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Abstract—Message Passing Interfaces (MPI) plays an impor-
tant role in parallel computing. Many parallel applications are
implemented as MPI programs. The existing methods of bug
detection for MPI programs have the shortage of providing
both input and non-determinism coverage, leading to missed
bugs. In this paper, we employ symbolic execution to ensure the
input coverage, and propose an on-the-fly schedule algorithm
to reduce the interleaving explorations for non-determinism
coverage, while ensuring the soundness and completeness. We
have implemented our approach as a tool, called MPISE, which
can automatically detect the deadlock and runtime bugs in
MPI programs. The results of the experiments on benchmark
programs and real world MPI programs indicate that MPISE
finds bugs effectively and efficiently. In addition, our tool also
provides diagnostic information and replay mechanism to help
understand bugs.

Keywords-Message Passing Interfaces; symbolic execution;
deadlock detection

I. INTRODUCTION

In the past decades, Message Passing Interface (MPI) [1]
has become the de facto standard programming model for
parallel programs, especially in the field of high performance
computing. A significant part of parallel programs were
written with MPI, and many of them are developed in dozens
of person-years [2].

Currently, the developers of MPI programs usually use
traditional methods to improve the confidence of the pro-
grams, such as traditional testing and debugging [3] [4]. In
practice, developers may waste a lot of time in testing, but
only a small part of behavior of the program is explored.
MPI programs have the common features of concurrent
systems, including non-determinism, possibility of deadlock,
etc. These features make the shortage of testing in coverage
guarantee more severe. Usually, an MPI program will be
run as several individual processes. The nature of non-
determinism makes the result of an MPI program depend on
the execution order of the statements in different processes.
That is to say, an MPI program may behave differently with
the same input on different executions. Hence, sometimes it
is harder to find the bugs in an MPI program by a specific
program execution.

To improve the reliability of MPI programs, many tech-
niques have been proposed. Basically, we can divide the

existing work into two categories: static analysis methods [5]
[6] [7] and dynamic analysis methods [8]. A static method
analyzes an MPI program without actually running it. The
analysis can be carried out on code level [6] or model level
[5] . Usually, a static method needs to make an abstraction
of the MPI program under analysis [5] [7]. Therefore, many
static methods suffer from the false alarm problem.

Dynamic methods, such as testing and runtime verifi-
cation, need to run target MPI programs and utilize the
runtime information to do correctness checking [9] [10] [11],
online verification [8], debugging [4] [12], etc. Traditional
testing methods work efficiently in practice by checking the
correctness of a run under a given test harness. However,
they cannot guarantee the coverage on non-determinism even
after many runs of the same program input.

In this paper, we use symbolic execution to reason about
all the inputs and try to guarantee the coverage on both
input and non-determinism. We symbolically execute the
statements in each process of an MPI program to find input-
related bugs, especially runtime errors and deadlocks. For
the non-determinism brought by the concurrent features, we
use an on-the-fly scheduler to reduce the state space to
be explored in the analysis, while ensuring the soundness
and completeness. Specially, to handle the non-determinism
resulted from the wildcard receives in MPI programs, we
dynamically match the source of a wildcard receive into all
the possible specific sources in a lazy style, which avoids the
problem of missing bugs. Furthermore, unlike the symbolic
execution plus model checking method in [6], which uses an
MPI model to simulate the runtime behaviors of MPI library,
we use a true MPI library as the model, which enables us
to analyze real-world MPI programs.

To summarize, our paper has the following main contribu-
tions: firstly, we propose an on-the-fly scheduling algorith-
m, which can reduce unnecessary interleaving explorations
while ensuring the soundness and completeness; secondly,
when attacking the non-determinism caused by wildcard re-
ceives, we propose lazy matching technique, to avoid blindly
matching which may lead to false positives; finally, we have
implemented our approach in a tool called MPISE, and
conducted extensive experiments to justify its effectiveness
and efficiency in finding bugs in MPI programs.



II. BACKGROUND AND MOTIVATING EXAMPLE

In this section, we briefly describe symbolic execution
and the scope of the MPI APIs we are concerned with, then
show how our algorithm works by a motivating example.

