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Abstract—A challenging problem in software engineering is to
check if a program has an execution path satisfying a regular
property. We propose a novel method of dynamic symbolic
execution (DSE) to automatically find a path of a program
satisfying a regular property. What makes our method distinct
is when exploring the path space, DSE is guided by the synergy
of static analysis and dynamic analysis to find a target path as
soon as possible. We have implemented our guided DSE method
for Java programs based on JPF and WALA, and applied it
to 13 real-world open source Java programs, a total of 225K
lines of code, for extensive experiments. The results show the
effectiveness, efficiency, feasibility and scalability of the method.
Compared with the pure DSE on the time to find the first target
path, the average speedup of the guided DSE is more than 258X
when analyzing the programs that have more than 100 paths.

I. INTRODUCTION

A regular property of a program can be represented by a
Finite State Machine (FSM). The FSM is an abstract model
of the executions of the program. A label (or event) of
a transition corresponds to the execution of one or more
statements in the program relevant to the property. FSM can
describe many kinds of program properties including resource
usage (e.g., file usage [1]), memory safety (e.g., memory leak
[2]), communication protocol [3], etc. In software engineering,
regular properties and FSMs are widely used in different tech-
niques, such as model-based testing [4], typestate analysis [5],
and specification mining and synthesis [6]. These techniques
encounter the common problem of checking whether there
exists a path of a program that satisfies a regular property.
Therefore, finding effective solutions to this problem and their
implementations are essential to many applications.

Static analysis and dynamic analysis are the two effec-
tive approaches used for checking regular properties. Static
analysis, e.g., [7], [1], [5], usually enjoys the advantage of
high coverage and good scalability. But its users are often
bothered by false alarms, due to the extra behaviors introduced
by over approximation. The dynamic approach [8], [9] has
the advantage of no false alarm, and can provide precise
information (such as the input) for replay. However, it is
confined by the problem of limited input coverage as only
the program executions of the selected inputs can be checked.
For example, traditional software testing [4] has low coverage.

Furthermore, techniques pursuing coverage, such as automatic
test generation [10], are difficult to scale up.

Dynamic symbolic execution (DSE) [11], [12] enhances
traditional symbolic execution [13] by combing concrete ex-
ecution and symbolic execution. DSE repeatedly runs the
program both concretely and symbolically. After each run,
all the branches off the execution path, called the off-path-
branches, are collected, and then one of them is selected
to generate new inputs for the next run to explore a new
path. Hence, DSE improves the coverage through symbolic
execution, and avoids false alarms by actually running the
program. More importantly, DSE can use information of the
concrete execution to simplify symbolic reasoning and handle
environment modeling.

When DSE is applied to checking a program against a
regular property, an execution path satisfies the property if
the sequence of the events in the path is accepted by the
FSM of the property, and we call this path an accepted path.
However, the number of paths is exponential with the number
of branch statements executed during DSE, which brings the
path explosion problem. Therefore, how to guide DSE to find
a path satisfying the regular property as soon as possible is a
challenging problem.

We propose a novel DSE approach, called regular property
guided DSE, to find the program paths satisfying a regular
property as soon as possible. Our approach is based on the key
insight that only the paths with specific sequences of events
can satisfy the regular property. The portion of the accepted
paths is often very small. It is desirable not to explore the
irrelevant paths (i.e., the paths not containing any event in
the FSM) and the relevant paths not satisfying the property.
However, it is impossible to avoid all these paths. What we
propose is to explore the off-path-branches along which the
paths are most likely to satisfy the property.

The novelty of the guided DSE is the design of the algorithm
to evaluate the possibility of an off-path-branch along which
there exists an accepted path. To this end, the evaluation uses
the history and future behaviors of the off-path-branch. For an
off-path-branch b, the history of b is described by the states
of the FSM that the current execution path has reached up to
b. The future of b is described by the states of the FSM from
which the final state can be reached by the execution of the



program after b. We calculate the history in the DSE process
and the future statically using backward dataflow analysis. If
the intersection of the history and future of b is not empty,
there is likely a path along b satisfying the regular property.

