
A Refinement Driven Component-Based Design∗

Zhenbang Chen, Zhiming Liu, Volker Stolz and Lu Yang

International Institute for Software Technology

United Nations University

{zbchen,lzm,vs,yl}@iist.unu.edu

Anders P. Ravn

Department of Computer Science

University of Aalborg, Denmark

apr@cs.aau.dk

1. Introduction

The challenge of increasing complexity of software
applications requires design methods that support sep-
aration of concerns and incremental development. In
such a method, artifacts are modeled and analyzed us-
ing different modeling notations. For this, OO and
component-based techniques are widely used. The dif-
ferent views of a system that are concerned include the
static structure, dynamic behavior, the interactions be-
tween objectsor components, static data functionalities.
In UML, the static structural view is modeled by pack-
ages ofclass diagramsand/orcomponent diagrams, dy-
namic behavior by state diagrams, andinteractionsby
sequence diagrams. However, UML can only be used
in an informal or semiformal design. For the assurance
of correctness, we need to incorporate formal specifica-
tion, refinement, verification and analysis into the de-
velopment process.

To provide formal support to multi-view and multi-
level modeling and analysis in a model-driven develop-
ment process, a desirable formal method should

1. allow us to specify the models of different views
of the system in different levels of abstraction,

2. provide analysis and verification techniques and
tools that assist in showing that the models have
the desired properties,

3. give precise definitions of correctness preserving
model transformations, and provide effective rules
and tool support for these transformations.

Based on these considerations, we have recently devel-
oped a refinement calculus, named rCOS, of designs of
object and component software systems [7, 13, 8, 4].
It provides a two dimensional refinement framework,
that isconsistent incrementsto the models for the multi
views of different aspects in the horizontal dimension

∗This work is partially supported by the project HighQSoftD
funded by Macao Science and Technology Development Fund, and
the NSF project 60573085 and and 863 of China 2006AA01Z165.

and refinement relation between models at different lev-
els of abstraction in the vertical dimension.

In this paper, we report our experience of using rCOS
in the design of the point of sale system (POS), that can
be used in a retail store (or a chain of stores). We show
in a model-based development process

1. how different aspects, including static structure,
interactions, and data functionality, of the system
can be formally specified and analyzed in rCOS,

2. how different aspects can be designed by effec-
tively using refinement rules proved in rCOS,

3. how different tools for verification and analysis
of properties can be incorporated into the rCOS
framework.

Overview. Section 2 gives an introduction rCOS. Sec-
tion 3 provides an informal description of POS. We give
the rCOS specification of the requirements in Section 4.
In Section 5 we apply the refinement rules to construct
an OO design of the system. In Section 6, transform the
model of the OO design to a component-based archi-
tecture. We will discuss there how different interaction
mechanisms can be used for implementing interfaces of
components. In Section 7, we report the results of ap-
plication of tools for verification and analysis. Finally,
Section 8 concludes and discusses the findings.

2. A Summary of rCOS

The Relational Calculus of Object and Component
Systems(rCOS) has its roots in theUnified Theory of
Programming(UTP) [9].

The essential idea of UTP is that any program can be
modeled a binary relation on theobservablesof the pro-
gram. For a sequence imperative program, we are inter-
ested to observe the initial values of the variables before
the execution and their final values after the execution,
and whether the execution terminates. The observables
of such a program include the variables, sayx repre-
senting the values of the program variables before the

execution, the variablesx′ representing the values of the
program variables after the execution, and the boolean
variablesok andok′ for modeling the activation and ter-
mination of of the execution. The execution of the pro-
gram is then specified by a predicatepre(x) ⊢ post(x,x′),
calleda design.

The meaning of the designpre(x) ⊢ post(x,x′) is de-
fined by the predicatepre(x)∧ok⇒ ok′∧post(x,x′), as-
serting that if the program is activated from a well-
defined state (i.e. its preceding program terminated in
that state) that satisfies thepreconditionpre(x) then the
execution of the program willterminate(i.e. ok′ = true)
in a state such that the news values are related with the
old values by thepostconditionpost. For example, an
assignmentx := x+y can be defined astrue⊢ x′ = x+y.

In UTP, the healthiness conditions of designs are
studied and it is proven that all designs are closed under
all the standard programming constructs like sequential
composition, choice, and iteration. The sequential com-
positionD1;D2 is defined to be the relational composi-
tion ∃x0 : (D1(x0/x′)∧D2(x0/x)).

For concurrency with communicating processes, ad-
ditional observables are used to record communication
traces and communication readiness can be expressed
by additionalguardpredicates. The healthiness condi-
tions of theseguarded designsgave the semantics basics
in rCOS for the integration of the specification of the
static functionality by simple designs, interaction pro-
tocols by traces, and the dynamic behavior by guarded
designs that defines the semantics of a state machines
[8, 4]. Therefinementrelation between programs is de-
fined as logical implication. rCOS extends UTP to for-
malize the concepts of object oriented programming:
class, object references, method invocation, subtyping
and polymorphism [7].

Like Java, an OO program in rCOS is specified as
Classes•mainconsisting of a numberclass declarations
and amain program[7]. A class in the class dec-
larations can be public or private and declares its at-
tributes and methods, they can be public, private or pro-
tected. The main program is given as amain class.
Its attributes are the global variables of program and it
has a main methodmain(). We assume that the main
method only access and modified objects of the classes
in the class declarations via invoking methods declared
in those methods.

2.1. Types and notations

In rCOS, we distinguish data from objects and thus
a datum, such as an integer or a boolean value does not
have a reference. For POS, we assume the data types
of V ::= long | double| char | string | bool. Let CN be an

infinite of identifiers, calledclass names. We define the
following type system, whereC ranges overCN

T ::= V | C | arry[1..n](T) | set(T) | bag(T)

wherearray[1 : n](T) the type of arrays of typeT, and
set(T) is the type of sets of typeT. We assume the op-
erationsadd(T a), contains(T a), delete(T a) andaddAll()
on a set and a bag with their standard semantics. For
a variables of type set(T), the specification statement
s.add(T a) equalss′ = s∪{a}, ands.contains(T a) equals
a∈ s, ands.addAll() is the sum of all elements ofs, which
is assumed to a set of numbers. We allow to use curly
brackets{e1, . . . ,en} and the square brackets[[e1, . . . ,em]]

to define a set and a bag. For setssuch that each element
has an identifier,s.find(ID id) denotes the function that
returns the element whose identifier equalsid if there is
one, it returnsnull otherwise. Notice that Java provides
the implementations of these types via theCollectionin-
terfaces. Therefore, these operations in specification
statements can be easily coded in Java.

In a specification, we useC o to denote that objecto
is of typeC, ando 6= null to denote thato is in the object
heap if the type ofo is a class, and thato is defined if
its type is a data type. We use the short hando∈ C to
denoteo 6= null and its type isC.