A. Symbolic execution

Symbolic execution [13] is a program analysis technique
originally introduced in the 1970s. The main idea is, rather
than using concrete values, symbolic execution uses sym-
bolic values as input values, and keeps tracking the results
of numerical operations on symbolic values. Most impor-
tantly, symbolic execution uses a constraint of symbolic
values, called path condition (PC), to represent a path of
a program. At the beginning, the path condition is true.
When encountering a branch statement, symbolic execution
explores both directions of the branch. For exploring one
direction, symbolic execution records (i.e., conjunction) the
condition cond corresponding to the direction in PC and
queries an underlying solver with PC ∧ cond to decide
whether this direction is feasible. If the answer is yes,
symbolic execution will continue to execute the statements
following the direction, and PC is update to be PC ∧ cond;
otherwise, it means the direction is infeasible, thus symbolic
execution backtracks to the branch statement, and starts
to explore the other direction. Once symbolic execution
reaches the end of a program, the accumulated PC represents
the constraints that the inputs need to satisfy to drive the
program to the explored path. Therefore, we can consider
symbolic execution as a function that computes a set of PCs
for a program. Naturally, we can use the PCs of the program
to do automatic test generation [14], bug finding [14] [15],
verification [16], etc.

According to the before explanation, symbolic execution
is a precise program analysis technique, because each PC
represents a real feasible path of the program under analysis.
Therefore, when used for bug finding, symbolic execution
does not suffer from the false alarm problem, and the bugs
found are real bugs. Whereas, one of the major challenge
symbolic execution faces is path space exploration, which
is theoretically exponential with the number the branches in
the program.

B. MPI Programs

An MPI program is a program in which some MPI APIs
are used. The running of an MPI program usually consists
of a number of parallel processes, say P0, P1, ..., Pn−1, that
communicate via message passings based on MPI APIs and
the supporting platform. The message passing operators we
consider in this paper include:
•Send(dest): send a message to Pdest (dest = 0, . . . , n−

1), which is the destination process of the Send operation.
Note that only synchronous communications are considered
in this paper, so this operation blocks until a matching
receive has been posted.

1 i n t main ( i n t argc , char ∗∗ a rgv ) {
2 i n t x , y , myrank ;
3 MPI Comm comm = MPI COMM WORLD;
4
5 M P I In i t (& argc , &argv ) ;
6 MPI Comm rank (comm , &myrank ) ;
7 i f ( myrank ==0) {
8 x = 0 ;
9 MPI Ssend(&x , 1 , MPI INT , 1 , 9 9 , comm) ;

10 }
11 e l s e i f ( myrank ==1) {
12 i f ( s t r c mp ( a rgv [ 1 ] , ” a ” ) )
13 MPI Recv(&x , 1 , MPI INT , 0 , 9 9 , comm ,NULL) ;
14 e l s e
15 MPI Recv(&x , 1 , MPI INT , MPI ANY SOURCE

, 9 9 , comm ,NULL) ;
16
17 MPI Recv(&y , 1 , MPI INT , 2 , 9 9 , comm ,NULL) ;
18 } e l s e i f ( myrank ==2){
19 x = 2 0 ;
20 MPI Ssend(&x , 1 , MPI INT , 1 , 9 9 , comm) ;
21 }
22 M P I F i n a l i z e ( ) ;
23 re turn 0 ;
24 }

Figure 1. Example showing the need for both input and non-determinism
coverage

•Recv(src): receive a message from Psrc (src =
0, . . . , n − 1, ANY ), which is the source process of the
Recv operation. Note that the src can take the wildcard
value “ANY”, which means this Recv operation expects
messages from any process. Because Send and Recv are
synchronous, a Send/Recv that fails to match with a corre-
sponding Recv/Send would result in a deadlock.
•Barrier(): synchronization of all processes, which mean-

s the statements of any process should not be issued past this
barrier until all the processes are synchronized. Therefor, an
MPI program is expected to eventually reach such a state
that all the processes reach their barrier calls. If this does
not hold, there would be a deadlock.

The preceding three MPI operations are the most im-
portant operations we consider in this paper. Actually, they
cover the most frequently used synchronous communications
in MPI programs. However, our implementation covers
most of the frequently-used operations, even those collective
communication and non-blocking ones, except that we do
not treat wildcards in these operations, i.e., just symbolic
executing it as ordinary functions.