We have implemented the guided DSE for Java programs,
based on JPF-JDart [14] and WALA [15]. The tool is applied
to analyze 13 real-world open source Java programs, a total of
225K lines of code, against representative regular properties.
The experimental results indicate that the guided DSE is more
efficient than the pure DSE with a lower time overhead and
an acceptable memory overhead.

The main contributions of this paper are as follows:
• The algorithm for guiding DSE with respect to regular

properties: with the synergy of static analysis and dy-
namic analysis, the algorithm can find the program paths
satisfying a regular property effectively and efficiently.

• The prototype tool of the guided DSE for Java programs:
it is applied successfully to analyze 13 real-world Java
programs with respect to regular properties.

• Extensive experiments: the results show that the guided
DSE has 1) an average >1880X speedup on the iterations
needed to find the first accepted path, and 2) an average
>258X time speedup for finding the first accepted path
on the programs whose path space is bigger than 100.
Furthermore, for 3 out of the 13 programs, guided DSE
successfully finds an accepted path in one hour, repro-
ducing a known typestate bug; whereas, the pure DSE
fails for these 3 programs in 24 hours.

The rest of this paper is as follows. Section II motivates
our approach. Section III elaborates the details. Section IV
presents the implementation and evaluation. We discuss related
work in Section V, and conclusion in Section VI.

II. MOTIVATING EXAMPLE

To motivate the guided DSE, Fig. 1 shows a program that
uses an InputStreamReader to read a file. Procedure foo
has three integer parameters and two loops in lines 6−11 and
lines 17−22, respectively. If tag is 0, the reader w, an instance
of InputStreamReader, is closed before the second loop
(line 14), and a java.io.IOException may be thrown
at line 19. For a reader, we are concerned with the regular
property that method read is performed after method close.
Fig. 2 is the FSM, denoted by Mr, of this property, where
init (object initialization, e.g., line 3), close and read
method invocations are the events. We suppose that an event
is atomic, i.e., no other events can be observed during its
execution.

Consider the initial input I1 = (m = 1, n = 1, tag = 1).
The first iteration of DSE is shown by Fig. 3. In the first
execution path, shown by the leftmost path of the graph,
the body of each loop is executed once only. This execution
path generates the sequence “init, read, read” of events,
driving Mr to state q1. For this path, the path condition
PC1 is the conjunction of five conditions: m > 0, m ≤ 1,
tag 6= 0, n > 0 and n ≤ 1, denoted by c1−c5. Here, c1
and c2 are from statement st1 while(k++<m), c3 from st2

1 int foo(int m, int n, int tag) { //{q0}
2 File file = new File("..."); //{q0}
3 InputStreamReader w = new InputStreamReader(

new FileInputStream(file)); //{q1, q2, q3}
4 int result = 0; //{q1, q2, q3}
5 int k = 0; //{q1, q2, q3}
6 while (k++ < m) //{q1, q2, q3}
7 { //{q1, q2, q3}
8 int i = w.read(); //{q1, q2, q3}
9 if (i == -1) break;//{q1, q2, q3}

10 result += i; //{q1, q2, q3}
11 } //{q1, q2, q3}
12 if (tag == 0) //{q1, q2, q3}
13 { //{q1, q2, q3}
14 w.close(); //{q2, q3}
15 } //{q2, q3}
16 k = 0; //{q2, q3}
17 while (k++ < n) //{q2, q3}
18 { //{q2, q3}
19 int i = w.read(); //{q2, q3}
20 if (i == -1) break;//{q2, q3}
21 result -= i; //{q2, q3}
22 } //{q3}
23 return result;
24 }

Fig. 1. An example program
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if(tag==0) and c4, c5 from st3 while(k++<n). Let
b1 . . . b5 be the corresponding off-path-branches of c1 . . . c5,
respectively. Clearly, to reach state q3 of Mr, we need an
input that can steer the execution to cover line 14, which lies
immediately after b3. We can see b3 needs the least iterations
to get an accepted path.

