
Symbolic Execution Based Automatic Performance Optimization
for MPI Programs

Zheng Bian
State Key Laboratory of Complex &
Critical Software Environment,
College of Computer Science and

Technology
National University of Defense

Technology
Changsha, Hunan, China
bianzheng22@nudt.edu.cn

Zhenbang Chen∗
State Key Laboratory of Complex &
Critical Software Environment,
College of Computer Science and

Technology
National University of Defense

Technology
Changsha, Hunan, China
zbchen@nudt.edu.cn

Ji Wang
State Key Laboratory of Complex &
Critical Software Environment,
College of Computer Science and

Technology
National University of Defense

Technology
Changsha, Hunan, China

wj@nudt.edu.cn

Abstract
Overlapping communication with computation is a common way to
optimize parallel programs in high-performance computing. How-
ever, this optimization is often carried out manually and is chal-
lenging to be automated to achieve a better performance. In this
extended abstract, we report our recent progress of a symbolic
execution-based automatic method for optimizing Message Pass-
ing Interface (MPI) programs by overlapping communication and
computation. The key idea is to transform blocking communication
operations into non-blocking ones while preserving the correct-
ness of computation. We employ symbolic execution to extract the
symbolic paths from the MPI program, based on which we can find
the potential locations for optimization in each path. Then, we syn-
thesize a global optimization transformation based on the potential
optimization locations. The MPI program’s performance can be
improved after applying the global optimization transformation.
The preliminary experimental results indicate the promise of our
method.

CCS Concepts
• Software and its engineering → Software performance; Au-
tomated static analysis; Access protection.

Keywords
MPI, Perfomance Optimization, Symbolic Execution

ACM Reference Format:
Zheng Bian, Zhenbang Chen, and Ji Wang. 2025. Symbolic Execution Based
Automatic Performance Optimization for MPI Programs. In 33rd ACM Inter-
national Conference on the Foundations of Software Engineering (FSE Com-
panion ’25), June 23–28, 2025, Trondheim, Norway. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3696630.3731438

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
FSE Companion ’25, Trondheim, Norway
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1276-0/2025/06
https://doi.org/10.1145/3696630.3731438

1 Introduction
Message Passing Interface (MPI) is the de-facto programming stan-
dard in high-performance computing (HPC), but communication
latency often dominates the execution time of communication in-
tensive MPI programs. Non-blocking operations (e.g., MPI_Isend)
allow communication to overlap with computation, hiding latency.
However, overlapping may cause faults if data is modified before
being sent. To ensure correctness, MPI_Wait blocks execution until
the communication completes, typically placed before accessing re-
lated data. The code between a non-blocking call and its wait is the
overlapping window, where communication and computation run
in parallel. A larger overlapping window can enhance performance.

Manually overlapping communication and computation is com-
mon but tedious and error-prone when optimizing legacy blocking
codes. It is desirable and challenging to automatically transform
blocking communications to non-blocking ones, including automat-
ically inserting the wait operations to preserve the computation’s
correctness while targeting the largest overlapping window. Since
correctness depends on data dependencies, program analysis tech-
niques can be used to automate this transformation and enhance
performance.

Automatic optimization approaches are either static [1, 3, 6] or
dynamic [4]. Static methods analyze memory accesses to ensure cor-
rectness, but limited precision often misses the largest overlapping
window. Dynamic methods can find optimal overlaps per path but
suffer from input coverage gaps and runtime overhead. Achieving
maximal overlap with low overhead and guaranteed correctness
remains challenging.

Symbolic execution is a precise analysis method that balances
dynamic and static analysis methods, which covers the input space
while preserving the analysis precision. Though time-consuming, it
is suitable for compile-time use to optimize HPC programs, where
runtime performance is critical.Based on this insight, we propose to
employ symbolic execution to find the largest overlapping windows
for the MPI program. In this paper, we present our in-progress
work, called MPI-SO, which uses symbolic execution to precisely
capture the memory operations related to communications in the
program and automatically transform blocking communications
to non-blocking ones. The key idea is to identify the path-level
overlappingwindows by symbolic execution and synthesize a global
optimization transformation. Built on an existing MPI symbolic
execution framework [2], MPI-SO’s preliminary results show that it

https://orcid.org/0009-0006-6095-6858
https://orcid.org/0000-0002-4066-7892
https://orcid.org/0000-0003-0637-8744
https://doi.org/10.1145/3696630.3731438
https://doi.org/10.1145/3696630.3731438


FSE Companion ’25, June 23–28, 2025, Trondheim, Norway

Symbolic Executor

Monitor Synthesizer

Non-blocking Transformer

MPI-SO

MPI-SV

Deadlock
Verification

Optimization
Strategy

MPI_Wait Insert Loc

Bytecode

MPI
Program

Clang

MPI 
Bytecode

Figure 1: MPI-SO Framework and Workflow

creates larger overlapping windows than static methods by crossing
loops and function calls.

2 Symbolic Optimizer Framework
Figure 1 illustrates MPI-SO’s framework and workflow. We sym-
bolically execute MPI bytecode compiled by clang, during which
theMonitor observes communication operation related memory
ranges. Memory operation on these ranges are handed over to the
Synthesizer. After synthesize, a unified optimization plan will be
adopted by Non-blocking Transformer and perform transforma-
tion on the bytecode. To address potential deadlocks from increased
asynchrony, we verify the transformed program using MPI-SV [2].
In the following chapters, we will introduce the elements depicted
in the figure.

