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ABSTRACT
Message passing is the primary programming paradigm in high-
performance computing. However, developing message passing
programs is challenging due to the non-determinism caused by
parallel execution and complex programming features such as non-
deterministic communications and asynchrony. We present MPI-SV,
a symbolic verifier for verifying the parallel C programs using mes-
sage passing interface (MPI). MPI-SV combines symbolic execution
and model checking in a synergistic manner to improve the scalabil-
ity and enlarge the scope of verifiable properties. We have applied
MPI-SV to real-world MPI C programs. The experimental results
indicate that MPI-SV can, on average, achieve 19x speedups in
verifying deadlock-freedom and 5x speedups in finding counter-
examples. MPI-SV can be accessed at https://mpi-sv.github.io, and
the demonstration video is at https://youtu.be/zzCY0CPDNCw.
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1 INTRODUCTION
Message Passing Interface (MPI) [5] is the current de facto standard
for developing the parallel applications in high-performance com-
puting. DevelopingMPI applications is challenging [7] due to the na-
ture of MPI programming’s complexities, such as non-determinism
and non-blocking communications. Ensuring the correctness of
MPI programs is highly demanded [7].

Existing verification tools for MPI programs are mainly dynamic
ones [18][4]. These dynamic verification tools analyze the correct-
ness of the MPI program under a specific input; hence, they may
miss the bugs depending on program inputs. On the other hand,
although there exist static verification tools (such as MPI-SPIN [15],
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TASS [16] and CIVL [12]), these tools either need manual modeling
or do not support the MPI programs with non-blocking operations,
which are ubiquitous in real-world MPI programs [8]. Besides, ex-
isting dynamic or static automatic verifiers of MPI programs can
only support the verification of reachability properties.

We present in this paper MPI-SV, i.e., a symbolic verifier for
MPI C programs. MPI-SV covers the non-determinism caused by
program inputs and supports the verification of the MPI programs
with non-blocking and non-deterministic operations; besides, MPI-
SV can verify LTL properties [3]. Insides MPI-SV, we have imple-
mented our technique in [19], which combines symbolic execution
and model checking in a synergistic manner to enlarge the scope
of verifiable properties and improve the scalability of verification.

We have evaluated MPI-SV on real-world open-source MPI pro-
grams. The experimental results indicate that MPI-SV is effective
and efficient for verifying MPI programs. Especially, insides the
benchmark, there are three large programs that are beyond the
ability of any existing static automatic verifiers for MPI programs.

2 BACKGROUND AND OVERVIEW
This section briefly introduces the basic concepts of MPI programs
and the verification technique in MPI-SV.

2.1 MPI Programs
AnMPI program can be coded in different languages, such as C, C++,
and FORTRAN. We run the program in a fixed number of processes
that can be spanned on one or multiple machines. These processes
are running in parallel and coordinate by messages passing to
accomplish a computation task. There are following two kinds
atomic MPI APIs for message passing.

• Blocking operations, including Barrier, MPI_Ssend, MPI_Send,
MPI_Recv, MPI_Wait, etc. Invoking any of these operations will
block the process until the operation is finished. For example,
MPI_Ssend sends a message to a destination process and blocks
the process until the message is well-received by the receiver.

• Non-blocking operations, e.g., MPI_Isend and MPI_Irecv. The
execution of a non-blocking operation does not block the pro-
cess. The status of the operation will be checked later (e.g., using
a Wait operation) before using the operation’s message. Non-
blocking operations are commonly used to improve the MPI
application’s performance.

The non-deterministic communication operations are wildcard re-
ceives, i.e., MPI_Recv and MPI_Irecv with any source indicator
(represented by MPI_ANY_SOURCE). A wildcard receive operation o
will receive any message that other processes send to o’s process;
hence, when multiple processes send a message to o’s process, o
will only receive one, which results in non-determinism. Figure 1
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1 #include <stdio.h>

2 #include "mpi.h"

3 int main(int argc , char **argv) {

4 int rank = -1;

5 MPI_Init (&argc , &argv); //init

6 MPI_Comm_rank(MPI_COMM_WORLD , &rank); // get rank

7 if (rank == 0) {

8 char c;

9 scanf("%c", &c);

10 int v1, v2;

11 if (c != 'a') {

12 MPI_Recv (&v1, ..., 1, ...);

13 } else {

14 MPI_IRecv (&v1, ..., MPI_ANY_SOURCE , ...);

15 }

16 MPI_Recv (&v2, ..., 3, ...);

17 } else {

18 MPI_Send (&rank , ..., 0, ...);

19 }

20 MPI_Finalize ();

21 return 0;

22 }

Figure 1: An example MPI C program

shows an MPI program. For the sake of the space limit, we omit
some parts that are not related to demonstration.