In rCOS, evaluation of expressions does not change
the state of the system, and thus the Java expression
C.New() is not a rCOS expression. Instead, we take
C.New(C x) as a command that creates an object ofC and
assigns it to variablex. The attributes of this object are
assigned with with the initial values or objects declared
in C. If no initial value is declared it will benull. How-
ever, in the specification of POS, we usex′ = C.New() to
denoteC.New(x), andx′ = C.New[v1/a1, . . . ,ak/vk] to de-
note the predicateC.New[v1/a1, . . . ,ak/vk](x) that a new
object of classC is created with the attributesa1 initial-
ized with vi for i = 1, . . . ,k, and this objects is assigned
to variablex. Similarly, we usex′ = m() for a method
with a return parameterreturn of the same type ofx.

2.2. rCOS model of requirements

OO requirements capture in general starts with iden-
tification business processesdescribed asuse cases.
The use case specification includes the four views. One
view is the interactionsbetween the external environ-
ment, modeled asactors, and the system. The interac-
tions are described as a protocol in which the actors is
allowed to invokemethods(also calleduse case oper-
ations) provided by the system. In rCOS, we specify
such a protocol as a set oftracesof method invocations,
and depict it by a UMLsequence diagram(cf. Fig.1),
called ause case sequence diagram.

While a sequence diagram focuses on the interac-
tions between the actors and the systems, thedynamic
behaviorof the use case is model by aguarded state
transition system, that can be depicted by a UML state
diagram. The sequence diagram and the state dia-
gram must be trace-equivalent. In addition to its opera-
tional semantics, a state diagram also has a denotational
failure-divergencesemantics [8, 4, 17]. This view is
used for verification deadlock and livelock freedom by
model checking state reachability.

Another important view is the staticfunctionality
view of the system. The requirements specifications
should precisely specify what each use case operation
should do when being invoked. That is what state
change it should make in terms of what new objects are
to created, what old objects should be destroyed, what
links between which objects are established, and what
data attributes of which objects are modified. And what
is the precondition for carrying out these changes. For
the purpose ofcompositionalandincrementalspecifica-
tion, we introduce a designated class for each use case,
called theuse case controller classof that use case, and
specify each operation of the use case as a method of
this controller class. Each method is specified by its
signature and its design in the formm(){pre⊢ post}. The
signatures of the methods must be consistent with those
used in the interaction and dynamic views. During the
specification of the static functionality of the use case
operations, all types and classes (together with their at-
tributes) required in the specification must be defined.

The type and class definitions in the specification of
functionality of the methods of the use case controllers
forms thestructure viewof the system. It can be de-
picted by a class diagram or packages of class diagrams
(cf. Fig. 2). The consistency and integrated semantics
of the different views are studied in [5].

In the example of POS, adesignp⊢ R for a method
in rCOS is written separately asPre p andPostR. At
the requirement level, we write specification the static
functionality of their methods in the following format.

class C [extendsD]{
attributes T x= d, . . . ,Tk x = d
methods m(T in;V return) {

pre: c∨ . . .∨c
post: ∧ (R; . . . ;R)∨ . . .∨ (R; . . . ;R)

∧
∧ (R; . . . ;R)∨ . . .∨ (R; . . . ;R) }

.
m(T in;V return) {. }

invariant Inv }

where,

• The list of class declarations can be represented as
a UML class diagram.

• The initial value of an attribute is optional, and an

attribute is assumed to be public and can be further
tagged with reserved wordsprivateandprotected.

• Eachc in the precondition, representing a condi-
tion to be checked, is of a conjunction of primitive
predicates.

• Each relationR in the postcondition is of the form
c∧ (le′ = e), wherec is a boolean condition and
le an assignable expressionand e is an expres-
sion. An assignablele is either a primitive vari-
able x, or an attribute name,a, or le.a for an at-
tribute namea. We useif c then le′ = e elsele′ = e
for c∧ (le′ = e)∨¬c∧ (le′ = e) and if c then le′ = e
for c∧ (le′ = e)∨¬c∧skip. An expressione can be
a logically specified expression, such as the great-
est common divisor of two given integers.

We allow the use of indexed conjunction
∀i ∈ I : R(i) andindexed disjunctions∃i ∈ I : R(i) for
a finite setI. These would be the quantifications if
the index set is infinite.

The reader can see the influence of TLA+ [10], UNITY
[3] and Java on the above format.

2.3. Object-oriented refinement in rCOS

In rCOS, we provide three levels of refinement:

1. Refinement of a whole object program. This may
involve the change of anything as long as the be-
havior of the main method regarding to the global
variables is preserved. It is an extension to the
notion of data refinement in imperative program-
ming, with a semantics model dealing with object
references. In such a refinement, all non-public at-
tributes of the objects are treated as local (or inter-
nal) variables [7].

2. Refinement of the class declaration sectionClasses.
Classes1 is a refinement ofClassesif Classes1 •main
refinesClasses•main for all main. This means that
Classes1 supports at least as many functional ser-
vices asClasses.

3. Refinement of a method of a class inClasses.
Classes1 refinesClassesif the public class names in
Classesare all inClasses1 and for each public meth-
ods of each public class inClassesthere is a refined
method in the corresponding class ofClasses1.

The first step in an OO design is to refine methods of
use case use case handler classes, without changing the
interaction protocols of the use cases with the external
actors. There are mainly three kinds refinement:Dele-
gation of functionality(or responsibilities), attribute en-
capsulation, andclass decomposition. Very interesting
results on completeness of the refinement calculus are
available in [13].

Delegation of functionality. Assume thatC andC1 are
classes inClasses, C1 o is an attribute ofC andT x is an
attribute ofC1. Let m(){c(o.x′,o.x)} be a method ofC
that direct accesses and/or modifies attributex of C1.
Then, if all other variables in commandc are acces-
sible in C1, we haveClasses⊑ Classes1, whereClasses1
is obtained fromClasses1 by changingm(){c(o.x′,o.x)}
to m(){o.n()} in class C and adding a fresh method
n(){c[x′/o.x′,x/o.x]}. This is also called theexpert pat-
terns of responsibility assignment.

With is rules and other refinement rules in rCOS, we
can prove the big-step refinement rule, such as the fol-
lowing expert pattern, that will be repeated used in the
design of POS.