C. Motivating Example

When an MPI program is fed with inputs to perform a
computational task, the bugs of the program may be input-
dependent. On the other side, due to the non-determinism
feature, even with the same input, one may find that bugs
occur “sometimes”.
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Figure 2. Three cases of the program in Figure 1

Usually, each process of an MPI program has a rank,
which is initialized by MPI Comm rank at the beginning
and used as the identity of the process. We always start
from the smallest ranked process and switch to another
process until the current process needs synchronization, such
as sending or receiving a message. Thus, the switches during
symbolic execution happen on-the-fly. Specifically, things
become more complex when encountering a Recv(ANY)
statement, where we need to delay the selection of the
corresponding sending process until all the possible sending
statements are encountered.

For the MPI program in Figure 1 run in three processes,
we start from Proc0, i.e., the process with rank 0. When
executing to line 9, a Send is encountered, which means
a synchronization is needed. From the send statement, we
know it needs to send a message to Proc1. Thus, we switch
to Proc1 and do symbolic execution from the beginning.
When the branch statement at line 12 is encountered, and
argv[1] is symbolic (we suppose it has a symbolic value
X), the condition X ̸= “a” is added to the path condition
of the true side and its negation to the false side. We mark
here as a backtrack point and has two paths to follow, which
are explained as follows:
•X ̸= “a”. If we explore the true side first, the path

condition, i.e., X ̸= “a”, is fed to the solver to check the
feasibility of the path. Apparently, the solver will answer
yes, thus we can continue the symbolic execution of Proc1.
Then, Recv(0) is meet and it is exactly matched with the
send in Proc0. Therefore, both processes advance, and
Proc0 ends while Proc1 goes to Recv(2). In the same
manner, Proc1 gets asleep, we switch to Proc2. Again
the two operations matches, the whole execution will end
normally, as shown in Figure 2(a).
•X == “a”. This side is also feasible. The symbolic ex-

ecution of Proc1 will encounter Recv(ANY), and switches
to Proc2. After executing the Send at Line 20, there is no
process that can be switched to. All the possible sending
processes of the Recv(ANY) in Proc1 are determined. Thus,
now we begin to handle the Recv(ANY) by marking it as
a backtrack point, and explore by matching it with each
possible sending. Suppose we match the Recv(ANY) with
the Send of Proc0, we continue to execute Proc1. We
encounter another Recv at Line 17 that expects to receive a
message from Proc2, then Proc1 and Proc2 advance, and

finally the whole execution ends normally, as indicated by
Figure 2(b). On the other hand, if the Recv(ANY) is matched
with the Send of Proc2, when encountering the Recv in
Proc1, symbolic execution will switch to Proc2, but Proc2
has finished. Then, Proc0 and Proc1 can not terminated.
Hence, a deadlock is detected, as shown in Figure 2(c).

In summary, the deadlock, which may happen in the
program in Figure 1 when run in three processes, can only be
encountered when the input is “a” and the Recv(ANY) in the
second process is matched with the Send in the third process.
By using our approach, MPISE can detect it automatically.
The details of our symbolic execution algorithms will be
introduced in the next section.

III. SYMBOLIC EXECUTION ALGORITHMS

In this section, we will introduce a general framework for
symbolic execution of MPI programs first, and then present
a scheduling algorithm during the symbolic execution. Fur-
thermore, to attack the non-determinism brought by wildcard
receives, we will present a refined scheduling method, which
can ensure the exploration of all the possible matches of a
wildcard receive.

Algorithm 1: Symbolic Execution Framework
1 Search(MP , n, slist){
2 Active = {P0, . . . , Pn} ; Inactive = ∅;
3 NextProcCandidate= -1; worklist = {initial state};
4 while (worklist is not empty) do
5 s = pick next state;
6 p = Scheduler(s);
7 if p ̸= null then
8 stmt = the next statement of p;
9 SE(s, p, stmt);

10 }

Algorithm 1 presents a general framework for symbolic
execution of MPI programs. Basically, the symbolic exe-
cution procedure is a worklist-based algorithm. The input
consists of an MPI program, the number of the parallel
running processes and the symbolic variables. At the be-
ginning, only the initial state, i.e., composed by the initial
states of all the processes, is in the worklist. Then, new
states can be derived from the current state and put into the
worklist. State exploration is done if there is no state in the



worklist. Clearly, it is hard or even impossible to explore the
whole path space. In fact, for the state forking introduced
by the concurrent feature, sometimes there is no need to add
all the possible successor states to the worklist, which can
still capture the behavior of the program precisely in our
context. Hence, different from the usual symbolic execution
algorithm, in our algorithm, we first select a state from
worklist (Line 5, where a search algorithm can be used),
then we make a decision (Line 6, the details of which will
be given in Section III-A) of which process is scheduled
for symbolic execution. Finally, we symbolically execute the
next statement of the scheduled process, in which some new
states may be generated.

