore, the current version of MasterCraft generates code templates, and the
sequence diagrams and state diagrams in the final design model are used as an informal
guide to the Construction Programmer to program the bodies of the class methods.

With the model of detailed design defined in rCOS, we can enhance the MasterCraft
code generator to generate method invocations in the body of a class method with correct
flow of control (i.e., the conditional choice and loop statements). Furthermore, the
model of the detailed design specifies class invariants and the functionalities of each
class method in terms of its precondition and postcondition. This makes it possible for
these conditions to be automatically inserted as assertions into the coded generated.



Therefore, code will have method bodies with method invocations and assertions. We
call such a code a probably correct code. Static analysis techniques and tools such as
ESCJava [11] can be used for verification of correctness of the code against the design
model.

The Construction Programmer can now work on the generated code with method
invocations and assertions, and produce executable code. However, the assertions should
not be removed and thus the result should be code with assertions. Testing and static
analysis again can be carried out with the aid of tools such as ESCJava and JML. If the
assertions are written in Spec# assertion commands and the Construction Program-
mer code the program in Spec#, the executable code could be a Spec# program. In
this case, the Spec# compiler takes care of the static analysis. We think is would be a
significant for Spect# to be realistically useful as it is not feasible for a programmer to
code the assertion commands correctly. The assertions should be generated or carried
from the design models.

An important advantage of our proposed method would be that these assertions
would be already included in the code generated by the Construction Manager from the
model, and the Construction Programmer would be bound to follow and aim to assure
these assertions.

5 Conclusion

We have presented our experience in the application of of a formal calculus to the
CoCoME case study.

Our experience shows the need of a semantic model that formalises the main con-
cepts and software entities in a model-driven development, and supports multi-view
modelling and separation of concerns in a complex software development. rCOS pro-
vides these formalisations and support. Model-driven development must also compli-
mented with properties driven analysis techniques. Properties are specified in rCOS
as logical formulas and algebraic properties of modelling elements that are formulated
as mathematical structures. The algebraic properties form the foundation for model
transformations. To ensure consistency and correctness, both static and dynamic con-
sistency of the specification must be checked, and both abstraction and refinement
techniques are needed for model transformation and analysis. The work also shows
that different models and tools are more effective on the design and analysis of some
aspects than the others. Proved correct model transformations should be carried out
side by side with verification and validation. Correct model transformations preserve
properties that is not required to verify again and verification and validation are used
to check the condition on when the transformations can be applied and extra properties
required for the transformed model. rCOS is a methodology supports a consistent use
of different techniques and tools for modelling, design, verification and validation.

We have analyzed the software development process in a commercially successful
tool (MasterCraft [31]) and identified where formal methods support can be “plugged”
into the tool to make software development more efficient. However, as discussed in
Section 4, there is still a lot to implement to make the tool powerful enough to support
the proposed rCOS methodology effectively, and this is part of my current and future
work. This is challenging. Yet, our discussion shows that this is feasible. For instance:

1. With the QVT engine that is being developed at TRDDC, we can program the
expert pattern, the rule for data encapsulation and structural refinement rules that
have proved for rCOS in [23].



2. Automatic generation of executable code is challenging, however, with the seman-
tics of state diagrams, sequence diagrams and textual specifications, it is possible
to generate code with control structures, method invocations, assertions, and class
invariants.

3. With human interaction, transformations for decomposing components and com-
posing components in the design stage can be automated.

The current version of MasterCraft does not support the design of controllers of hard-
ware devices and their integration with the application software components and GUI
components. However, the discussion at the end of Section 3 shows, this is purely even-
based and can be done by following the techniques of embedded systems modelling,
design and verification.

Acknowledgements This paper is dedicated to the 70th birthdays of Professors
Dines Bjørner and Zhou Chaochen who together founded UNU-IIST in 1992. Also
under the supervision of professor Zhou Chaochen, Zhiming Liu did his master study
and Xiaoshan Li his PhD degree. The work of Dines on domain engineering and the
work of Zhou on logics and calculi have great influence on the research presented in
this paper. We would also like to thanks our colleagues who have made contribution in
the development of rCOS and CoCoME. They are He Jifeng, Chen Xin, Zhao Liang,
Liu Xiaojian, Zhan Naijun, Ander Ravn and Joseph Okika.