Theorem 1 (Expert Pattern) Given a list of class
declarations Classes and its navigation paths
le := r1.r f .x, {a11.a1k1.x1, . . . ,aℓ1.aℓkℓ

.xℓ},
and {b11.b1 j1.y1, . . . ,bt1.at jt .yt} starting from
classC, let m() be a method ofC specified as

C :: m(){ c(a11.a1k1 .x1, . . . ,aℓ1.aℓkℓ
.xℓ)

∧ le′ = e(b11.b1s1 .y1, . . . ,bts1.btst .yt) }

ThenClassescan be refined by redefiningm() in C and
defining the following fresh methods in the correspond-
ing classes:

C :: check(){return′=c(a11.getπa11x1
(), . . . ,aℓ1.getπaℓ1 xℓ

())}

m(){if check() then r1.do-mπr1
(b11.getπb11

y1
(),

. . . ,bs1.getπbs1
ys

())}

T(ai j) :: getπai j xi
(){return′=ai j+1.getπai j+1xi

()} (i : 1..ℓ, j : 1..ki −1)

T(aiki) :: getπaiki
xi
(){return′=xi} (i : 1..ℓ)

T(r i) :: do-mπri
(d11, . . . ,ds1){r i+1.do-mπri+1

(d11, . . . ,ds1)}

for i : 1.. f −1
T(r f) :: do-mπrf

(d11, . . . ,ds1){x′ = e(d11, . . . ,ds1)}

T(bi j) :: getπbi j
yi
(){return′=bi j+1.getπbi j+1

yi
()} (i : 1..t, j : 1..si −1)

T(bisi) :: getπbisi
yi
(){return′=yi} (i : 1..t)

whereT(a) is the type name of attributea.
If the paths{a11.a1k1.x1, . . . ,aℓ1.aℓkℓ

.xℓ} has a
common prefix, say up toa1 j , then classC can directly
delegate the responsibility of getting thex-attributes and
checking the condition toT(ai j) via the patha11. . . . ,ai j

and then follow the above rule fromT(ai j). The same
rule can be applied to theb-navigation paths.

The expert pattern is the most often used refinement rule
in OO design. One feature of this rule is that it does not
require to introduce more couplings by associations be-
tween classes into the class structure. It also ensures
that functional responsibilities are allocated to the ap-
propriate objects thatknowsthe data needed for the re-
sponsibilities assigned to them.

Encapsulation. When we write the specifications of
the use case operations, we need to directly refer to at-
tributes of the classes that are associated with the use

case controllers. Therefore, those attributes are required
to be public. After designing the interactions by the ap-
plication of the expert pattern for functionality assign-
ments. The attributes that were directly referred are now
only referred locally in their classes. These attributes
can then be encapsulated by changing them to protected
or private.

Theencapsulation rulesays that if an attribute of a
classC is only referred directly in the specification (or
code) of methods inC, this attribute can be made apri-
vate attribute; and it can be madeprotectedif it is only
directly referred in specifications of methods ofC and
its subclasses.

Class decomposition.During an OO design, we often
need to decompose a class into a number of classes.
For example, consider classesC1 :: D a1, C2 :: D a2, and
D :: T1 x,T2 y. If methods ofC1 only call a method
D :: m(){...} that only involvesx, and methods ofC2

only call a methodD :: n(){...} that only involvesy,
we can decomposeD into two D1 :: T1 x;m(){...} and
D2 :: T2 y;n(){...}, and change the type ofa1 in C1 to
D1 and the type ofa2 in C2 to D2. There are other rules
for class decomposition [7, 13].

One important notice to make here is that the ex-
pert pattern and the rule of encapsulation can be imple-
mented by automated model transformations. In gen-
eral, transformations for structure refinement can be can
be aided by transformations in which changes are made
on the structure model, such as the class diagram, with a
diagram editing tool and then automatic transformation
can be derived for the change in the specification of the
functionality and object interactions. For details, please
see our work in [13].

2.4. Component-based modeling in rCOS

There are two kinds of components in rCOS,ser-
vice components(simply calledcomponents) andpro-
cess components(that is simply calledprocesses).

A closed component has a provide interface and a
code thatimplementsthecontractof the interface. The
contractof the interface of a component describes what
is needed for the component beusedin building and
maintaining software systems. It contains the infor-
mation about the viewpoints among, for examplefunc-
tionality, behavior, protocols, safety, real-time, power,
bandwidth, memory consumptionand communication
mechanisms, that are needed for composing the compo-
nent in the given architecture for the application of the
system. For POS, we only considerfunctionality, be-
havior, protocols, safety, real-timeandcommunication
mechanisms.

In anopen component, a provided method may call
methods provided by another component. An open
componentimplementsa contractIC of its provided in-
terfaceunder an assumed contractOCof its required in-
terfaceif each provided method with the assumed spec-
ification of the method ofOC refines the specification of
the corresponding method inIC.

Like a service component, aprocess componenthas
an interface declaring its own local state variables and
methods, and its behavior is specified by a process con-
tract. Unlike a service component that is passively wait-
ing for a client to call its provided services, a process is
active and has its own control on when to call out to
required services or to wait for a call to its provided ser-
vices. For a process, we cannot have separate contracts
for its provided interface and required interface.

Compositionsfor disjoint unionof components and
pluggingcomponents together, forgluing components
by processes are defined, and their closure properties
and the algebraic properties of these compositions are
studied in [4]. Note that an interface can be the union
of a number of separately specified interfaces.

The contracts together with the interfaces of a com-
ponent provide a black-box specification of the compo-
nent. The contracts in rCOS also define the unified se-
mantic model of implementation of interfaces in differ-
ent programming languages, and thus support interop-
erability of components and analysis of the correctness
of a component with respect to its interface contract.
The theory ofrefinement of contractsand components
in rCOS characterizes component substitutivity, as well
as it supports independent development of components.

2.5. Related formalisms

Eiffel [14] first introduced the idea of design by con-
tract into object-oriented programming. The notion of
designs for methods in object-oriented rCOS is similar
to the use of assertions in Eiffel, and thus also supports
similar techniques for static analysis and testing. JML
[12] has recently become a popular language for mod-
eling and analysis of object-oriented designs. It shares
similar ideas of using assertions and refinement as be-
havioral subtypes in Eiffel. The strong point of JML
is that it is well integrated with Java and comes with
parsers and tools for UML like modeling.

In Fractal [16], behavior protocols are used to spec-
ify the interaction behavior of a component. rCOS also
uses traces of method invocations and returns to model
the interaction protocol of a component with its envi-
ronment. However, the protocol does not have to be a
regular language. Also, for components rCOS separates
the protocol of the provided interface methods from that

of the required interface methods. This allows better
pluggability among components. The behavior proto-
cols of components in Fractal are the same for the pro-
tocols of coordinators and glue units that are modeled
as processes in rCOS. In addition to interaction pro-
tocols, rCOS also supports state-based modeling with
guards and pre/post conditions. This allows us to carry
out stepwise functionality refinement.

We share many ideas with work done in Oldenburg
by the group of Olderog on linking CSP-OZ with UML
[15] in that a multi-notational modeling language is
used for combining different views of a system. How-
ever, rCOS has taken UTP as its single point of depar-
ture and thus avoids some of the complexities of merg-
ing existing notations. Yet, their approach has the virtue
of well-developed underlying frameworks and tools.

