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Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Decision Procedures An Algorithmic Point of View, Second Edition, 2016
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Floating-point (FP) Constraint Solving

• Highly demanded for analyzing and verifying FP programs 

3

Explosion of first Ariane 5 flight



SOTA FP Solving Methods

• Bit-blasting Based Approaches 

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches 

• dReal, COLIBRI, ...

• Search-Based Approaches 

• JFS, Xsat, ...
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Not scalable

a3 + b3 > 0

12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Z3: > 8s
• CVC5: > 2s
• MathSAT5: > 3s
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Not scalable

Not sound

(a + b) + c ≠ a + (b + c)
SAT if a, b, and c are FP numbers
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Not scalable

Not sound

Not complete

a − 1.0 = 1.1 UNSAT if a is a 32-bits FP number



FP Constraint Solving is Challenging

• Precise encoding is expensive
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a3 + b3 > 0
• Z3: > 8s
• CVC5: > 2s
• MathSAT5: > 3s

12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Real number encoding is unsound

• Search-based method is incomplete

a − 1.0 = 1.1
UNSAT if a is a 32-bits FP number

(a + b) + c ≠ a + (b + c)
SAT if a, b, and c are FP numbers



QSF’s Target

• Bit-blasting Based Approaches 

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches 

• dReal, COLIBRI, ...

• Search-Based Approaches 

• JFS, Xsat, ...
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Not scalable

Not sound

Improve the efficiency of 
solving FP constraints



Our Observation 

• Only single object function is 
employed for searching

• Fuzzing based:  #unsatisfied 
atomic constraints

• Optimization based: fitness 
(distance) function’s result 
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According to f1, the first assignment 
will be prioritized

f1 = 1 f1 = 2



Our Observation 

• Only single object function is 
employed for searching

• Fuzzing based:  #unsatisfied 
atomic constraints

• Optimization based: fitness 
(distance) function’s result 
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According to f2, the second 
assignment will be prioritized

f1 = 2
f2 = 64 f2 = 2
f1 = 1



Our Key Insight

• Only single object function is 
employed for searching

• Fuzzing based:  #unsatisfied 
atomic constraints

• Optimization based: fitness 
(distance) function’s result 
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f1 = 2
f2 = 64 f2 = 2
f1 = 1

Consider both f1 and f2 in the search procedure



Our Key Insight 

• Mutation operators in optimization can be customized for FPs
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⋯

Multiple stepsFraction 
Mutation
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• Mutation operators in optimization can be customized for FPs

14

[x ↦ 128,y ↦ 64]
Single stepExponent 

Mutation



Framework
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MOCEA

FP Constraint 
in CNF 

SAT/Unknown

Multi-Objective 
OptimizationTransformer
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MOCEA

FP Constraint 
in CNF 

SAT/Unknown

Multi-Objective 
Optimization

Transform the FP 
constraint solving problem 

into a multi-objective 
optimization problem

Transformer



Framework
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MOCEA

FP Constraint 
in CNF 

SAT/Unknown

Multi-Objective 
Optimization

Specially designed 
optimization algorithm to 

solve the transformed 
multi-objective problem

Transformer



Transformation Details
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CNF

Multi-objective 
optimization problem Sum of the violations of the 

constraints under  α

The number of constraints that 
are not satisfied under  α



Transformation Details
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H is hamming distance 



Transformation Details
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Unsigned integer to avoid floating-point underflow



Optimization Algorithm
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Optimization Algorithm
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Initialization
population

Select
population

Select
Operator
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population

Terminate?

Combine
population

SAT/
Unknown

FP-oriented 
mutation operators

Multi-
operator 

collaborative 
mutation
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floating-point 
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Evaluation

• Implementation based on goSAT

• Z3 as FP constraint’s frontend

• Object function’s LLVM IR is generated for JIT

• MOCEA implementation based on NLopt
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Evaluation

• Research Questions

• Q1: How effective and efficient is QSF in SMT-LIB benchmarks?

• Q2: How effective and efficient is QSF in analyzing real floating-
point programs?

• Q3: How do different components affect the overall 
performance of QSF?
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Evaluation

• Benchmarks and baselines

• QF_FP SMTLIB

• 266 SAT or UNKNOWN

• Real-world program

• 3493 SAT or UNKNOWN

• Timeout: 60s and 600s
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Symbolic Execution of Floating-point Programs: How far are we? Xu Yang, Guofeng Zhang, Ziqi Shuai, Zhenbang Chen, Ji Wang. Journal of Systems and Software. 2024.



Evaluation: Effectiveness (QF_FP benchmark) 
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QSF is inferior to 
Bitwuzla, but is 

complementary to it



Evaluation: Effectiveness (QF_FP benchmark) 
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QSF+Bitwuzla has the best performance in combined solvers

60s 600s



Evaluation: Effectiveness (Real-world program benchmark) 
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QSF outperforms all 
compared methods



Evaluation: Efficiency (QF_FP & Real-world program) 
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60s 600s 60s 600s
Bitwuzla

JFS

QSF is more efficient than Bitwuzla&JFS on both benchmarks



Evaluation: Application to Symbolic Execution
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The number of covered branches obtained by QSF is better than 
that of other methods

BFS DFS



Evaluation: Ablation studies
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Bi-
objective 
guidance 
is better 

than 
single 

objective 
guidance



Evaluation: Ablation studies
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MOCEA is 
better than 
the classic 

evolutionary 
algorithm

Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective 
genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary 
computation, 2002, 6(2): 182-197.



Evaluation: Ablation studies
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The 
preprocessing 
is helpful to 

QSF



Conclusion
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Our Key Insight

• Only single object function is 
employed for searching

• Fuzzing based:  #unsatisfied 
atomic constraints

• Optimization based: fitness 
(distance) function’s result 
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Consider both f1 and f2 in the search procedure
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[x ↦ 128,y ↦ 64]
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Mutation
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12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Real number encoding is unsound

• Search-based method is incomplete

a − 1.0 = 1.1
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Thank you! 
Q&A

Artifact: https://github.com/zbchen/QSF
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