The first process (i.e., the one with rank 0, denoted by P0) gets
an input character c first. Then, P0 will receive v1’s value from
P1 if c is not equal to ‘a’; otherwise, P0 will use a non-blocking
wildcard receive to receive the value. Finally, P0 receives v2’s value
from P3. For the other processes, each sends its rank value to P0
and terminates. If we run this MPI program in four process, an
error will happen if c is equal to ‘a’ and the MPI_Irecv receives
the message from P3. Then, P0’s last blocking receive blocks P0
because the message from P3 is already received, which results in a
deadlock, i.e., the program does not terminate but cannot progress.

As indicated by the example program, it is necessary to handle
the non-determinism caused by both program input and wildcard
receives to verify MPI programs. Besides, non-blocking operations
also improve the complexity of handling wildcard receives.

2.2 Overview of MPI-SV
Figure 2 shows MPI-SV’s high-level framework. The inputs contain
an MPI program, the property φ to verify, and the number of pro-
cesses. Inside MPI-SV, symbolic execution and model checking are
combined in a synergy manner to verify MPI programs. MPI-SV
uses symbolic execution to reason the control and data flows of the
MPI program. When getting a normally terminated program path p,
MPI-SV generates a CSP [14] modelM representing p’s equivalent
program behavior. Then, MPI-SV uses a CSP model checker to ver-
ify the path modelM. IfM does not satisfy φ, a counter-example
is found; if M satisfies φ, MPI-SV continues symbolic execution.

Blocking-driven symbolic execution The challenge of the
symbolic execution in MPI-SV is two folds: a) collecting the possibly
matched send operations of wildcard operations; b) path explosion
caused by the parallel execution. In [19], we propose blocking-
driven symbolic execution (BDSE) for MPI programs. The key idea
is to postpone the time for calculating the matching information
as later as possible and employ partial order reduction (POR) [3] to

avoid the full exploration of parallel executions. We have proven
that BDSE is correct for reachability properties. However, even with
POR, BDSE still suffers from path explosion problem because of
symbolic execution’s nature and is not correct for non-reachability
properties, which is why MPI-SV needs CSP-based path modeling.
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Figure 2: Framework of MPI-SV

CSP-based path modeling The modeling only models the
communication behavior along a normally terminated path p. The
modeling uses the channel operators in CSP to model message
passing and the parallel operator to model non-blocking opera-
tions and parallel executions. The generated model encodes the
equivalent communication behavior along p, i.e., the behavior by
only changing the matches of wildcard operations. We have proven
that the modeling is precise w.r.t. the MPI standard. Based on this
result, if the path model M does not satisfy the property φ, a true
bug is found; if M satisfies φ, MPI-SV prunes p’s the equivalent
paths in symbolic execution, which improves the scalability of sym-
bolic execution. For example, for the program in Figure 1, MPI-SV
needs 2 paths to find the deadlock; however, MPI-SV without CSP
modeling or model checking needs 4 paths to detect the deadlock.
Besides improving scalability, CSP modeling also enlarges the scope
of the verifiable properties, because the model represents all the
possible interleavings of the communication operations along p. In
principle, MPI-SV supports the properties that are supported by the
underlying model checker. Now, MPI-SV uses CSP model checker
PAT that supports LTL properties.

In summary, MPI-SV synergistically integrates symbolic execu-
tion and model checking to verify MPI programs. Both symbolic
execution and model checking complement to each other. Symbolic
execution handles the complex features of the program to generate
verifiable models for model checking; meanwhile, model check-
ing improves the scalability and enlarges the scope of verifiable
properties for pure symbolic execution.