3. The Point of Sale System

The point of sale system (POS) was originally used
as a running example in Larman’s book [11] to study
concepts of OO systems design. An extended version is
now being used as the case study in the Common Com-
ponent Modeling Example (CoCoME) [1], and identi-
fied as a pilot project at the Asian Working Conference
on Verified Software [19].

POS is a computerized system typically used in a re-
tail store. It records sales, handles both cash payments
and card payments as well as inventory management.
Furthermore, the system deals with ordering goods and
generates various reports for management purposes. It
can be a small system, containing only one terminal for
checking out customers and one terminal for manage-
ment, or a large system that has a number of terminals
for checking out customers in parallel, or even a net-
work to support an enterprise of a chain of supermar-
kets. We consider the development of a POS that is
used in one store and has a number of checkout points.
The whole system includes hardware components such
as computers, bar code scanners, card readers, printers,
and software to run the system. To handle credit card
payments, orders and delivery of products, we assume
aBankand aSupplierthat interact with POS.

3.1. Requirements

The requirements are captured by identifying the use
cases, which describe the business processes of the ap-
plication domain, and the constraints on them.

3.2. Use cases of POS

There can be many use cases for POS, depending on
what business processes the client of the system wants
the system to support. One of the main business process
is processing sales, that is denoted by the use caseUC1:
Process sales. It can informally be described as follows.

This use case can perform eitherexpress checkout
processfor customers with only a few items to purchase,
or a normal checkout process. The main courses of
interactions between the actors and the system is de-
scribed as follows.

1. The cashiersets the checkout mode to express
check out or for normal check out. The system then
sets thedisplaylightto greenor yellowaccordingly.

2. When acustomercomes to thecheckout pointwith
their items to purchase, the cashier indicate the
system to handle a newsale.

3. The cashier enters each item, either by typing or
scanning in thebar code, if there is more than one
of the same item, the cashier can also enter the
quantity. The system records each item and its
quantity and calculates the subtotal.

In express checkout mode, only a limited number
of items are allowed to checkout.

4. At the end of entering the items, thetotal of the
sale is calculated. The cashier tells the customer
the total and asks her to pay.

5. The customer can pay by cash or a credit card:

(a) If by cash, the amount received is entered.
The system records thecash paymentamount
and calculates the change.

(b) If by credit card, the card information is en-
tered. The system sends the credit payment
to thebankfor validation. The payment can
only be made if a positive validation reply is
received.

The inventory of the sold items is updated and the
completed sale is logged in thestoreto complete
the process.

There are exceptional courses of interactions. For ex-
ample, the entered bar code is not known in the system,
the customer does not have enough money for a cash
payment, or the authorization reply is negative. Sys-
tems need to provide means of handling these exception
cases, such as canceling the sale or change to another
way of paying for the sale. At the requirements level, we
capture these exceptional conditions as preconditions.

There are many other use cases:UC2: Order prod-
ucts, that orders products from the supplier;UC3:

Managing inventory, including changing the stocked
amount of an item, changing the price of a product,
and adding/deleting products;UC4: Produce monthly
reports on salesthat is to, say, generate a report of all
sales in the last 30 days and information of profit and
loss; andUC5: Produce stock reports, that produces
reports on stock items.

4. rCOS Specification of POS

Following our modeling principle in [5], we specify
the operations of a use case as methods of a designated
class, called theuse-case handler classof the use case.

UC1: Process sale. We first model the interac-
tion protocol that the system offers the actor, here, the
Cashier. This is given as theuse case sequence diagram
in Fig. 1, denoted bySDuc1.

Cashier

::Cashdesk

startSale()

finishSale()

enterItem(Barcode, Quantity)
loop

maxloop

Alt
cardPay(Card)

disableExpress()

Alt

enterItem(Barcode, Quantity)

*

cashPay(Amount, Amount)

enableExpress()

startSale()

finishSale()

cashPay(Amount, Amount)

Figure 1. Sequence diagram for UC1

In this figure,max is the maximal number of items
allowed in express checkout. The set of traces of the
diagram is given by the following regular expression.

tr(SDuc1) = enableExpress()startSale()enterItem()(max)

finishSale()CashPay()
+ disableExpress()startSale()enterItem()∗

finishSale()(CashPay()+CardPay())

The flow of control of the use case can be given by a
state diagram, that we omit here.

We now give the functionality specification of this
use case. We show the attributes in the class diagram
in Fig.2, and the comments in the specification should
help the understanding.

Use Case UC1: Process Sales
Class Cashdesk{
Meth enableExpress() {

Pre: true;
Post: light.display′ = green};

Meth disableExpress() {
Pre: true;
Post: light.display′ = yellow}

Meth startSale() {
Pre: true;
Post: /** a new saleis created and itslines initial-
ized to empty, and its date correctly recorded **/
sale′ = Sale.New(clock.date/date)}

Meth enterItem(long c,double q) {
Pre: /**the input barcodec is valid **/

store.cat. f ind(c) 6= null
Post: /** a new line is created with itsbarcodeand
quantityset toc andq, and **/
line′=LineItem.New(c/barcode,q/quantity)

/**the subtotalof the line is set,and **/
∧ line′.subtotal=store.cat. f ind(c).price×q)
/**add line to the currentsale**/
∧ sale.lines.add(line′) }

Meth finishSale() {
Pre: true;
Post: /** saleis set tocomplete, and **/
sale.complete′ = true

/** sale’s total is calculated **/
∧ sale.total′=addAll[[l .subtotal|l ∈ sale.lines]] }

Meth cashPay(double a;double c) {
Pre: a≥sale.total /** amount no less than total **/
Post: /** Cashpaymentof saleis created,and **/
sale.pay′ = CashPayment.New(

a/amount,a−sale.total/change)
/** the change is returned,and then the completed
saleis logged instore, and **/
∧ c′ = a−sale.total;store.sales.add(sale)
/** the inventory is updated **/
∧ ∀l ∈ sale, lines,∀p∈ store.cat : (

if p.barcode= l .barcodethen
p.amount′ = p.amount− l .quantity) }

Meth cardPay(Card c) {
Pre: /** the card is valid **/
valid(c,sale.total) /**authorized by the bank **/;
Post: the CardPaymentof the saleis created,and
then the completedsaleis logged instore, and **/
sale.pay′ = CardPayment.New(c/card);

store.sales.add(sale)
/** the inventory is updated **/
∧ ∀l ∈ sale.lines,∀p∈ store.cat : (

if p.barcode= l .barcodethen
p.amount′ = p.amount− l .quantity) }

}

UC2: Order products. This use case is similar to
use caseUC1. It begins withstartOrderand then a num-
ber of timesorderItemfollowed bymakeOrder. We only
specify the functionality of the use case operations, and
the related classes, as it is important for the later design.
OrderDeskdenotes the use case handler class.