With depth first search strategy, b5 will be selected and we
have PC ′1 = 〈m > 0 ∧m ≤ 1 ∧ tag 6= 0 ∧ n > 0 ∧ n > 1〉.
Consider the generated input from PC ′1 is I2 = (m = 1, n =
2, tag = 1). Then, in the second iteration, the path condition
is 〈m > 0 ∧m ≤ 1 ∧ tag 6= 0 ∧ n > 0 ∧ n > 1 ∧ n ≤ 2〉, and



the body of the second loop is executed twice. Similarly, in
the subsequent iterations, the second loop would be unrolled
repeatedly until the upper bound is reached. This implies that
line 14 will not be executed until the conditions from the
second loop (line 17) are drained. If we use breath first search
strategy, we still need many iterations before reaching line 14.
The reason is that the two loops generate a plenty of conditions
during DSE, and the search procedure does not know it is
necessary to execute the statement at line 14 to reach q3.

With the same initial input, the guided DSE needs only two
iterations to find the target path. The guided DSE first cal-
culates the future behavior information, denoted by Postset,
of each program point pt using a context sensitive dataflow
analysis. For each state q in Postset, there exists at least one
static path1 along pt that can drive the FSM from q to a final
state. We use the comment of a line in Fig. 1 to show the
Postset of the program point below that line. For example,
the comment in line 11 indicates that the program after line 11
(not including line 11) may reach q3 from state q1, q2 or q3.
Also, the guided DSE calculates the history behavior, denoted
by Preset, of an off-path-branch b. The Preset of b contains
the states of the FSM that can be reached by the execution up
to b. Fig. 3 shows the Preset of b3 is {q1}. This is because the
event sequence “init, read” before b3 reaches state q1. Fig. 3
displays the Preset and Postset of b1 . . . b5.

The guided DSE uses Preset and Postset to select the
off-path-branch to explore preferentially. If the intersection of
the Preset and Postset of an off-path-branch b is empty,
there will be no accepted path along b, and b is given a low
priority to be selected for exploration2. For example, b5 is not
selected for the next iteration, as the Preset and Postset of
b5 are {q1} and {q2, q3}, respectively.

In the case when the intersection of the Preset and Postset
of b is not empty, the paths along b are possible to satisfy
the property. For different b and b′, if the interaction of the
Preset and Postset of b contains a larger number of states
than that of b′, the guided DSE assigns a higher priority to b.
When the interactions of the Postset and Preset of b and b′

have the same number of states, a higher priority is given to
the deeper branch to limit the repetition of path exploration.
In our example, b3 is selected and PC ′1 = 〈m > 0 ∧ m ≤
1 ∧ tag = 0〉. The execution with the new input generated by
solving PC ′1 covers line 14 to find an accepted path in only
two iterations.

III. REGULAR PROPERTY GUIDED DSE

In this section, we elaborate the details of regular property
guided DSE.

A. DSE Algorithm

Algorithm 1 shows the worklist based search procedure. The
inputs are the target program P , the FSM Mp and the initial
input I0. The algorithm explores the path space of P to find
the paths that can be accepted by Mp.

1A static path is only a static path segment, but not necessarily feasible.
2In Section III-B, we explain why b is not deleted.

Algorithm 1: Regular Property Guided DSE
Data: program P , FSM Mp, initial input I0

1 begin
2 worklist← ∅;
3 I ← I0;
4 ComputePostset(P,Mp);
5 while true do
6 runAndMonitor(I,Mp);
7 if reach final state then
8 report path;

9 saveOffPathBranches(worklist);
10 if worklist = ∅ then
11 exit;
12 PC ← getF irstSat(worklist);
13 I ← solver(PC);

The worklist stores the off-path-branches that are yet to be
explored in order. Initially, the worklist is empty, and the input
I is set to the initial input I0, which is generated randomly
or manually (line 3). The function ComputePostset(P , Mp)
(line 4) computes the Postset of each location in P against
Mp (elaborated in Section III-D). Function runAndMonitor(I)
feeds P with input I and executes P both symbolically and
concretely (line 6). During the execution, Mp is used to check
whether the sequence of the events in the execution path
satisfies the regular property. When a final state of Mp is
reached, the current input I and the path being explored are
reported (line 8). Since DSE executes the program concretely,
Algorithm 1 does not generate false alarms. Then, the function
saveOffPathBranches(worklist) saves all the off-path-branches
to worklist in the order of their priorities (discussed in Section
II and elaborated in Section III-B).