Basically, for the non-communication statements in an
MPI program, the symbolic execution semantics is the
same as usual. In the following of this section, we will
concentrate on explaining the scheduling of the processes
and the handling of the communication operations.

A. On-the-fly scheduling

With the general framework in Algorithm 1, we introduce
our scheduler here, aiming to avoid naively exploring the
interleavings of all the processes. For each process of an MPI
program during symbolic execution, the process is active if
it is not asleep. Usually, we make a process asleep when the
process needs to communicate but the corresponding process
is not ready, whose details will be given in Algorithm 3. We
maintain the current status of each process via two sets:
Active and Inactive. At beginning, all the processes are
contained in Active. If a process is made to be asleep,
it will be removed from Active and added to Inactive.
Because we schedule the processes on-the-fly, we use a
global variable NextProcCandidate to denote the index
of the next process to symbolically execute. The following
Algorithm 2 gives how to do scheduling.

Algorithm 2: Scheduling the Next Process for Symbolic
Execution

1 Scheduler(s){
2 if NextProcCandidate! = −1 and ProcNextProcCandidate

is active in s then
3 Next = NextProcCandidate;
4 NextProcCandidate = −1;
5 return ProcNext;

6 else if Active ̸= ∅ then
7 return the process p′ with the smallest rank in Active;

8 if Inactive ̸= ∅ then
9 Report Deadlock;

10 }

First, we check whether there is a next process that needs
to be executed and is also active. If there exists one, the
process identified by NextProcCandidate will be selected,
and the next process global variable is reset (Line 1∼5);

otherwise, we return the active process with the smallest rank
if exists (Line 6∼7). Finally, if there is no active process that
can be scheduled, and the Inactive set is non-empty, i.e.,
there exists at least one process that does not terminate, we
report that a deadlock is found (Line 8∼9).

Now, we explain how to symbolically execute each
statement. In Algorithm 3, we mainly give the handling for
MPI APIs considered in this paper. The local statements in
each process do not influence the other processes, and the
symbolic execution of such basic statementsis the same with
the traditional approach [14]. Hence, the symbolic execution
of local statements is omitted for the sake of space.

In Algorithm 3, Advance(S) denotes the procedure in
which the program counter of each process in S will be
advanced, and Match(p, q) denotes the procedure in which
the synchronization between p and q happens, i.e., the
receiver receives the data sent by the sender, and the program
counters of p and q will be both advanced.

If a Send(dest) is encountered and there is a process in
Inactive that matches the statement, we move that process
from Inactive to Active (Line 6) and advance the two
processes (Line 7). If there is no process that can receive the
message, we add this process into Inactive set (Line 9), and
switch to the destination process of the send operation (Line
10). The execution of a receive operation is similar, except
that when the receive operation is a wildcard receive, we
make the current process asleep (the reason will be explained
in Section III-B).

For handling barriers, we use a global variable mcb to
denote the rest processes that need to reach a barrier for a
synchronization. When a barrier statement is encountered, if
mcb is empty, we initialize mcb to be the set containing the
rest processes (Line 26) and add the current process into
Inactive (Line 27). If mcb is not empty, we remove the
current process from mcb. Then, if mcb is empty, i.e., all
the processes have reached a barrier, we can advance all the
processes (Line 31) and make all the processes active (Line
32); otherwise, we add the current process into Inactive
set (Line 35). When encountering an Exit statement, which
means the current process terminates, we remove the current
process from Active (Line 38).

In summary, according to the two algorithms, the sym-
bolic execution process will continue to execute the active
process with the smallest rank until a preemption happens.
From a state in symbolic execution, we do not put all the
possible states into the worklist, but only the states generated
by the current process. This is the reason why we call it
on-the-fly scheduling. Actually, we only explore part of the
whole program path space, but without sacrificing the ability
of finding deadlock bugs. The correctness of our on-the-fly
scheduling algorithms is guaranteed a theorem, along with
it’s proof is given in the extended version of this paper [17].



