
ACM International Conference on the Foundations of Software Engineering
Mon 23 - Fri 27 June 2025 Trondheim, Norway

QSF: Multi-objective Optimization Based
Efficient Solving for Floating-Point Constraints

Joint work with Xu Yang, Wei Dong and Ji Wang

Zhenbang Chen
zbchen@nudt.edu.cn

Constraint Solving
X

Fig. 1. Decision procedures can be rather complex . . . those that we consider in
this book take formulas of different theories as input, possibly mix them (using
the Nelson–Oppen procedure—see Chap. 10), decide their satisfiability (“YES” or
“NO”), and, if yes, provide a satisfying assignment

book may also help graduate students entering the field, who can save the
effort to gather information from what seems to be an endless list of articles.

The decision procedures that we describe in this book draw from diverse
fields such as graph theory, logic, operations research, and artificial intelli-
gence. These procedures have to be highly efficient, since the problems they
solve are inherently hard. They never seem to be efficient enough, however:
what we want to be able to prove is always harder than what we can prove.
Their asymptotic complexity and their performance in practice must always
be pushed further. These characteristics are what makes this topic so com-
pelling for research and teaching.

PREFACE

Decision Procedures An Algorithmic Point of View, Second Edition, 2016

2

Floating-point (FP) Constraint Solving

• Highly demanded for analyzing and verifying FP programs

3

Explosion of first Ariane 5 flight

SOTA FP Solving Methods

• Bit-blasting Based Approaches

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches

• dReal, COLIBRI, ...

• Search-Based Approaches

• JFS, Xsat, ...

4

Not scalable

a3 + b3 > 0

12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Z3: > 8s
• CVC5: > 2s
• MathSAT5: > 3s

SOTA FP Solving Methods

• Bit-blasting Based Approaches

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches

• dReal, COLIBRI, ...

• Search-Based Approaches

• JFS, Xsat, ...

5

Not scalable

Not sound

(a + b) + c ≠ a + (b + c)
SAT if a, b, and c are FP numbers

SOTA FP Solving Methods

• Bit-blasting Based Approaches

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches

• dReal, COLIBRI, ...

• Search-Based Approaches

• JFS, Xsat, ...

6

Not scalable

Not sound

Not complete

a − 1.0 = 1.1 UNSAT if a is a 32-bits FP number

FP Constraint Solving is Challenging

• Precise encoding is expensive

7

a3 + b3 > 0
• Z3: > 8s
• CVC5: > 2s
• MathSAT5: > 3s

12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Real number encoding is unsound

• Search-based method is incomplete

a − 1.0 = 1.1
UNSAT if a is a 32-bits FP number

(a + b) + c ≠ a + (b + c)
SAT if a, b, and c are FP numbers

QSF’s Target

• Bit-blasting Based Approaches

• Z3, MathSAT5, CVC5, ...

• Real Arithmetic Based Approaches

• dReal, COLIBRI, ...

• Search-Based Approaches

• JFS, Xsat, ...

8

Not scalable

Not sound

Improve the efficiency of
solving FP constraints

Our Observation

• Only single object function is
employed for searching

• Fuzzing based: #unsatisfied
atomic constraints

• Optimization based: fitness
(distance) function’s result

9

Our Observation

• Only single object function is
employed for searching

• Fuzzing based: #unsatisfied
atomic constraints

• Optimization based: fitness
(distance) function’s result

10

According to f1, the first assignment
will be prioritized

f1 = 1 f1 = 2

Our Observation

• Only single object function is
employed for searching

• Fuzzing based: #unsatisfied
atomic constraints

• Optimization based: fitness
(distance) function’s result

11

According to f2, the second
assignment will be prioritized

f1 = 2
f2 = 64 f2 = 2
f1 = 1

Our Key Insight

• Only single object function is
employed for searching

• Fuzzing based: #unsatisfied
atomic constraints

• Optimization based: fitness
(distance) function’s result

12

f1 = 2
f2 = 64 f2 = 2
f1 = 1

Consider both f1 and f2 in the search procedure

Our Key Insight

• Mutation operators in optimization can be customized for FPs

13
⋯

Multiple stepsFraction
Mutation

Our Key Insight

• Mutation operators in optimization can be customized for FPs

14

[x ↦ 128,y ↦ 64]
Single stepExponent

Mutation

Framework

15

MOCEA

FP Constraint
in CNF

SAT/Unknown

Multi-Objective
OptimizationTransformer

Framework

16

MOCEA

FP Constraint
in CNF

SAT/Unknown

Multi-Objective
Optimization

Transform the FP
constraint solving problem

into a multi-objective
optimization problem

Transformer

Framework

17

MOCEA

FP Constraint
in CNF

SAT/Unknown

Multi-Objective
Optimization

Specially designed
optimization algorithm to

solve the transformed
multi-objective problem

Transformer

Transformation Details

18

CNF

Multi-objective
optimization problem Sum of the violations of the

constraints under α

The number of constraints that
are not satisfied under α

Transformation Details

19

H is hamming distance

Transformation Details

20

Unsigned integer to avoid floating-point underflow

Optimization Algorithm

21

Initialization
population

Select
population

Select
Operator

Merge
population

Terminate?

