
ACM International Conference on the Foundations of Software Engineering
Mon 15 - Fri 19 July 2024 Porto de Galinhas, Brazil, Brazil

Partial Solution Based Constraint Solving Cache
in Symbolic Execution

Zhenbang Chen
zbchen@nudt.edu.cn

Joint work with Ziqi Shuai, Kelin Ma, Kunlin Liu, Yufeng Zhang, Jun Sun and Ji Wang

1

http://nudt.edu.cn

Symbolic Execution

int foo(int i, j) {
 if (i == 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

i, j ← xi+xj , xj
ret ← xi+xj

i, j ← xi , xj

i, j ← xi-xj , xj
ret ← xi-xj

Constraint solving is the enabling technique

int foo(int i, j) {
 if (i == 0) {
 i = i + j
 } else {
 i = i - j
 }
 return i

}

xi = 0 xi ≠ 0

Solving

2

Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

Challenges of Symbolic Execution

3

This Talk’s Target

Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Path explosion

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

4

Constraint Solving Optimizations

• Optimizing SMT queries

• Word-level simplifications [OSDI’08][ISSTA’17]

• Concretization and abstraction [ISSTA’11][Security’15]

• Reducing SMT solver invocations

• Speculative symbolic execution [ISSRE’12]

• Caching mechanism [OSDI’08][FSE’12][ISSTA’15]

5

Caching Mechanism

i < 5 ∧ i > 10

i < 5 ∧ j > 5

i + j > 5

i = 1 ∧ j > 10

 (UNSAT)∅

{i = 1, j = 10}

{i = 1, j = 5}

{i = 1, j = 11}

Constraint Solving Cache

6

Caching Mechanism
If we encounter…

i + j > 5 Strict Reusingi < 5 ∧ i > 10

i < 5 ∧ j > 5

i + j > 5

i = 1 ∧ j > 10

 (UNSAT)∅

{i = 1, j = 10}

{i = 1, j = 5}

{i = 1, j = 11}

Constraint Solving Cache

7

Caching Mechanism

i < 5 ∧ i > 10
∧ i + j > 20 Subset-based

Reusingi < 5 ∧ j > 5
∧ i + j > 10

i < 5 ∧ i > 10

i < 5 ∧ j > 5

i + j > 5

i = 1 ∧ j > 10

 (UNSAT)∅

{i = 1, j = 10}

{i = 1, j = 5}

{i = 1, j = 11}

Constraint Solving Cache If we encounter…

i + j > 5 Strict Reusing

8

Caching Mechanism

Superset-based
Reusing

i < 5

i < 5 ∧ i > 10
∧ i + j > 20 Subset-based

Reusingi < 5 ∧ j > 5
∧ i + j > 10

i < 5 ∧ i > 10

i < 5 ∧ j > 5

i + j > 5

i = 1 ∧ j > 10

 (UNSAT)∅

{i = 1, j = 10}

{i = 1, j = 5}

{i = 1, j = 11}

Constraint Solving Cache If we encounter…

i + j > 5 Strict Reusing

9

Problem

Superset-based
Reusing

i < 5

i < 5 ∧ i > 10
∧ i + j > 20 Subset-based

Reusingi < 5 ∧ j > 5
∧ i + j > 10

i < 5 ∧ i > 10

i < 5 ∧ j > 5

i + j > 5

i = 1 ∧ j > 10

 (UNSAT)∅

{i = 1, j = 10}

{i = 1, j = 5}

{i = 1, j = 11}

Constraint Solving Cache If we encounter…

i + j > 5 Strict Reusing

The effectiveness of the cache depends on many factors

Search HeuristicProgram Structure Constraint Solver

DFS

BFS

10

Related Works
Reusing across runs

constraint
solving cache

Green[FSE’12], GreenTrie[ISSTA’15]

Reusing through
imprecise matching

Utopia[TSE’21]

Handling address-
dependent queries

Trabish et. al[ICST’21]
11

Related Works

constraint
solving cache

Not general

12

Reusing across runs

Green[FSE’12], GreenTrie[ISSTA’15]

Reusing through
imprecise matching

Utopia[TSE’21]

Handling address-
dependent queries

Trabish et. al[ICST’21]

Improve the
usability of

existing
solutions

Related Works

constraint
solving cache

Not general

13

Reusing across runs

Green[FSE’12], GreenTrie[ISSTA’15]

Reusing through
imprecise matching

Utopia[TSE’21]

Handling address-
dependent queries

Trabish et. al[ICST’21]

Improve the
usability of

existing
solutions

Generally
improving
caching’s

effectiveness
further is still a

challenging
problem

Our Key Insight (1/2)

• Partial Solutions[1] (PS)

• Intermediate values in
constraint solving

• Satisfy some sub-
constraints

[1] Multiplex Symbolic Execution: Exploring Multiple Paths by Solving Once, ASE’20
14