3 TOOL DESIGN AND IMPLEMENTATION
Figure 3 shows MPI-SV’s architecture. To support the real-world
MPI C programs, we built MPI-SV on Cloud9 [1] that is based on
KLEE [2] and enhances KLEE with a better POSIX environment
support and parallel symbolic execution. The input MPI C program
needs be compiled into LLVM intermediate representation (IR) by
Clang. Symbolic execution is carried out on the program’s IR.

3.1 Executor
The executor is the core component in MPI-SV. The executor imple-
ments blocking-driven symbolic execution. Same as the traditional
symbolic execution [11], the executor symbolically executes the IR
program in a state-forking style. When encountering a branch state-
ment with a symbolic condition, the executor forks the program
state into two if both branches are feasible.

The executor analyzes the multi-threaded version of the MPI
program, which is also the reason for using Cloud9 that supports
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Figure 3: Architecture of MPI-SV

the analysis of multi-threaded C programs. Each MPI process is
running as a thread in symbolic execution. Each program state
(global state) is composed by the states of the processes. In princi-
ple, any process’s advance changes the global state. To implement
blocking-driven symbolic execution, the executor does not exe-
cute the encountered communications operations but records them
and the calling stacks. When the global state blocks, i.e., each pro-
cess blocks, executor decides the matchings of the recorded MPI
operations and executes the matched operations. In this way, the ex-
ecutor tries to get all the possible matchings of wildcard operations.
Besides, leveraged by POR, executor always starts the execution
of the non-blocked process with the minimum rank and avoids
interleaving the statement executions of different processes.

Executor uses a multi-threaded MPI simulation library, i.e., Aze-
quiaMPI [13], as the environment support forMPIAPIs. AzequiaMPI
models a wide range of MPI APIs and supports the simulation of
real-world MPI programs. Besides, global variables result in a prob-
lem for simulating the MPI program in the multi-threaded version
because each process should have its own memory space for global
variables. We solve this problem by maintaining each thread’s own
memory space of global variables.

3.2 State Manager
The state manager stores the explored states and controls the way
of exploring the global state space of the MPI program. We in-
herit the search heuristics from KLEE, including DFS, BFS, Ran-
dom+CoverNew, etc. The default strategy is DFS because using DFS
is more possible to generate a terminated path, on which MPI-SV
can use CSP modeling and model checking to boost the state explo-
ration. When a path model is verified, the state manager is also in
charge of pruning redundant states.

3.3 CSP model generator
The CSP model generator is in charge of generating CSP models for
terminated paths. Given a global state in which all the processes

normally terminate, the generator iterates the MPI operation se-
quence of each process (recorded during symbolic execution) to
generate a corresponding CSP process. Then, the CSP processes
are composed using the CSP parallel composition operator to form
the global CSP model, which will be verified by the model checker.
The generation has a polynomial-time complexity w.r.t. the total
length of operation sequences. Please refer to [19] for the details.

3.4 CSP model checker
MPI-SV uses PAT [17] as the underlying CSP model checker. PAT
supports the verification of the safety and liveness properties in
LTL. In the implementation, the generator dumps a path model into
a file that satisfies the input format of PAT. The executor invokes
PAT to verify the model and parses the output for reporting counter-
example or state pruning.

4 USAGE AND EVALUATION
To useMPI-SV, a user needs to compile theMPI program into IR first
by using our Clang wrapped compiler script mpisvcc. For example,

mpisvcc demo.c -o demo.bc

Then, the user can use MPI-SV to analyze the IR program.

mpisv <#Procs> <Arg>* demo.bc <pArg>*

<#Procs> is the number of processes. <Arg>* is the list of MPI-
SV’s arguments. We use -wild-opt as the MPI-SV’s argument to
indicate using CSP modeling and model checking. <pArgs>* is the
list of the analyzed program’s arguments. The user can specify the
verification property in LTL and pass the property file to MPI-SV.
Deadlock freedom is the default property. To symbolize a variable,
the user can use the symbolization function inherited from KLEE.
For example, we can symbolize the variable c in Figure 1 as follows.

klee_make_symbolic(&c, sizeof(c), ``c'');

Readers can refer to MPI-SV’s website for more details of usage.
We have evaluated MPI-SV on the 12 real-world open source MPI

C programs in Table 1. The verified properties are deadlock-freedom
and two application-dependent temporal properties.