CashDesk

mode: String

enableExpress()
disableExpress()
startSale()
enterItem()
finishSale()
cashPay()
cardPay()

LineItem

barcode: long
quantity: long
subtotal: double

Sale

complete: bool
total: double
date: Date

Payment

CardPayment

card: Card

CashPayment

amount: double
change: double

Store

Item

barcode: long
price. double
amount: long

1

Clock

1

1

1

1

1
0..1

1

*

*

*

*

*

1

1

*

lines

cat

sales

CardBank
1

*

*

11 *

issuer card
connection

store

clock

line

sale

pay

Figure 2. Class Diagram for UC1

Use Case UC2: Order products
Class OrderDesk{
Attr Store store, Order order, Supplier supplier,

LineItem line,
Meth startOrder() {

Pre: true;
Post: /** a new order is created and itslinesinitialized
to empty **/
order′ = Order.New() }

Meth orderItem(long c,double q) {
Pre: /**the input barcode exists in the catalog**/
supplier.cat. f ind(c) 6= null;
Post: /** a new line is created with itsidenti f ier and
quantityset toc andq, and **/
line′ = OrderLine.New(c/identifier,q/quantity)
/**add line to the currentorder **/
∧ order.lines.add(line′) }

Meth makeOrder(order) {
Pre: true /** validity of order is checked by supplier **/
Post: /** order is logged instoreand sent to supplier**/
store.orders.add(order)
∧store.supplier.receiveOrder(order) } }

Class Store{
Attr /**add one attribute to that in UC1**/

Supplier supplier
}

Class Order{
Attr bool complete=false,

set(LineItem) lines= empty
}

Class LineItem{
Attr /**take the same as the line item in UC1, though in real-

ity it may not be**/
}

Class Supplier{
Meth receiveOrder(Order order){

/**provided**/}
}

UC3: Manage inventory. This use case carries out
changes to the inventory items. Here we only specify
the use case operations for changing the price of an item
and adding a new item. Other operations, such as up-
dating the amount of an item (as specified in UC1) and
deleting an item can be easily specified. Also, the proto-
col of this use case allows any sequences of invocations
of these operations.

Use Case UC3: Managing inventory items
Class InventoryDesk{
Attr Store store
Meth changePrice(long code,double newPrice) {

Pre: store.cat.find(code) 6= null
Post: /** new order is created and itslines initialized
to empty **/
∀p∈ cat : (if p.barcode= codethen
p.price′ = newPrice}

Meth addItem(long code,amt,double prc,string spc) {
Pre: valid(code) /**not defined here **/
Post: store.cat.add(Item.New(code,amt,prc,spc/
barcode,amount,price,specification) } }

Discussion. With an informal description, we are not
able to describe the functionality of a use case com-
pletely and clearly. It would be too complex to describe
both interactions and functionalities using a single nota-
tion. Our specification gives a clear separation of these
two aspects, and we can change one aspect without the
need to change the other. Indeed, we have gone through
a number of changes to both the protocol and the func-
tionality separately, the functionality in particular.

Writing the complete (as complete as possible) and
precise functionality specification is crucial to identify
the classes, their attributes and associations needed for
the realization of the use case. Writing the specifica-
tion of the methods helps to capture the classes, at-
tributes and associations that are needed to support the
use cases. The specification of the functionality also
determines later in the design how objects should inter-
act with each other to realize the specified use cases.
Therefore, without a full specification of the use case
interaction protocol, the functionality, the classes and
their attributes and associations, it would be difficult to
start a proper design.

Existing UML tools, such as Rational Role and Mas-
terCraft [18] support the production of the sequence
diagram and the textual specification of the methods.
Later, when specifying a use case, some classes speci-
fied earlier are used. However, new attributes of those
classes and new classes are often introduced. An in-
tegrated specification (or class diagram) should be ob-
tained and it must completely support the specification
of the functionality of all the use cases.

5. A design model of POS

This section illustrates how refinement rules in rCOS
can be effectively used when we work out a correct de-
sign of POS. The effectiveness is due to that the rCOS
rules prove big-step refinement rules (design patterns),
and their direct mappings to high level programming
language structures, such as those implemented in Java.
We only refine a few operations of use caseUC1 in order
to show the effectiveness of the refinement rules.

Operation startSale(). The specification requires to get
the date,clock.date() and create a newsale. The expert
pattern allows to delegate responsibility for getting the
date to the clock and responsibility for creating the new
sale to the classSale:

CashDesk:: startSale() {Date d:= clock.date();
sale:= Sale.New(d)};

Clock:: date(){return := date}

In Java, sets are implemented through a class thatim-
plementsthe interfaceCollection. The constructor of the
set class initializes the instance as an empty set. An ob-
ject is always created by the constructor of the class in
a special case of the expert pattern. According to the
specification, the constructorSale() of Saleis given as

Sale:: Sale(Date d){complete:= false;
lines:= set(LineItems).New();
total := 0; date:= d}

Operation enterItem(). We first introduce a method
know(long code), for checking the precondition
store.catalog.find(code) 6= null. Following the expert
pattern, we introduce methods in the classes according
to the navigation path.

CashDesk:: bool know(long code)
{return := store.know(code)}

Store:: Set(Item) cat;
bool know(long code){cat.know(code)}

Set(Item) :: bool know(long code)
{return := find(code) 6= null}

where we leave further refinement and coding of
methodfind() in thesetclass out of the paper.

For the postcondition, we can directly refine each
conjunct in the specification following the expert pat-
tern by the following method definitions:

CashDesk:: enterItem(long code, long qty){
/** combine pre and postconditions **/
if know(code) then makeLine(code,qty)
else throw exceptionhandle¬know(code)
}
makeLine(long code, long qty) {
line := LineItem.New(code,qty);
line.subtotal(store.getPrice(code),qty);
sale.addLine(LineItem line)
}

Store:: double getPrice(long code)
{cat.getPrice(code)}

set(Item) :: double getPrice(long code)
{return := find(code).price}

Sale:: set(LineItem) lines;
addLine(LineItem l){lines.add(l)}

LineItem:: LineItem(long code, long qty){barcode:= code;
quantity:= qty}

subtotal(double price, long qty)
{subtotal:= qty×price}

We leave the requirements on what to do when excep-
tions occurs unspecified. Any specification would be a
refinement of the original specification.

The cash desk can also get the price first and then
pass it as a parameter to the constructor ofLineItem,

but then the constructor has to set the subtotal of the
line as well. Furtherrefactoring on the code can in-
troduce more methods or methods to a class so that
method calls do not occur in method parameters. For
example, we introduce inmakeLine() the command
double p:= store.getPrice(code) and then passingp as a
parameter to the constructor ofLineItem. Correct refac-
toring is also formalized as refinement in rCOS.