Our Key Insight (2/2)

• Constraint solving often produces lots of partial solutions

• Abstraction refinement-based array theory solving

• Optimization-based floating-point solving

• Simplex-based QF_LIA theory solving

• Conflict-driven clause learning (CDCL) algorithm

• …

15

Key Idea

• Utilize partial solutions to expand constraint solving cache

• Attach more solutions to each cache entry

• Construct more cache entries

• Subset-based reusing mechanism

• Get partial solutions from CDCL framework

16

• Utilize partial solutions to extend constraint solving cache

• Attach more solutions to each cache entry

• Construct more cache entries

• Subset-based reusing mechanism

• Capture partial solutions from CDCL framework

Key Idea

Array Bit-Vector

BV Floating-Point

Bit-Vector

SMT
Theory

Bit-
blasting CNF

SAT
Solver
(CDCL)

Dominant approaches to SMT rely on calling a CDCL-based SAT solver

17

Partial Solution-Based Caching
Existing Cache

LookupSMT query
PS-based Cache

Lookup

Constraint Solver
enabled with PS

PS-based Cache
Update

Existing Cache
Update

Symbolic
Executor

query query

query

solution &&
partial solutions

solution
solution

(solving result)

KLEE[OSDI’08]
Green[FSE’12]
Utopia[TSE’21]

…

18

Partial Solution-Based Caching
Existing Cache

LookupSMT query
PS-based Cache

Lookup

Constraint Solver
enabled with PS

PS-based Cache
Update

Existing Cache
Update

Symbolic
Executor

query query

query

solution &&
partial solutions

solution
solution

(solving result)

PS-based caching is orthogonal to existing caching techniques

KLEE[OSDI’08]
Green[FSE’12]
Utopia[TSE’21]

…

19

Internals: Build PS
• Build PS based on intermediate assignments causing conflicts

Decide BCP

Analyze
Conflict

SAT

UNSAT
20

CDCL
Framework

no conflict

backtrack
If d > 0

conflict
(ps)

Search Deduction

Internals: Build PS
• Build PS based on intermediate assignments causing conflicts

• Only reserve PS whose symbolic booleans are different

Decide BCP

Analyze
Conflict

SAT

UNSAT
21

CDCL
Framework

no conflict

backtrack
If d > 0

conflict
(ps)

Search Deduction

symbolic auxiliary

symbolic auxiliary

conflict 0

conflict 1

ps: x = 1

Two conflicts have the same ps

Internals: Expand the Cache

22

• Construct cache entries: Prefix(φ) ∪ OffThePath(φ)

φ = C1 ∧ C2 ∧ C3

Internals: Expand the Cache

23

• Construct cache entries: Prefix(φ) ∪ OffThePath(φ)

Prefix(φ): all prefixes of φ

Prefix(φ) = {C1, C1 ∧ C2}

φ = C1 ∧ C2 ∧ C3

Internals: Expand the Cache

24

• Construct cache entries: Prefix(φ) ∪ OffThePath(φ)

Prefix(φ): all prefixes of φ

OffThePath(φ): path constraints of
φ’s off-the-path branches

Prefix(φ) = {C1, C1 ∧ C2}

OffThePath(φ) = {~C1, C1 ∧ ~C2, C1 ∧ C2 ∧ ~C3}

φ = C1 ∧ C2 ∧ C3

Internals: Expand the Cache

25

• Construct cache entries: Prefix(φ) ∪ OffThePath(φ)

• Extend the single solution of cache entry to a solution set

C1 ∧ ~C2 ∆
C1 ∧ C2 ∧ ~C3 o

C1 ∧ C2 o
C1 {∆, o}

Toy Example

26

Depth-First Search (DFS) Heuristic

Example: Traditional SE

27

• SE needs to decide the satisfiability of 6 SMT queries

• $+%≥10 with solution {$ = 10, % = 0}

• $+%≥10 ∧ 2%−$≥5 with solution {$ = 26, % = 17}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%≥15 with solution {$ = 20, % = 20}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%<15 with solution {$ = 7, % = 31}

• $+%≥10 ∧ 2%−$<5 with solution {$ = 10, % = 1}

• $+%<10 with solution {$ = 0, % = 9} Need 6 times of solving

Example: Subset-based Caching

28

• SE needs to decide the satisfiability of 6 SMT queries

• $+%≥10 with solution {$ = 10, % = 0}

• $+%≥10 ∧ 2%−$≥5 with solution {$ = 26, % = 17}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%≥15 cached by solution {$ = 26, % = 17}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%<15 with solution {$ = 7, % = 31}

