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ABSTRACT
Regression Test Selection (RTS) minimizes the cost of regression

testing by selecting only the tests affected by code changes. We

introduce a novel hybrid RTS approach, JcgEKS, which enhances

Ekstazi by integrating static method call graphs. It combines the

advantages of both dynamic and static analyses, improving the

precision from class level to method level without sacrificing safety

and reducing the overall time. Moreover, it safely addresses the

challenge of handling callbacks from external libraries at the static

method-level RTS. To evaluate the safety of JcgEKS, we insert log

statements into code patches and monitor the relationship between

the test and the output during execution to gauge the test’s impact

accurately. The preliminary experimental results are promising.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging.
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1 INTRODUCTION
Regression Test Selection (RTS) [5] enhances the regression testing

process by selectively executing tests affected by code changes. It

comprises dynamic [2, 7], which tests previous versions to collect

dependencies, and static [3, 6], which infers dependencies using

static analysis. RTS is categorized into control flow, method, file,

and module levels based on dependency granularity.

Recent studies indicate that file-level RTS (FRTS) has the short-

est end-to-end time compared to other granularity levels [2, 7].

However, FRTS still suffers from imprecision, sometimes selecting

unnecessary tests. On the other hand, fine-grained analysis offers

higher precision but is often impractical due to the overhead [4].

For instance, dynamic method-level RTS (MRTS) instruments each

method, which introduces substantial overhead. Static MRTS does

not impose an additional runtime burden but inherits the limita-

tions of static analysis, e.g., the imprecision and incompleteness

caused by advanced language features. Moreover, static analysis

may struggle to assess the impact of the dependencies when calling

external libraries. Therefore, it is natural to combine different RTS

techniques [5, 7] to improve the effectiveness and efficiency further.

In this extended abstract, we present ongoing work of synergiz-

ing dynamic FRTS and static MRTS to improve regression testing.

Dynamic FRTS is effective in practice and safer than static FRTS.

However, it still faces challenges in selecting non-redundant tests

due to lacking program semantics, especially for large-scale pro-

grams. We can employ lightweight and efficient static analysis to

improve dynamic FRTS. Based on this insight, we propose a hybrid

RTS approach that leverags the advantages of dynamic FRTS and

static MRTS, reducing the end-to-end testing time without sacri-

ficing safety. Besides, the dynamic information collected during

dynamic FRTS is also used to improve the precision of the static

analysis in static MRTS (e.g., reflection and inheritance).

We have implemented a prototype, called JcgEKS, for Java pro-

grams based on Ekstazi (i.e., the state-of-the-art dynamic FRTS

tool [2]) and Java-callgraph [1], i.e., a tool for generating static

call graphs for Java programs. The preliminary results of applying

the prototype on several real-world open-source Java programs

indicate the promise of our method.
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Figure 1: The framework of our hybrid RTS

2 FRAMEWORK
Figure 1 shows our RTS framework, following the procedure of

dynamic RTS divided into two phases: selection and execution. In

the selection phase, JcgEKS identifies test classes affected by code

changes, which are subsequently executed during the execution

phase. To collect file dependency information dynamically, JcgEKS

instruments the program to record the loaded classes. The collected

class dependency information is stored in metadata, which will be

used to filter tests for the next revision. The selection phase, as

shown in the figure 1, can be described in four steps:

• Calculate the checksum of each class and method (2.1);

• Compare the checksum differences (2.2);

• Generate the enhanced method call graph (2.3);

• Refine the affected test classes at the method level (2.4).

2.1 Checksum Computation
The first step calculats the checksum for each class and method in

the new version to monitor code modifications. It identifies the files

with altered checksums in the new version and then compares the

methods with changed checksums within those files to pinpoint the

modified files and the modified methods. This process of identifying

changed methods enhances the precision in locating tests impacted

by the code changes, thereby improving selection accuracy.

2.2 Test Classes Selection
The second step compares checksum differences at the file level

to identify the test classes impacted by code changes. It extracts

test classes dependent on the changed files, utilizing the metadata

recorded in the previous execution phase. However, this initial iden-

tified test classes may be redundant. To enhance accuracy further,

the process should be refined by incorporating additional informa-

tion, such as method dependence.

2.3 Call Graph Generation
The third step constructs a method call graph enrichedwith runtime

information. We will incrementally generate a static call graph

for the new code version. Besides, using the runtime information

such as reflections extracted from metadata, we can improve the

precision and completeness of the call graph. Hence, our call graph

construction method combines dynamic and static analysis. This

step provides a reliable foundation for the subsequent refinement

step, ensuring the safety and precision of the final result.

2.4 Test Classes Refinement
The fourth step entails further method-level refinement of initially

identified coarse-grained affected test classes from the second step.

Each selected test class is individually assessed to determine if it

directly or indirectly calls the changed method, using the method

call graph generated in the third step. Test classes unaffected at the

method level, despite file-level impact, are excluded. After evalu-

ating all the initially selected test classes, the final outcome is the

refined set of tests. Recognizing static call graphs’ limitations in

analyzing external libraries, we consider scenarios where callbacks

to project code might occur due to dynamic dispatch.

3 PRELIMINARY EVALUATION
We developed a prototype based on Ekstazi and Java-callgraph.

The evaluation uses three metrics: the percentage of chosen test

cases, the total testing duration, and the identification of missing

tests (i.e., method’s safety). The percentage of selected test cases

helps gauge the accuracy of our method selection. The total testing

duration indicates the time saved by our method overall. To assess

the safety of RTS tools, we suggest inserting logging statements

into the modified methods and executing all test cases to accurately

identify the affected tests through analysis of the execution logs.

We evaluated the effectiveness on 150 revisions across three

open-source projects
1 2 3

and compared it with three baseline RTS

tools (i.e., Ekstazi, STARTS and FineEkstazi). Initial experimental

results show that, on average, the number of the test cases chosen

by our approach is 46.9%, 27.1%, and 67.9% of those selected by three

other tools, respectively. Furthermore, our approach’s end-to-end

time is 72.7%, 33.1%, and 83.3% of those needed by the baseline tools,

respectively. These results indicate the promise of our approach. In

addition, our approach and Ekstazi do not miss tests, but STARTS

and FineEkstazi miss some tests.

4 NEXT STEP
The subsequent steps involve three key aspects: (1) Evaluation

on more benchmarks; (2) Assessing the security of RTS tools; (3)

Applying our method to other programs in different languages.
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