The function getFirstSat(worklist) fetches the first feasible
off-path-branch from worklist, according to which the next
input is generated. The while loop (from line 5 to line 13)
iteratively explores different paths until worklist is empty (line
10). More details, such as divergence handling, are omitted for
brevity.

The main procedure of Algorithm 1 differs from the stan-
dard worklist based search procedure of DSE. Firstly, each
execution is monitored to check whether the current path can
be accepted by Mp. Secondly, the Preset for each off-path-
branch is calculated and maintained during execution. Thirdly,
the evaluation of an off-path-branch is new, which is discussed
in the following subsection.

B. Evaluation Function

To find the paths that can be accepted by Mp with the
least number of iterations, the evaluation function should be
designed to assign the highest priority to the off-path-branch
b such that: 1) there is a path along b that can be accepted by
Mp, and 2) the distance (measured by the number of branch
statements) between b and the final event before reaching the
final state is the shortest.

There are two difficulties in deciding the priority of an
off-path-branch b. The first difficulty is how to evaluate the



history of b. If we consider all the possible sequences of
the events in the static path prefix of b, the history of b
contains all the states that can be reached by the sequences of
the events. We use Presetideal(ptb, Cb) to denote this ideal
history, where ptb and Cb are respectively the program point
and the call string [16] of b. However, it is in general too costly
to compute the ideal history for an off-path-branch. We decide
to compute an approximation, denoted by Preset(ptb, Cb), by
only considering the current execution up to b, obtained in the
DSE procedure (elaborated in Section III-C).

The other difficulty is to evaluate the future of b. In
theory, computing the future behavior after arbitrary branch
b can be reduced to the halting problem. Inspired by static
typestate analysis [5], [17], we propose an efficient and
yet precise enough method. As for the history, we define
Postsetideal(ptb, Cb) to be the set of the states in Mr from
which a final state of Mr can be reached by the execution of
the program after b under the context Cb. Let

h+(ptb, Cb) = |Presetideal(ptb, Cb) ∩ Postsetideal(ptb, Cb)|

Then, h+(ptb, Cb) > 0 iff there exists at least one path along b
that can be accepted by Mp. We can prune b if h+(ptb, Cb) =
0. Therefore, h+(ptb, Cb) reflects the possibility of the paths
along b to be accepted by Mp. Note that, for two off-path-
branches b1 and b2, h+(ptb1 , Cb1) > h+(ptb2 , Cb2) does not
mean less iterations are needed to explore b1. This is because
we do not know how many iterations after b1 or b2 are needed
to find an accepted path.

As Postsetideal(ptb, Cb) is in general not computable,
we compute an approximation, denoted by Postset(ptb, Cb).
For this, we use a call strings based context sensitive and
interprocedural dataflow analysis (elaborated in Section III-D).
Let

h(ptb, Cb) = |Preset(ptb, Cb) ∩ Postset(ptb, Cb)| (1)

Static analysis does not consider the feasibility of a path.
Thus, Postset(ptb, Cb) may contain the states that do not
occur in Postsetideal(ptb, Cb), and h(ptb, Cb) > 0 does
not guarantee the existence of an accepted path along b.
We tend to compute an over-approximation for Postset, i.e.,
Postsetideal(ptb, Cb) ⊆ Postset(ptb, Cb). However, due to
the limitations of static analysis used in our approach, we
cannot guarantee the result is always an over-approximation.
To ensure the soundness, we assign b a very low priority if
h(ptb, Cb) = 0 instead of pruning it for possible exploration.