Operation cashPay(). We only consider the last part in
the postcondition that updates the inventory:

∀l ∈ sale.lines,∀p∈ store.cat : (if p.barcode= l .barcode
then p.amount′ = p.amount− l .quantity)

We implement the above formula in a method called
updateInventory() and introduce the following methods
to realize this functionality:

CashDesk:: updateInventory() {∀l ∈ sale.line :
store.updateInventory(l .barcode, l .quantity)}

Store:: updateInventory(long code, long qty){
cat.updateInventory(code,qty)}

set(Item) s :: updateInventory(long code, long qty){
∀p∈ s : (if p.barcode= l .barcode
then p.amount′ = p.amount− l .quantity)}

We introduce a pattern for a Java implementation of
∀o∈ s : statementfor s being a set of typeset(T):

Iteratori := s.iterator();while i.hasNext(){statement}

Applying this pattern to the above refinement spec-
ification, we obtain an implementation. This shows
the advantage of the combination of rCOS refinement
rules and advanced features and libraries implemented
in modern languages.

Discussion. We can see the effectiveness of the ex-
pert pattern in localizing design of functionalities to the
classes involved in the functionality. After the design
of the functionalities of classes and interactions among
them, encapsulation on attributes, e.g. turning public
attributes private, can be refined.

The expert pattern and some other refinements can
be realized by automated transformations that gener-
ate a detailed design, only leaving the specifications of
functions that do not require much inter-object commu-
nication to be coded by a programmer. Some of these
specifications, such as the greatest common divisor of
two integers and shortest paths of a directed graph, re-
quire sophisticated algorithms to be designed or speci-
fied before coding.

6. Component-Based Architecture of POS

We first show how to refine the OO design model
into a logical model of a component-based architec-
ture. We then discuss the design of different interaction

mechanisms that can implement the interfaces between
the components in a distributed setting. Finally, we will
discuss the design of the GUI components and the con-
trol of the hardware devices. The aim is to show the
separation of these different concerns.

6.1. Application components

The considerations on what should be designed into
one component include 1) the provided operations in a
use case should be handled in the same component, 2)
use cases for realizing business processes that may be
carried out in different physical places are organized in
different elementary components, 3) a decomposition of
the OO model to a component-based model is to lower
the coupling among different objects so that less related
functionalities are performed by different components,
and 4) permanent objects of the OO model are allocated
to the components whose functionality tightly depends
on these objects.

The component decomposition requires the specifi-
cation of asystem invariantproperty of the permanent
objects and their relations. The system invariant has to
be established when the system is set up. For the POS
system, we assume that all cash desks in a retail store
share the samestore object that contains thecatalog,
the logged sales, and records ofordersanddeliveries
made. LetUC be the set of names of the use case han-
dler classes that are associated with theStoreclass. We
need the following invariant:

∀H1,H2 ∈ UC,∀H1 d1,H2 d2 : (d1 6= null∧d2 6= null ⇒
d1.store= d2.store 6= null)

According to the above considerations, we organize the
OO model in Section?? into two components.

• SalesHandler: This component does not contain
any permanent object, except for the cash desk in-
stances that specified as

component SalesHandler{
interface CheckOutIf{
/** the method signatures of UC1**/};
protocol {/** trace expression of UC1 **/};
classCashDeskimplementsCheckOutIf;
required interface CashDeskIf{store.know(),
store.getPrice(),store.updateInventory()}
required interface ClockIf {Clock.date()}
required interface BankIf{Bank.valid()}
}

Notice that we have omitted the parameters and
the protocol of the required interface that is needed
when the component is wrapped as a black box and
to be used by a third party. The protocol of the re-
quired interface can be derived from the provided
interface protocol and the implementation.

• Inventory: This component consists of the use
case handler objects for use casesUC2 andUC3,

the store object and the data contained in it:
the catalog items, the logged sales with their
payments, the orders and deliveries. Its inter-
face is the union of the interfacesOrderIf pro-
viding the methods ofUC2 and implemented by
classOrderDesk, ManageIf providing the methods
of use caseUC3, andCashDeskIfthat provides to
componentSalesHandlerthe methodsstore.know(),
store.getPrice(), andstore.updateInventory(). The last
two interfaces can be implemented by a class that
extends the classInventoryDeskwith store.know()

andstore.getPrice().

This component requires a methodorder() from the
remote product supplier componentsupplier.

We do not have the space to write the full specification
of these components, but they are shown in Fig. 3.

:CashDesk

mode: String

enableExpress()
disableExpress()
startSale()
enterItem()
finishSale()
cashPay()
cardPay()

:LineItem

barcode: long
quantity: long
subtotal: double

:Sale

complete: bool
total: double
date: Date

:Payment

:CardPayment

card: Card

:CashPayment

amount: double
change: double

:Store

:Item

barcode: long
price. double
amount: long

11

1

1

0..1

1

*

*

*

1

<<SalesHandler >>

<<Inventory >>

<<Clock>>

date()

CashDeskIf

<<Bank>>
valid()

sale

lines

line

pay

cat

OrderIf

ManageIf <<Supplier>>

SupplierIf

enableExpress()
disableExpress()
startSale()
enterItem(long,long)
finishSale()
cashPay(double,double)
cardPay(Card)

CheckOutIf

<<Light>>

LightIf

Figure 3. Components of POS

6.2. Further decomposition

We can further decompose the inventory component
into two components,ApplicationandData. Application
consists of the use case handlers and provides the inter-
faces that the overall inventory component provides, but
it requires interface ofData. Data consists of thestore
object and the data contained in it and provides an inter-
face, we call itStoreIf, to the application to receive the
invocations that are made to thestore. This decomposi-
tion is shown in Fig. 4.
The componentData can be decomposed into compo-
nents for different kinds of data, such asSaleDataand
OrderData. Also, Data can be further decomposed into
a componentDataRepresentationand aDatabasecom-
ponent, to make theInventory component a classical
three-layer-architecture. All the data are stored in the
Database and the componentDataRepresentationis the
data representation, that provides the interfaceStoreIfto
the application layer; interactions with the database can
be made through JDBC.

:LineItem

barcode: long
quantity: long
subtotal: double

:Sale

complete: bool
total: double
date: date

:Payment

:CardPayment

card: Card

:CashPayment

amount: double
change: double

:Store

:Item

barcode: long
price. double
amount: long

1

1

*

*

<<Data>>

lines

cat

1 0..1pay

:Order

complete: bool

** sale order

<<DataBase >>

JDBC

<<Application >>

<<Inventory >>

StoreIf

ManageIf

OrderIf

CashDeskIf

Figure 4. Decomposition of Inventory

6.3. Inter-component interaction mechanisms

So far the semantics of the interfaces between the
components are still OO interfaces and thus interactions
are supposed to be made via local object method invo-
cation. This works if there is only oneSalesHandlerin-
stance and all the components share a central memory.
Now we assume there are more than oneSalesHandler
instance each having its own clock and only one
Inventory instance. We should change some of the OO
interfaces by introducingconnectors, for example:

• We keep the interfaceStoreIf between the appli-
cation layer and the data representation layer in
Inventoryas an OO interface. The interactions be-
tweenDataRepresentationand theDatabasecan be
handled, e.g., through JDBC.