• $+%≥10 ∧ 2%−$<5 cached by solution {$ = 10, % = 0}

• $+%<10 with solution {$ = 0, % = 9} Need 4 times of solving

Example: PS-Based Caching

29

• SE needs to decide the satisfiability of 6 SMT queries

• $+%≥10 with solution {$ = 10, % = 0}

• $+%≥10 ∧ 2%−$≥5 with solution {$ = 26, % = 17}

Too simple to produce any ps

x + y ≥ 10 {{x = 10, y = 0}, {x = 4, y = 64}}

x + y < 10 {{x = 0, y = 0}, {x = 58, y = 81}}

x + y ≥ 10 ∧ 2y − x ≥ 5 {{x = 26, y = 17}}

Three partial solutions:

{$ = 58, % = 81},

{$ = 4, % = 64},

 {$ = 0, % = 0}

Example: PS-Based Caching

30

• SE needs to decide the satisfiability of 6 SMT queries

• $+%≥10 with solution {$ = 10, % = 0}

• $+%≥10 ∧ 2%−$≥5 with solution {$ = 26, % = 17}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%≥15 cached by solution {$ = 26, % = 17}

• $+%≥10 ∧ 2%−$≥5 ∧ 2$−%<15 cached by solution {$ = 4, % = 64}

• $+%≥10 ∧ 2%−$<5 cached by solution {$ = 10, % = 0}

• $+%<10 cached by solution {$ = 0, % = 0} Need 2 times of solving

x + y ≥ 10 {{x = 10, y = 0}, {x = 4, y = 64}}

x + y < 10 {{x = 0, y = 0}, {x = 58, y = 81}}

x + y ≥ 10 ∧ 2y − x ≥ 5 {{x = 26, y = 17}}

Implementation

• Two types of symbolic executors

• KLEE / KLEE-Float (C): Subset&Supset-based caching

• Grulia service in SPF & Green (Java): Utopia[TSE’21]

• Two SMT solvers

• STP: external SAT solver (Minisat[SAT’03])

• Z3: self-customized SAT solver

31

Implementation

• Implement two parameters to achieve trade-off

• Kp: limits the number of ps returned by the solver

• Ks: limits the maximum size of the solution set
•

effectiveness vs. time & memory overhead

32

Evaluation

• Research questions

• RQ1: Effectiveness - the number of explored paths or states

• RQ2: Efficiency - path exploration trend

• RQ3: The impact of parameter tuning (Kp and Ks)

33

Experimental Setup

Experiments Symbolic Executor /
Timeout

Constraint Solver /
Timeout Kp + Ks Search Heuristic

QF_ABV
based analysis

KLEE / 30min STP & Minisat / 30s 250 + 50 Depth-First (DFS),
Breadth-First (BFS),

Random Cover-New
(RCN)QF_ABVFP

based analysis
KLEE-Float / 30min Z3 / 200s 2500 + 2500

QF_BV
based analysis

SPF & Green / 30min Z3 / 5s 100 + 100 Depth-First (DFS),
Breadth-First (BFS)

34

Benchmark

• Benchmark

• QF_ABV: 15 real-world open-source C programs

• QF_ABVFP: 32 randomly chosen GSL functions

• QF_BV: 13 Java programs from Green benchmark

35

Results of Effectiveness (QF_ABV)

36

Search Heuristic Improvement (%)

DFS 7.0

BFS 16.0

RCN 23.1

Improve the numbers of
paths for 9 programs

under all search heuristics

Results of Effectiveness (QF_ABVFP)

37

Search Heuristic Improvement (%)

DFS 71.0

BFS 70.8

RCN 93.8

Improve the numbers of paths for 29
functions under all search heuristics

Results of Effectiveness (QF_ABVFP)

38

Search Heuristic Improvement (%)

DFS 71.0

BFS 70.8

RCN 93.8

Improve the numbers of paths for 29
functions under all search heuristics

• The ratios of UNSAT queries among those reaching the solver
vary a lot

• QF_ABV: DFS (0.7), BFS (0.6), RCN (0.61)

• QF_ABVFP: DFS (0.4), BFS (0.47), RCN (0.4)

The PS-based caching mechanism can only handle SAT queries

Results of Effectiveness (QF_BV)

39

Search Heuristic Improvement (%)

DFS 114.3

BFS 56.8

• The speedups of early
completed tasks

• DFS: 1.72x ~ 12.5x

• BFS: 1.85x ~ 80.67x

Results of Efficiency

40

QF_ABV Experiment QF_ABVFP Experiment QF_BV Experiment

Speedup
DFS: 1.07x

BFS: 1.11x

RCN: 1.15x

Speedup
DFS: 1.67x

BFS: 1.36x

RCN: 1.50x

Speedup
DFS: 2.3x

BFS: 2.0x

Conclusion

41

42

Thank you!
Q&A

ACM International Conference on the Foundations of Software Engineering
Mon 15 - Fri 19 July 2024 Porto de Galinhas, Brazil, Brazil

https://github.com/zbchen/pscache

Artifact