Combine
population

SAT/
Unknown

Optimization Algorithm

22

Initialization
population

Select
population

Select
Operator

Merge
population

Terminate?

Combine
population

SAT/
Unknown

Pre-analyze
floating-point
constraints

Optimization Algorithm

23

Initialization
population

Select
population

Select
Operator

Merge
population

Terminate?

Combine
population

SAT/
Unknown

Multi-
operator

collaborative
mutation

Pre-analyze
floating-point
constraints

Optimization Algorithm

24

Initialization
population

Select
population

Select
Operator

Merge
population

Terminate?

Combine
population

SAT/
Unknown

FP-oriented
mutation operators

Multi-
operator

collaborative
mutation

Pre-analyze
floating-point
constraints

Evaluation

• Implementation based on goSAT

• Z3 as FP constraint’s frontend

• Object function’s LLVM IR is generated for JIT

• MOCEA implementation based on NLopt

25

Evaluation

• Research Questions

• Q1: How effective and efficient is QSF in SMT-LIB benchmarks?

• Q2: How effective and efficient is QSF in analyzing real floating-
point programs?

• Q3: How do different components affect the overall
performance of QSF?

26

Evaluation

• Benchmarks and baselines

• QF_FP SMTLIB

• 266 SAT or UNKNOWN

• Real-world program

• 3493 SAT or UNKNOWN

• Timeout: 60s and 600s

27

Symbolic Execution of Floating-point Programs: How far are we? Xu Yang, Guofeng Zhang, Ziqi Shuai, Zhenbang Chen, Ji Wang. Journal of Systems and Software. 2024.

Evaluation: Effectiveness (QF_FP benchmark)

28

QSF is inferior to
Bitwuzla, but is

complementary to it

Evaluation: Effectiveness (QF_FP benchmark)

29

QSF+Bitwuzla has the best performance in combined solvers

60s 600s

Evaluation: Effectiveness (Real-world program benchmark)

30

QSF outperforms all
compared methods

Evaluation: Efficiency (QF_FP & Real-world program)

31

60s 600s 60s 600s
Bitwuzla

JFS

QSF is more efficient than Bitwuzla&JFS on both benchmarks

Evaluation: Application to Symbolic Execution

32

The number of covered branches obtained by QSF is better than
that of other methods

BFS DFS

Evaluation: Ablation studies

33

Bi-
objective
guidance
is better

than
single

objective
guidance

Evaluation: Ablation studies

34

MOCEA is
better than
the classic

evolutionary
algorithm

Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective
genetic algorithm: NSGA-II[J]. IEEE transactions on evolutionary
computation, 2002, 6(2): 182-197.

Evaluation: Ablation studies

35

The
preprocessing
is helpful to

QSF

Conclusion

36

Our Key Insight

• Only single object function is
employed for searching

• Fuzzing based: #unsatisfied
atomic constraints

• Optimization based: fitness
(distance) function’s result

12

f1 = 2
f2 = 64 f2 = 2
f1 = 1

Consider both f1 and f2 in the search procedure

Evaluation: Application to Symbolic Execution

32

The number of covered branches obtained by QSF is better than
that of other methods

BFS DFS

Our Key Insight

• Mutation operators in optimization can be customized for FPs

14

[x ↦ 128,y ↦ 64]
Single stepExponent

Mutation

FP Constraint Solving is Challenging

• Precise encoding is expensive

7

a3 + b3 > 0
• Z3: > 8s
• CVC5: > 2s
• MathSAT5: > 3s

12th Gen Intel(R) Core(TM) i9-12900H CPU@3.0GHz

• Real number encoding is unsound

• Search-based method is incomplete

a − 1.0 = 1.1
UNSAT if a is a 32-bits FP number

(a + b) + c ≠ a + (b + c)
SAT if a, b, and c are FP numbers

37

Thank you!
Q&A

Artifact: https://github.com/zbchen/QSF

ACM International Conference on the Foundations of Software Engineering
Mon 23 - Fri 27 June 2025 Trondheim, Norway