• As all theSalesHandlerinstances share the same in-
ventory, we can introduce a connector by which
theSalesHandlerinstances get product information
or request the inventory to update a product by
passing a product code. This can be implemented
using an event channel.

• The interaction between theSalesHandlerinstances
and the bank or the product supplier can be made
via RMI or CORBA.

6.4. GUI components

In our approach, we keep the design of the applica-
tion independent from the design of the GUI, so that
we do not need to change the application. The GUI de-
sign is only concerned about how to link methods of
GUI objects to the interface methods of the application
components to delegate the requested operation and to
get the information that are needed to display on the
GUI. In general, the application components should not
call methods of the GUI objects. Also, no references
should be passed between application components and
GUI components (so called service-oriented interfaces
should be used). This requires that information that is

displayed on the GUI should be available in the appli-
cation components and corresponding interface opera-
tions should be provided by them.

6.5. Controllers of hardware devices

Each SalesHandlerinstance is connected to a bar
code scanner, a card reader, a light, a cash box, and
a printer. The hardware controllers also communicate
with both application interfaces and the GUI objects.
For example, when the cashier press thestartSalebut-
ton at his cash desk, the correspondingSalesHandlerin-
stance should create a sale and the printer controller
should print the header of the receipt. The main com-
munication can be done by using events which are
sent through event channels. An obvious solution
is that eachSalesHandlerhas its own event channel,
called checkOutChannel. This channel is used by the
CheckOut instance to enable communication between
all device controllers, such asLightDisplayController,
CardReaderControllerand the GUI. The component, the
device controllers and the GUI components have to reg-
ister at theircheckOutChanneland event handlers have to
be implemented. A message middleware, such as JMS,
can be used to call the event handlers. All the channels
can be organized as a component calledEventBus.

We should note that a controllers is active and thus
corresponds to aprocess componentin rCOS whose in-
terface protocol is a set of traces of incoming and out-
going events. On the other hand aservice component,
such asInventory, has its provided and required inter-
faces with their own protocols.

After all the components discussed in the previous
subsections are designed and coded, the system is ready
for deployment.

6.6. Discussion

The presented component-based design shows that
an OO design model is very useful to identify com-
ponents and their interfaces. We can also see the
clear separation of concerns on functionality, interac-
tion mechanisms, GUI and controllers of hardware de-
vices. There are very mature techniques and existing
designs for different interaction mechanisms and GUIs.
RMI, CORBA and JMS implement interaction mecha-
nisms and middlewares. The design of the controllers
and communication with the GUI and the application
components are carried out in an event based model.
Automated tools such as FDR can be used for verifica-
tion and analysis.

7. Verification and Analysis

Various verifications and analysis are carried out on
different models. For the requirement model, the trace
equivalence between the sequence diagram and its state
diagram (not shown in this paper) is checked with FDR.
We manually checked the consistency between the class
declarations (i.e. the class diagrams) and the functional-
ity specification to ensure that all classes and attributes
are declared in the class declarations. This can obvi-
ously be syntactically checked or ensured with a tool.
We can further ensure the consistency by translating the
rCOS functionality specification into a JML specifica-
tion and then carry out runtime checking and testing.

In the case study, we carried out the full design of
seven use cases by using rCOS refinement rules. We
have not checked the correctness of the design against
the requirement specification to detect possible mis-
takes made when applying the rules manually. How-
ever, we have translated some of the design into JML
[12] and carried out runtime checking and testing which
we discuss in the following.

Runtime checking and testing in JML. We translate
each rCOS classC into two JML files, one isC. jml
that contains the JML specification translated from the
rCOS specification, and the other is a Java source file
C. java containing code that implements the specifica-
tion. During translation, the variables used in the rCOS
specification are taken as specification-only variables in
C. jml. They are mapped to program variables inC. java.

The JML files can be compiled by the JML Runtime
Assertion Checker Compiler (jmlc). Then, test cases
can be executed to check satisfaction of the specifica-
tion by the implementation. The automatic unit testing
tool of JML (jmlunit) can be used for generating unit
testing code, which can be executed withJUnit.

/*@ public normal_behaviour

@ requires (\exists Object o; theStore.theProductList.contains(o);

@ ((Product)o).theBarcode.equals(code));

@ assignable theLine, theSale;

@ ensures theLine != \old(theLine) &&

@ theLine.theBarcode.equals(code) &&

@ theLine.theQuantity == quantity &&

@ (\exists Object o; theStore.theProductList.contains(o);

@ ((Product)o).theBarcode.equals(code) ==>

@ theLine.theTotal == ((Product)o).thePrice * quantity) &&

@ theSale.theLines.size() == (\old(theSale.theLines.size()) + 1) &&

@ theSale.theLines.contains(theLine);

@ also

@ public exceptional_behaviour

@ requires !(\exists Object o; theStore.theProductList.contains(o);

@ ((Product)o).theBarcode.equals(code));

@ signals_only Exception;

@*/

public void enterItem(Barcode code, int quantity) throws Exception;

Figure 5. Refined specification of enterItem.

For example, the design ofenterItem() given in Sec-
tion 5 is translated and stored in the.jml file shown in
Fig. 5. Notice that the text in the dotted rectangle gives
the specification of the exception that was left unspeci-
fied in Section 5. If the same testing was taken against
a .jml file containing the functionality specification of
enterItem() given in Section 4, there would be aNormal-
PostconditionErrorreported if the inputcodedoes not
exist. This indicates that the implementation does not
handle the input that falsifies the precondition. We now
modify the implementation to the code given in the left
side of Fig. 6. An exception will be thrown if the vari-
ablet is false, which represents the missing bar code in
the catalog. However, with this implementation, anIn-
variantError will be reported. The unsatisfiedinvariant
is given in Fig. 6, asserting that each bar code of a sale’s
line item must have a product with that code in the cat-
alog. Testing reveals that the code must be checked be-
fore a line is created and added to the sale. The cor-
rected code is shown on the right of Fig. 6.