References

1. Apache tuscany project. http://incubator.apache.org/tuscany/.
2. The concurrency workbench. http://homepages.inf.ed.ac.uk/perdita/cwb//.
3. Service component architecture. http://www.osoa.org/display/Main/Home.
4. Modelling contest: Common component modelling example (CoCoME).

http://agrausch.informatik.uni-kl.de/CoCoME, 2007.
5. R.J.R. Back and J. von Eright. Refinement Calculus: A Systematic Introduction.

Graduate Texts in Computer Science, Springer-Verlag, 1998.
6. K. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-Wesley,

1988.
7. X. Chen, J. He, Z. Liu, and N. Zhan. A model of component-based programing.

In Proc. International Symposium on Fundamentals of Software Engineering, to
appear in LNCS. Springer, 2007.

8. X. Chen, Z. Liu, and V. Mencl. Separation of Concerns and Consistent Integration
in Requirements Modelling. In Proc. of 33rd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 07), LNCS 4362.
Springer, 2007.

9. Z. Chen, Z. Liu, V. Stolz, L. Yang, and A.P. Ravn. A Refinement Driven
Component-Based Design. In Proc. of 12th IEEE Intl. Conf. on Engineering of
Complex Computer Systems (ICECCS 07), to appear. IEEE, 2007.

10. Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors. Formal Methods for Components and Objects, Second International Sym-
posium, FMCO 2003, Leiden, The Netherlands, November 4-7, 2003, Revised Lec-
tures, volume 3188 of Lecture Notes in Computer Science. Springer, 2004.

11. C. Flanagan, et al. Extended Static Checking for Java. In Pro. PLDI’ 2002, 2002.



12. M. Fowler, et al. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, 1999.

13. J. He, X. Li, and Z. Liu. Component-Based Software Engineering. In Pro. IC-
TAC’2005, Lecture Notes in Computer Science 3722. Springer, 2005.

14. J. He, X. Li, and Z. Liu. rCOS: A refinement calculus for object systems. Theo-
retical Computer Science, 365(1-2):109–142, 2006.

15. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
16. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
17. G.J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.

Addison-Wesley Professional, 2003.
18. P. Kruchten. The Rational Unified Process – An Introduction. Addison-Wesly,

2000.
19. Leslie Lamport. The temporal logic of actions. ACM Transactions on Programming

Languages and Systems, 16(3):872–923, May 1994.
20. C. Larman. Applying UML and Patterns. Prentice-Hall International, 2001.
21. Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.

STTT, 1(1-2):134–152, 1997.
22. J.L. Leavens. JML’s rich, inherited specification for behavioural subtypes. In Proc.

8th International Conference on Formal Engineering Methods (ICFEM06), volume
4260 of LNCS. Springer, 2006.

23. X. Li, Z. Liu, and L. Zhao. Object-oriented structure refinement - a graph transfor-
mational approach. Technical Report 340, UNU-IIST, P.O. Box 3058, Macao SAR,
China, 2006. Published in Proc. International Workshop on Refinement, ENTCS,
and extended version is accepted by Formal Aspect of Computing.

24. Z. Liu. A continuous algebraic semantics of CSP. Journal of Computer Science
and Technology, 4(4):304–314, 1989.

25. Z. Liu and J. He (Eds.). Mathematical Frameworks for Component software: Models
for Analysis and Synthesis, Series on Component-Based Software Development -
Vol. 2. World Scientific, 2006.

26. Z. Liu, A.P. Ravn, and X. Li. Unifying proof methodologies of duration calculus
and timed linear temporal logic. Formal Aspects of Computing, 16(2):140–154,
2004.

27. Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall, 2003.

28. B. Meyer. Eiffel: The Language. Prentice Hall, 1992.
29. R. Milner. A Calculus of Communicating Systems. Springer-Verlag,, 1980.
30. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
31. Tata Consultancy Services. MasterCraft. http://www.tata-mastercraft.com/.
32. C.C. Zhou, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information

Processing Letters, 40(5):269276, 1991.