Algorithm 3: Symbolic Execution of a Statement
1 SE(s, p, stmt){
2 switch kindof (stmt) do
3 case Send(dest)
4 if stmt has a matched process q ∈ Inactive then
5 Inactive = Inactive \ {q};
6 Active = Active ∪ {q};
7 Match(p, q);

8 else
9 Inactive = Inactive ∪ {p};

10 NextProcCandidate = dest;

11 return;

12 case Recv(src)
13 if src != MPI ANY SOURCE then
14 if stmt has a matched process q ∈ Inactive

then
15 Inactive = Inactive \ {q};
16 Active = Active ∪ {q};
17 Match(p, q);

18 else
19 Inactive = Inactive ∪ {p};
20 NextProcCandidate = src;

21 else
22 Inactive = Inactive ∪ {p};

23 return;

24 case Barrier
25 if mcb == ∅ then
26 mcb = {P0, . . . , Pn} \ {p};
27 Inactive = Inactive ∪ {p};

28 else
29 mcb = mcb \ {p};
30 if mcb == ∅ then
31 Advance({P0, . . . , Pn});
32 Inactive = ∅;
33 Active = {P0, . . . , Pn};

34 else
35 Inactive = Inactive ∪ {p};

36 return;

37 case Exit
38 Active = Active \ {p};
39 return;

40 ...

41 Advance({p});
42 }

B. Lazy matching algorithm

Note that so far, we do not treat wildcard receives.
Actually, wildcard receives are one of the major reasons
of non-determinism. Clearly, we cannot blindly rewrite a
wildcard receive. For example, in Figure 3a, if we force the
wildcard receive in Proc1 to receive from Proc2, a deadlock
will be reported, which actually will not happen.

In addition, if we rewrite a wildcard receive immediately
when we find a possible match, we still may miss bugs.

As shown in Figure 3b, if we match the wildcard receive
in Proc0 with the send in Proc1, the whole symbolic
execution will terminate successfully, thus a deadlock, which
will appear when the wildcard receive is matched with the
send in Proc2, is missed.

Proc0 Proc1 Proc2
Send(1) Recv(ANY) local statements

(a) Blind rewriting of a wildcard receive
Proc0 Proc1 Proc2

Recv(ANY) ; Recv(2) Send(0) Send(0)
(b) Eager rewriting of a wildcard receive

Figure 3. Rewriting of a wildcard statement

To solve this problem, we employ a lazy style approach
instead of an eager one. That is, we delay the selection of
the send candidate of a wildcard receive until the whole
symbolic execution procedure blocks. To be detailed, when
the symbolic execution encounters a wildcard receive, we
would make the current process asleep (Line 22 in Algorithm
3), waiting for all possible senders. When a matched send is
found, the current process will also be made asleep, and we
switch to the next active process. When there is no process
that can be scheduled, i.e., all the processes are in Inactive,
we match the wildcard receive to each possible matched send
by forking a successor state for each one. Thus, Algorithm 2
needs to be refined to handle wildcard receives. The refined
parts are given as follows.

Algorithm 4: Refined Scheduling
1 Scheduler(s){
2 ...
3 if Inactive ̸= ∅ then
4 if Exists a Recv(ANY) process in Inactive then
5 PS = Inactive;
6 for each Recv(ANY) process p ∈ Inactive do
7 for each matched process q ∈ Inactive of p do
8 Inactive = PS \ {p, q};
9 Active = {p, q};

10 AddState(s, p, q);

11 return null;

12 else
13 Report Deadlock;

14 }

For each process encountering a wildcard receive in
Inactive, we add a new state for each of its matched
sender processes (Line 10). The AddState(s, p, q) denotes
a procedure that does the synchronization between p and q,
advances both p and q, and adds the new state to the worklist.
Thus, we are exploring all the possible cases of a wildcard
receive. If there are multiple Recv(ANY) processes, we are
interleaving the matches of all the processes. The proof of
correctness of our handling for wildcard receives is ensured



by the interleavings of matches and exploring all the possible
matches of a wildcard receive. The proof of the correctness
is provided in [17].

IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation

We have implemented our approach as a tool, called
MPISE, based on Cloud9 [18], which is a distributed sym-
bolic executor for C programs. Cloud9 enhances KLEE
[14] by enabling the support of most POSIX interfaces and
parallelism. The architecture of MPISE is shown in Figure 4.

