

17TH INTERNATIONAL SYMPOSIUM ON FORMAL METHODS

Failure-Divergence Refinement of Compensating Communicating Processes

Zhenbang Chen', Zhiming Liu², Ji Wang ${ }^{1}$ zbchen@nudt.edu.cn

National Laboratory for Parallel and Distributed Processing, Changsha, China International Institute for Software Technology, The United Nations University, Macau, China

Long-Running Transactions

- Database
- Long-lived transactions
- Small ACID transactions
- SAGAS
- 1987, SIGMOD
- Compensation

Compensation

In Database

- An activity has its compensation activity
- In case of a failure, use compensations
- Atomicity and consistency

Error -> Failure

In Service Oriented Computing

- World wide distributed organizations
- Coordinate to accomplish a task

In Service Oriented Computing

- World wide distributed organizations
- Coordinate to accomplish a task

How to ensure consistency in case of a failure?

In Service Oriented Computing

- World wide distributed organizations
- Coordinate to accomplish a task

How to ensure consistency in case of a failure?

In Service Oriented Computing

- World wide distributed organizations
- Coordinate to accomplish a task

Long Running Transactions

How to ensure consistency in case of a failure?

Orchestration Programming in SOC -WS-BPEL OASIS ©

- Compensation based fault handling
- Flexible recovery mechanisms for LRTs

Ensure an acceptive consistency of composite Web Services

WS-BPEL 2.0, OASIS Standard, 11 April 2007

Orchestration Programming in SOC

- WS-BPEL OASIS 5
- Compensation based fault handling
- Flexible recovery mechanisms for LRTs
- Formal languages
- cCSP, StAC, SAGAs, etc.

Compensating CSP

- Process language
- CSP extension for LRTs
- Basic operators
- Two types of processes
- Standard \& Compensable
- Terminated trace semantics

Theoretical Issues of

cCSP

- Concurrent systems
- Non-determinism \& Deadlock \& Livelock
- Synchronization \& Recursion
- Formal semantics
- Denotational model
- Refinement

Life Before

- Concurrent features
- Non-determinism \& Deadlock
(2 Denotational semantics
- Trace \& Stable failures
- Operational semantics

Recursion??? \Rightarrow no divergence

Now

- All basic concurrent features
- Divergence for livelock
- A failure-divergence semantics
- Standard \& Compensable
- Fixed-point theory
- Refinement w.r.t the semantics
- Non-determinism

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throww]

Extended cCSP Syntax

$$
\begin{aligned}
P::= & \left.a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R\right]|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throww]
a_{1}
b_{1}

Extended cCSP Syntax

$$
\begin{aligned}
P::= & \left.a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R\right]|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throww]
$\begin{array}{ll}a_{1} & a_{2}\end{array}$
$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throww]
$\begin{array}{ll}a_{1} & a_{2}\end{array}$

$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skips | thrown | yeld } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throw]

b_{1}

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skips | thrown | yeld } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} ; a_{2} \div b_{2}\right)\right.$; throw]

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \| a_{2} \div a_{2} \div b_{2}\right)\right]$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & \left.a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R\right]|P \triangleright P|[P P] \mid \\
& \text { skip } \mid \text { stop } \mid \text { throw } \mid \text { yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left.\quad\left[\left(a_{1} \div b_{1} \mid a_{\{1,} a_{2}\right\}<b_{2}\right)\right]$
$a_{1} \quad a_{2}$
$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skips | thrown } \mid \text { yeld } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \mid a_{\{1, a z\}} \div a_{2}\right)\right]$

$a_{1} \| a_{2}$
 $\left\{a_{1}, a_{2}\right\}$

$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skips | thrown | yeld } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left.\quad\left[\left(a_{1} \div b_{1} \mid a_{1,} a_{2}\right\} \div b_{2}\right)\right]$

$a_{1} \| a_{2} \quad$ Deadlock!!

$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a \div b_{1} \| a \div b_{2}\right)\right.$; throww $]$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & \left.a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R\right]|P \triangleright P|[P P] \mid \\
& \text { skip } \mid \text { stop } \mid \text { throw } \mid \text { yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a \div b_{1} \| a \div b_{2}\right)\right.$; throww $]$
a a
$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a \div b_{1} \| a \div b_{2}\right)\right.$; throww $]$
$a \prod_{\{a\}} a$
$b_{1} \|_{a\}} b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skips | thrown | yeld } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples
$\left[\left(a \div b_{1} \mid a \div b_{2}\right)\right.$; throw]

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples
[$\left(a \div b_{1}| | a \div b_{2}\right)$; throww]

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right)\right.$;throww $]$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & \left.a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R\right]|P \triangleright P|[P P] \mid \\
& \text { skip } \mid \text { stop } \mid \text { throw } \mid \text { yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp } \mid \text { throww } \mid \text { yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right) ;\right.$ throww $]$
$\begin{array}{ll}a_{1} & a_{2}\end{array}$
$b_{1} \quad b_{2}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right)\right.$;throww $]$

$a_{1} \| a_{2}$

$\begin{array}{ll}b_{1} & b_{2}\end{array}$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right) ;\right.$ throww $]$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right) ;\right.$ throww $]$

$a_{1} \| a_{2}$

 b_{2}
Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right) ;\right.$ throww $]$

Extended cCSP Syntax

$$
\begin{aligned}
P::= & a|P ; P| P \sqcap P|P \square P| P \|_{X} P|P \backslash X| P \llbracket R \rrbracket|P \triangleright P|[P P] \mid \\
& \text { skip | stop | throw | yield } \mid \mu p . F(p) \\
P P::= & P \div P|P P ; P P| P P \sqcap P P|P P \square P P| P P \|_{X} P P|P P \boxtimes P P| \\
& P P \backslash X|P P \llbracket R \rrbracket| \text { skipp | throww | yieldd } \mid \mu p p . F F(p p)
\end{aligned}
$$