Testing is not sufficient for correctness; it is also
desirable to carry out static analysis with tools like
ESC/Java [2].

public void enterItem(Barcode code, int quantity)
 throws Exception{

line = new LineItem(code, quantity);
Iterator it = store.productList.iterator();
boolean t = false;
while (it.hasNext()){

Product p = (Product)it.next();
if (p.barcode.equals(code)){

line.total = p.price * quantity;
t = true;

}
}
sale.lines.add(line);
if (!t) throw new Exception();

}

public void enterItem(Barcode code, int quantity)
 throws Exception{

line = new LineItem(code, quantity);
Iterator it = store.productList.iterator();
boolean t = false;
while (it.hasNext()){

Product p = (Product)it.next();
if (p.barcode.equals(code)){

line.total = p.price * quantity;
t = true;
sale.lines.add(line);

}
}
if (!t) throw new Exception();

}

/*@ public instance invariant ((theSale != null && theSale.theLines != null) ==>
@ (\forall Object o; theSale.theLines.contains(o);
@ (\exists Object p; theStore.theProductList.contains(p);
@ ((Product)p).theBarcode.equals(((LineItem)o).theBarcode))));
@*/

Figure 6. Improved code of enterItem.

Checking interactions among components.The de-
sign of the interactions among the controllers, the GUI
and the application components is in fact the design of
an embedded system. In the POS case study, we have
given a CSP model of the interactions and used FDR to
check deadlock freedom and the refinement of the use
case protocols by the protocols that the system offers to
the clients.

8. Conclusions

We have presented the different kinds of models that
are used in a component-based development process
and the relations among them. We emphasize on the
separation of concerns and views of the system in each

development stage. The whole system, including the
application software, the GUI and controllers of hard-
ware devices, is estimated to have about 130 classes of
total of 30k lines of code. Without the separation of
concerns, the development would not be quite feasible.

Another point that we would like to make is that cor-
rectness preserving design by refinement is important
as it would not be possible to verify the code at the end
of the development. Our experience is that the use case
protocols are usually simple and we do not need much
time to construct a model for them. However, making
the functional specification of the use cases is both cru-
cial and time consuming. Also, this is not a task feasible
for a software engineer without the experience of using
formal specification. An experienced formal rCOS ex-
pert spent one and a half day on working out the specifi-
cation ofUC1, and the other six use cases took a 4-man
week of people who are PhD students, supervised by
the experienced person. The OO design ofUC1 took
the rCOS expert less than one hour with writing, but
the design of the other use cases took another 4-student
weeks. One can see that a transformation tool can au-
tomate the expert pattern and data encapsulation. After
the design, coding does not take much time, and in fact
most of the code can be automatically generated.

The component architecture design did not take
much time and can be aided by automated transforma-
tion tools. Existing interaction mechanisms, such as
RMI, CORBA and JMS can be used to implement the
interactions among components. However, integrating
the interfaces provided to clients with the design of the
GUI and controllers of the devices is not an easy task.
A lot of coding is needed to glue these interfaces with
those of the application components, and this can be dif-
ficult to formalize. The CSP model of the interactions
among these components took a week of a postdoctoral
research fellow, including learning basic CSP. A special
point here is that until we are clear about the provided
interfaces of component-based architecture of the appli-
cation components, it would be difficult to work out the
GUI and the controllers of the devices.

Our conclusion is that rCOS provides a clear inte-
gration of a number of formal theories. It is effec-
tive in the specification of the functionality, OO refine-
ment and component-based architecture design. It sup-
ports event-based methods for the design of embedded
controllers, but is not better or worse than the existing
automata-based approaches.

Our future work includes development of automated
transformations for OO refinement and component-
based architecture design from an OO design, a formal
syntax for rCOS, and to automate the translation from
rCOS to JML so that JML tools can be used.

References

[1] Modelling contest: Common component modelling
example (CoCoME). http://agrausch.informatik.uni-
kl.de/CoCoME, 2007.

[2] Patrice Chalin, Joseph R. Kiniry, Gary T. Leavens, and
Erik Poll. Beyond assertions: Advanced specification
and verification with JML and ESC/Java2. InFormal
Methods for Components and Objects (FMCO) 2005,
Revised Lectures, volume 4111, pages 342–363, 2006.

[3] K.M. Chandy and J. Misra.Paralle Program Design: a
Foundation. Addison-Wesley, 1988.

[4] X. Chen, J. He, Z. Liu, and N. Zhan. A model of
component-based programming. Technical Report 350,
UNU-IIST, P.O. Box 3058, Macao SAR, China, 2006.
http://www.iist.unu.edu, Accepted by FSEN’07.

[5] X. Chen, Z. Liu, and V. Mencl. Separation of concerns
and consistent integration in requirements modelling. In
Proc. Current Trends in Theory and Practice of Com-
puter Science, LNCS. Springer, 2007.

[6] Yoonsik Cheon and Gary T. Leavens. The JML and JU-
nit way of unit testing and its implementation. Technical
Report 04-02a, Department of Computer Science, Iowa
State University, April 2004.

[7] J. He, X. Li, and Z. Liu. rCOS: A refinement calculus for
object systems.Theoretical Computer Science, 365(1-
2):109–142, 2006.

[8] J. He, Z. Liu, and X. Li. A theory of reactive compo-
nents. Electronic Notes of Theoretical Computer Sci-
ence, 160:173–195, 2006.

[9] C.A.R. Hoare and J. He.Unifying Theories of Program-
ming. Prentice-Hall, 1998.

[10] Leslie Lamport. Specifying Systems, The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, 2002.

[11] C. Larman.Applying UML and Patterns: An Introduc-
tion to Object-Oriented Analysis and Design and the
Unified Process. Prentice-Hall Intl., 2nd edition, 2001.

[12] J.L. Leavens. JML’s rich, inherited specification for
behavioural subtypes. InProc. 8th Intl. Conf. on For-
mal Engineering Methods (ICFEM06). Lecture Notes in
Computer Science Volume 4260. Springer, 2006.

[13] X. Liu, Z. Liu, and L. Zhao. Object-oriented structure
refinement - a graph transformational approach. Techni-
cal Report 340, UNU-IIST, P.O. Box 3058, Macao SAR,
China, 2006. http://www.iist.unu.edu, Published in Proc.
International Workshop on Refinement, ENTCS. An ex-
tended version is submitted for Journal Publication.

[14] B. Meyer, I. Ciupa, A. Leitner, and L. Liu. Automatic
testing of object-oriented software. InProc. Current
Trends in Theory and Practice of Computer Science,
LNCS. Springer, 2007.

[15] M. Möller, E-R. Olderog, H. Rasch, and H. Wehrheim.
Linking CSP-OZ with UML and Java: A case study. In
Proc. Integrated Formal Methods (IFM’04). LNCS Vol-
ume 2999. Springer, 2004.

[16] F. Plasil and S. Visnosky. Behavior protocols for
software components. IEEE Trans. Software Eng.,

28(11):1056–1070, 2002.
[17] A.W. Roscoe. Theory and Practice of Concurrency.

Prentice-Hall, 1997.
[18] Tata Consultancy Services. Mastercraft.

http://www.tata-mastercraft.com/.
[19] UNU-IIST. 1st Asian Working Con-

ference on Verified Software, 2006.
http://www.iist.unu.edu/www/workshop/AWCVS2006/.