LLVM-GCC 
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MPISE

(executor,scheduler,

test generator)

Deadlock, 

runtime error

Hooked TOMPI lib

� LLVM bytecode�

Test 

cases

LLVM 

bytecode

C-MPI 

programs 

MPISE

(replayer)

Process number and 

other arguments

Figure 4. The architecture of MPISE.

A target MPI program written in C is fed into LLVM-
GCC compiler to obtain the LLVM bytecode, which will
be linked with a pre-compiled library, i.e., TOMPI [19],
as well as the POSIX runtime library. Then, the linked
executable program will be symbolically executed. Basically,
TOMPI is a platform that uses multi-threads to simulate the
running of an MPI program. TOMPI provides a subset of
MPI interfaces, which contains all the MPI APIs we consider
in this paper. By using TOMPI, we can use the support for
concurrency in Cloud9 to explore the path space of an MPI
program run with a specific number of processes. When
a path ends or a deadlock is detected, MPISE records all
the information of the path, including the input, the orders
of message passings, etc, for the replayer to reproduce a
concrete path.

B. Experimental evaluation

We have conducted extensive experiments to validate the
effectiveness and scalability of MPISE. Using MPISE to
analyze the programs in the Umpire test suite [8], in which
each test case is an input-independent program. All the
experiments were conducted on a Linux server with 32 cores
and 250 GB memory.

In our experiments, we also use ISP and TASS to ana-
lyze the programs. The experimental results are displayed
in Table I, in which we divide the experimental results
into two categories: input independent programs and input
dependent ones. For each category, we select programs that
can deadlock caused by different reasons, including head
to head receive, wait all, receive any, etc. For each input

dependent program, we generate the input randomly when
analyzing the program with ISP, and analyze the program
for 10 times, expecting to detect a deadlock. The execution
time of analyzing each input dependent program with ISP
is the average time of the 10 times of runnings. According
to the experimental results, we can conclude as follows:

MPISE can detect the deadlock in all the programs. ISP
misses the deadlock for all the input dependent programs.
TASS fails to analyze most of programs. Thus, MPISE
outperforms ISP and TASS for all the programs in Table
I. The reason is, MPISE uses symbolic execution to have
an input coverage guarantee, and the scheduling algorithms
ensures that any deadlock caused by the MPI operations
considered in this paper will not be missed. In addition,
we utilize TOMPI and Cloud9 to provide a better envi-
ronment support for analyzing MPI programs. The reason
of the common failure of TASS is that TASS does not
support many APIs, such as fflush(stdout) of POSIX and
MPI Get Processor Name of MPI, and needs manually
modifying the analyzed programs.

For each program, the analysis time using MPISE is
longer than that of using ISP. The reason is two fold: firstly,
we need to symbolically execute the bytecodes including
those of the underlying MPI library, i.e., TOMPI. For exam-
ple, for the input dependent program barrier-deadlock.c, the
number of the executed instructions is 182304. Secondly, the
time used by MPISE includes the linking time of the target
program byte code and TOMPI library. In addition, we need
to record states and do solving during symbolic execution,
which also needs more time than dynamic analysis.

To validate the scalability of MPISE, we use MPISE to
analyze three real-world MPI programs, including an MPI
program (CPI) for calculating π and two C MPI programs
(DT and IS) from NSA Parallel Benchmarks (NPB) 3.3 [20]
with class S. The lines of code (LOC) of DT is 1.2K and the
LOC of IS is 1.4K. MPISE can analyze these three programs
successfully, and no deadlock is found. The experimental
results are displayed in Figure 5. Because IS can only be
run with 2n (n ≥ 1) processes, we do not have results for
the case of 6 processes.

From Figure 5, we can observe that, for all the three
programs, the number of the executed instructions and the
symbolic execution time do not increase exponentially with
respect to the number of processes. It justifies that MPISE
avoids the exponential increasing of instructions or symbolic
execution time caused by the parallelism by the on-the-fly
scheduling algorithms. Note that we make the input of DT
symbolic ones, and this program aborts early when fed with
input string “BH” and the process number that is less than
12, this explains the sudden rise of both analyze time and
instructions in Figure 5(b) and Figure 5(e).