Examples $\quad\left[\left(a_{1} \div b_{1} \boxtimes a_{2} \div b_{2}\right) ;\right.$ throww $]$

Way to Go

Based on an existing one Stable failures model

Build a new model

Find it out

Way to Go

Based on an existing one Stable failures model

Build a new model

Find it out

Problems

- We failed on the first way
- Compensable processes

$$
(s, T, F)
$$

$$
\begin{aligned}
& \lfloor\mathrm{PPP} \rrbracket=(\mathrm{T}, \mathrm{~F}, \mathrm{G}) \\
& \downarrow \text { Extension }
\end{aligned}
$$

$$
[P P]=(F, D, C)
$$

Complete Lattice or CPO? Refinement order? I don't know

Working Process and Final Result

- Search and tradeoff
- Semantic model and algebraic laws
- Refinement and fixed-point theory

Order and Properties

$$
\left(F_{1}, D_{1}, F_{1}^{c_{1}}, D_{1}\right) \sqsubseteq_{c}\left(F_{2}, D_{2}, F^{c_{2}}, D_{2}^{c}\right)
$$

$F_{1} \supseteq F_{2} \wedge D_{1} \supseteq D_{2} \wedge F^{c_{1} \supseteq F_{2}} \wedge \wedge D_{1}^{c_{1} \supseteq D^{c_{2}}}$

-The order is easy to understand

- The domain is a CPO w.r.t the order
- The order is natural for refinement

Recursion Semantics

- The operators are continuous
- Least fixed-point semantics

$$
\llbracket \mu p p . F F(p p) \rrbracket=\sqcup\left\{F^{n}(d i v \div d i v) \mid n \in N\right\}
$$

$$
\llbracket \mu \mathrm{pp} \cdot(\mathrm{a} \div \mathrm{b} ; \mathrm{pp}) \rrbracket=(\llbracket \mu \mathrm{p} \cdot(\mathrm{a} ; \mathrm{p}) \rrbracket,\{ \},\{ \})
$$

Refinement Laws

- Consistently related

$$
P P_{1} \sqsubseteq_{c} P P_{2} \Rightarrow\left[P P_{1}\right] \sqsubseteq\left[P P_{2}\right]
$$

- Reduction

$$
\begin{aligned}
& Q_{1} \sqsubseteq Q_{2} \Rightarrow P \div Q_{1} \sqsubseteq_{c} P \div Q_{2} \\
& P_{1} \sqsubseteq P_{2} \Rightarrow P_{1} \div Q \sqsubseteq_{c} P_{2} \div Q
\end{aligned}
$$

Basic Algebraic Laws

- Units and zeros

$$
\begin{aligned}
& \text { skipp } ; P P=P P \\
& P P ; \text { skipp }=P P \\
& \text { throww } ; P P=\text { throww }
\end{aligned}
$$

- Distribution

$$
\begin{aligned}
& {[P P \sqcap Q Q]=[P P] \sqcap[Q Q]} \\
& P \div(Q \sqcap R)=(P \div Q) \sqcap(P \div R) \\
& (P \div Q) \backslash X=(P \backslash X) \div(Q \backslash X)
\end{aligned}
$$

Compensation Laws (1)

- If P, P_{1} and P_{2} do not result in an exception

$$
[P \div Q \text {; throww }]=P ; Q
$$

$$
\left[P_{1} \div Q_{1} ; P_{2} \div Q_{2} ; \text { throww }\right]=P_{1} ; P_{2} ; Q_{2} ; Q_{1}
$$

The laws are still valid when P_{1} is YIELD

Compensation Laws (2)

- If all the standard processes terminate successfully and do not diverge
$[(P \div Q) \|$ throww $]=P ; Q$

$$
P_{1} \div Q_{1}\left\|{ }_{X} P_{2} \div Q_{2}=P_{1}\right\|_{X} P_{2} \div Q_{1} \|_{X} Q_{2}
$$

$$
\left[\left(P_{1} \div Q_{1} \boxtimes P_{2} \div Q_{2}\right) \text {; throww }\right]=
$$

$$
\left(P_{1} \| P_{2}\right) ;\left(\left(Q_{1} ; Q_{2}\right) \Pi\left(Q_{2} ; Q_{1}\right)\right)
$$

Interruption Laws

- If all the standard processes do not diverge and terminate successfully
[(yieldd; $P_{1} \div Q_{1} ;$ yieldd; $\left.P_{2} \div Q_{2}\right)$ lithroww] = skip $п\left(P_{1} ; Q_{1}\right) \sqcap\left(P_{1} ; P_{2} ; Q_{2} ; Q_{1}\right)$
[(yieldd; $\left.P_{1} \div Q_{1}\right) \|\left(\right.$ yieldd $\left.; P_{2} \div Q_{2}\right) \mid$ throww] $=$ skipп($\left.P_{1} ; Q_{1}\right) \sqcap\left(P_{2} ; Q_{2}\right) \sqcap\left(\left(P_{1} \| P_{2}\right) ;\left(Q_{1} \| Q_{2}\right)\right)$
yieldd must be used to specify interruption places

Conclusion \& Future Work

© A semantic theory for LRTs

- Non-determinism, deadlock and livelock
- Design by refinement
- Verification of LRTs
- Next step
- Tool development for extended CCSP
- Component-based modeling

17TH INTERNATIONAL SYMPOSIUM ON FORMAL METHODS

Limerick, Ireland, June 20-24,2011

End

Thank you!