Table 1: The programs in the experiments.
Program LOC Brief Description
DTG 90 Dependence transition group
Matmat 105 Matrix multiplication
Integrate 181 Integral computing
Diffusion2d 197 Simulation of diffusion equation
Gauss_elim 341 Gaussian elimination
Heat 613 Heat equation solver
Mandelbrot 268 Mandelbrot set drawing
Sorting 218 Array sorting
Image_manip 360 Image manipulation
DepSolver 8988 Multimaterial electrostatic solver
Kfray 12728 KF-Ray parallel raytracer
ClustalW 23265 Multiple sequence alignment
Total 47354 12 open source programs

Each verification task contains an MPI program, a fixed number
of the processes, and the verification property. We set the verifica-
tion time of each task to be one hour. In total, we have 111 deadlock
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freedom verification tasks. Since there are no existing automatic
static verification tools that support the MPI program with non-
blocking operations, the primary baseline (denoted by Baseline)
is the version of MPI-SV with pure symbolic execution, i.e., without
CSP modeling or model checking.

4.1 Effectiveness and efficiency
MPI-SV can complete 100 (90%) tasks, i.e., finding a counter-example
or proving that the MPI program satisfies the property under the
fixed number of processes. Baseline, i.e., pure symbolic execution,
can complete 61 tasks. For the completed tasks in which a counter-
example is found, MPI-SV achieves a 5x speedups on average; for
the ones where verification succeeds, MPI-SV has a 19x speedups.
These results indicate that the synergy between symbolic execution
and model checking makes MPI-SV be both effective and efficient.

There are several tasks on which MPI-SV does not outperform
Baseline. The reasons are: 1) the paths in these tasks contain a
large number of wildcard operations, which makes the path model
too complex to be verified by PAT; or 2) the paths have very few
wildcard operations but the program has a huge path space, and the
model checking cannot result in path pruning but brings overload.

4.2 Bug finding
MPI-SV is a tool that can help the developers of MPI applications

to find bugs at the development stage. We use MPI-SV to find
unknown runtime bugs (most are memory access out-of-bound
bugs) in the benchmark programs in Table 1. We explain two here.

• Bug 1: Memory out-of-bound at Line 213 in depSolver’s
gmre-mpi.c. The code and the context is

for(i = 0; i < MAX_ITERS; i++){
...
krylov[i+1] = doubleVector(size,1);

krylov is an array whose size is MAX_ITERS; hence, the memory
out-of-bound error happens when i is MAT_ITERS - 1.

• Bug 2: Memory out-of-bound at Line 3095 in ClustalW’s
interface.c. The code is

if (amino_acid_codes[seq_array[j][i+fres-1]]==c)

amino_acid_codes is an array whose size is 26. The error will
happen when seq_array[j][i+fres-1] is less than 0 or greater
than 25.

MPI-SV does not find unknown deadlock bugs in the benchmark
programs. Deadlock bugs are very severe and have usually be fixed
during the development, especially for the benchmark programs
that have been developed and used for a long time.

4.3 Other usage
MPI-SV has been used in [10] for creating a benchmark to evaluate
existing model checkers. In total, the benchmark consists of 2318
path models automatically generated by MPI-SV from 10 MPI pro-
grams. Then, the benchmark is used to evaluate the representative
model checkers, including SPIN, PAT, FDR, etc.

5 RELATEDWORK
MPI-SV is related to the existing verification tools for MPI programs.
Dynamic verification tools, such as ISP [6] and MOPPER [4], to
name a few, run the MPI program under a specific input and verify
the path to ensure the correctness under different matchings of
wildcard operations. Compared with these tools, MPI-SV can cover
the input space and supports a larger scope of verifiable properties.

Static verification tools abstract a model from the MPI program
and verify the model. MPI-SPIN [15] needs to abstract the model
manually; then, MPI-SPIN employs SPIN [9] to do the verification.
CIVL [12] also uses symbolic execution to analyze MPI programs.
CIVL translates the MPI program into its intermediate represen-
tation (IR) and does the symbolic execution of the IR program.
CIVL does not support the MPI program with non-blocking opera-
tions and cannot verify non-reachability properties. Compared with
MPI-SPIN and CIVL, MPI-SV is an automatic verifier that supports
non-blocking MPI programs and LTL property verification.
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