V. RELATED WORK
There are already some existing work for improving the

reliability of MPI programs [2]. Generally, they often fall



Table I
EXPERIMENTAL RESULTS

Program ISP TASS MPISE
Result Time(s) Result Time(s) Result Time(s)

anysrc-deadlock.c Deadlock 0.126 Fail 1.299 Deadlock 1.59
basic-deadlock.c Deadlock 0.022 Fail 1.227 Deadlock 1.46

Input collect-misorder.c Deadlock 0.022 Fail 0.424 Deadlock 1.48
Indep- waitall-deadlock.c Deadlock 0.024 Fail 1.349 Deadlock 1.49
endent bcast-deadlock.c Deadlock 0.021 Fail 0.493 Deadlock 1.40

complex-deadlock.c Deadlock 0.023 Fail 1.323 Deadlock 1.46
waitall-deadlock2.c Deadlock 0.024 Fail 1.349 Deadlock 1.48
barrier-deadlock.c No 0.061 Fail 0.863 Deadlock 1.71

head-to-head.c No 0.022 Fail 1.542 Deadlock 1.67
Input rr-deadlock.c No 0.022 Fail 1.244 Deadlock 1.67
Depe- recv-any-deadlock.c No 0.022 Deadlock 1.705 Deadlock 1.70
ndent cond-bcast.c No 0.021 No 1.410 Deadlock 1.63

collect-misorder.c No 0.023 Deadlock 1.682 Deadlock 1.85
waitall-deadlock3.c No 0.104 Fail 1.314 Deadlock 1.78
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Figure 5. The experimental results under different numbers of processes

into one of the following two categories: debugging and
testing methods, and verification methods.

Debugging and testing tools often scale well, but depend
on concrete inputs to run MPI programs, expecting to find
or locate bugs. Debugging tools such as TotalView [12] and
DDT [4] are often effective when the bugs can be replayed
consistently. Whereas, for MPI programs, reproducing a
concurrency bug caused by non-determinism is itself a
challenging problem. Another kind of tools, such as Marmot
[9], the Intel Trace Analyzer and Collector [10] and MUST
[21], intercept MPI calls at runtime and record the running
information of an MPI program, and check runtime errors,
deadlock or analyze performance bottlenecks based on the

recorded runtime information. These tools often need to
recompile or relink MPI programs, and also depend on the
inputs and the scheduling of each running.

Another line of tools are verification tools. Dynamic
verification tools, such as ISP [8] , provide a coverage
guarantee over the space of MPI non-determinism. When
two or more matches of a non-deterministic operation, such
as wildcard receive is detected, the program will be re-
executed, and each running using a specific match. Based
on ISP, in [22], a SAT-based predicative method is proposed
to improve the generation of the schedules for revealing the
deadlock errors in MPI programs. These tools can find the
bug relying on a particular choice when non-deterministic



operations are encountered, but also depend on the inputs
that are fed to run the program. TASS [6] tackles the
limitation by using symbolic execution to reason about all
the inputs of an MPI program, but its feasibility is limited
by the simple MPI model used, which is justified in Section
IV-B.

Compared with the existing work, MPISE provides cov-
erage guarantee on both input and non-determinism by
symbolically executing MPI programs and using an on-
the-fly scheduling algorithm to handle non-determinism. In
addition, MPISE uses a realistic MPI library, i.e., TOMPI
[19], to be the MPI model. Therefore, more realistic MPI
programs can be analyzed automatically by MPISE, without
modifying the programs manually.

VI. CONCLUSION

MPI plays a significant role in parallel programming.
To improve the reliability of MPI applications, we propose
MPISE in this paper to use symbolic execution to analyze
MPI programs, targeting to find the bugs of an MPI program
automatically. Existing work on analyzing MPI programs
suffers problems in different aspects, such as scalability, fea-
sibility and input or non-determinism coverage. We employ
symbolic execution to tackle the input coverage problem,
and propose an on-the-fly algorithm to reduce the inter-
leaving explorations for non-determinism coverage, while
ensuring the soundness and completeness. We have imple-
mented a prototype of MPISE as an adoption of Cloud9, and
conducted extensive experiments. The experimental results
show that MPISE can find bugs effectively and efficiently.
MPISE also provides diagnostic information and utilities to
help people understand a bug.

For future work, there are several aspects. In one aspect,
we plan to support non-blocking MPI operations, which are
widely used in nowadays MPI programs. In another aspect,
we want to refine our MPI model further, e.g., using a
more realistic library, to improve the precision of symbolic
execution. Finally, we are also concerned with improving the
scalability of MPISE and the analysis of production-level
MPI programs.
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