2.1 Monitor
The monitor identifies memory operations associated with each
communication operation within the current symbolic execution
path via assuming that the communication operations are in their
corresponding non-blocking ones.

Once a memory operation accesses the memory used by a com-
munication operation, which triggers a data error, the monitor can
identify an optimization strategy for the current execution path.

2.2 Synthesizer
Due to loops in the program and the multi-path exploration in
symbolic execution, a single communication operation may have
multiple potential optimization strategies. For correctness, we need
to synthesize different optimization strategies globally to derive a
unified wait operation insert location to create overlapping win-
dows, which is the nearest common pre-dominator of the memory
operations in different optimization strategies.

2.3 Non-blocking Transformer
Communication operations will be transformed to non-blocking
ones according to their insertion locations determined by during
global synthesis. We will create MPI_Request and MPI_Status to
insert wait operations, in addition to some auxiliary flags. Our
implementation leverages an LLVM Pass to facilitate the transfor-
mation.

3 Preliminary Experiment
The prototype of MPI-SO is now capable of transforming all block-
ing communication operations into non-blocking ones. Previous
experiments [1] have shown that program execution time is not
a reliable metric for evaluating the effectiveness of overlapping
window. In addition to using the number of instructions in

overlapping windows as a static metric [5], we propose a dy-
namic metric—the execution time of overlapping windows—to
mitigate the limitations caused by varying execution costs of differ-
ent instruction types. This new metric more accurately reflects the
actual size of overlapping windows during program execution. In
our preliminary experiments, MPI-SO showed good performance
on both metrics.
1 do{
2 /*... Code Omitted ...*/
3 if(flag [0]){
4 MPI_Wait (&req[0], &stat [0]);
5 flag [0] = 0;
6 }
7 for (...){
8 Bloc_Vector_X[index] = ...;
9 /*... Code Omitted ...*/
10 }
11 MPI_Iallgather(Bloc_Vector_X , Bloc_VectorSize ,

MPI_DOUBLE , ..., &req [0]);
12 flag [0] = 1;
13 /*... Code Omitted ...*/
14 } while (...);

Listing 1: congrad.c after transform

In Listing 1, MPI-SO can transcend loop body boundaries and
insert the wait operation of Line 11’s collective communication
just before Line 7, i.e., the subsequent loop iterations. The number
of instructions in the overlapping window MPI-SO created is 2x
of that using Petal[1]. Besides, under 12 running configurations,
the execution time of MPI-SO’s overlapping window is on average
24x of that using Petal. These results indicate the effectivness of
MPI-SO.

4 Next Step
Our future work will be mainly carried out in the following aspects:
(1) Evaluate MPI-SO on more benchmarks; (2) Instead of applying
an unified wait operation, we directly apply optimization strategies
of different execution paths, thereby maximizing the overlapping
window for explored paths.

Acknowledgments
This research was supported by National Key R&D Program of
China (No. 2022YFB4501903) and the NSFC Programs (No. 62172429
and 62032024).

References
[1] Hadia Ahmed and et.al. 2017. Transforming blocking MPI collectives to Non-

blocking and persistent operations. In EuroMPI ’17. Chicago, IL, USA, September
25–28, 2017, 11 pages. https://doi.org/10.1145/3127024.3127033

[2] Zhenbang Chen and et.al. 2020. MPI-SV: a symbolic verifier for MPI programs. In
ICSE ’20 (2020). 93–96. https://doi.org/10.1145/3377812.3382144

[3] Anthony Danalis and et.al. 2009. MPI-aware compiler optimizations for improving
communication-computation overlap. In ICS ’09 (2009). 316–325. https://doi.org/
10.1145/1542275.1542321

[4] Alexis Lescouet and et.al. 2020. Transparent Overlapping of Blocking Com-
munication in MPI Applications. In HPCC/SmartCity/DSS (2020). IEEE, 744–749.
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00097

[5] Van Man Nguyen. 2022. Compile-time Validation and Optimization of MPI Non-
blocking Communications. Ph. D. Dissertation. Bordeaux. https://theses.fr/
2022BORD0415

[6] Van Man Nguyen and et.al. 2020. Automatic Code Motion to Extend MPI
Nonblocking Overlap Window. In High Performance Computing. 43–54. https:
//doi.org/10.1007/978-3-030-59851-8_4

Received 2025-2-28; accepted 2025-4-10

https://doi.org/10.1145/3127024.3127033
https://doi.org/10.1145/3377812.3382144
https://doi.org/10.1145/1542275.1542321
https://doi.org/10.1145/1542275.1542321
https://doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00097
https://theses.fr/2022BORD0415
https://theses.fr/2022BORD0415
https://doi.org/10.1007/978-3-030-59851-8_4
https://doi.org/10.1007/978-3-030-59851-8_4

	Abstract
	1 Introduction
	2 Symbolic Optimizer Framework
	2.1 Monitor
	2.2 Synthesizer
	2.3 Non-blocking Transformer

	3 Preliminary Experiment
	4 Next Step
	References