Another factor affecting the priority of an off-path-branch
b is the distance between b and the target point where a final
state of Mp can be reached. For b2 and b3 in Fig. 3, we have
h(ptb2 , Cb3) = h(ptb3 , Cb3). But the distance between b2 and
the statement whose execution can drive Mr to the final state
(line 6 in Fig. 1) is larger. Thus, it would be better to select
b3 over b2, as the search procedure is likely to need fewer
iterations to reach the target. If h(ptb, Cb) = h(ptb′ , Cb′), the
deeper branch is assigned a higher priority. This strategy is
based on the fact that in many cases a deeper branch is a
descendant of the branch with a shorter depth.

Based on the above analysis, we define the evaluation
function:

H(b, Cb) = h(ptb, Cb) + depth(b)/Max (2)

where depth(b) represents the depth of b, and Max is a large
constant that is greater than the depth of any branch. Note that
depth(b)/Max is less than 1, thus the depths of branches de-
cide the priorities of b and b′ when h(ptb, Cb) = h(ptb′ , Cb′).
Algorithm 2 decides the order of worklist. The priorities of
elements in the worklist are based on H(b, Cb) and the strategy
discussed earlier.

Algorithm 2: Compare the Evaluation Value
Data: off-path-branches b1, b2 with program points ptb1 , ptb2

and call strings Cb1 , Cb2

1 begin
2 H1 = |Preset(ptb1 , Cb1) ∩ Postset(ptb1 , Cb1)|;
3 H2 = |Preset(ptb2 , Cb2) ∩ Postset(ptb2 , Cb2)|;
4 if H1 > H2 then
5 return b1;

6 if H1 < H2 then
7 return b2;

8 else
9 return (depth(b1) > depth(b2)?b1 : b2);

C. Computing Preset

The Preset is computed on-the-fly during DSE. We use the
FSM of the regular property in the same way as a monitor in
runtime verification [18]. The monitor inspects the sensitive
objects, that are the runtime objects of the class or interface
specified in the FSM. When a sensitive object is created, its
corresponding monitor will also be initiated. When a method
of the object is invoked, an event is generated if the invocation
corresponds to an event in the FSM, and the event is sent to
the monitor for carrying out a state transition.

Without loss of generality, we suppose that there is only one
regular property that is analyzed at a time. We maintain a map
D : SD → SID from the identities of sensitive objects to the
identities of the monitor instances. An event from a sensitive
object o is only monitored by the monitor instance identified
by D(o). For example, when monitoring the property in Fig.
2, the events of different objects of InputStreamReader are
monitored separately by their corresponding instances of Mr.

In correspondence, Preset(ptb, Cb) is represented as a set
of pairs {s | s = (ID, q)}, where ID is the identify of the
sensitive object created when the execution reaches ptb in
the context of Cb, and q is the current state of the monitor
identified by D(ID). For example, the Preset of b3 in Figure 3
is {(IDw, q1)}, where IDw is the identity of the object created
at line 3.

D. Computing Postset

We now describe how to compute the Postset. We use a
backward dataflow analysis to check a regular property on
the control flow graph (CFG) of the program. Inspired by the
backward analysis in [17], we use the reversed FSM as the
monitor during the backward dataflow analysis.



Let M be an FSM, and L be the language accepted by
M . The reverse of M , denoted by

←−
M , accepting the mirror

language [19] of L is obtained as follows: first, swap initial and
final states, and reverse all the edges; and then, determinize
the FSM [19]. Note that one state of

←−
M may correspond to a

set of states in M .

{q3}start {q2, q3} {q1, q2, q3} {q0}
read

close
read

close init

read

close

Fig. 4. The reversed FSM of Mr in Fig. 2

For example, Fig. 4 shows
←−
Mr of Mr in Fig. 2. The second

state in
←−
Mr is {q2, q3}, which means executing event read

from q2 or q3 can reach a final state of Mr.
In general, when we carry out the backward dataflow

analysis for a program against an FSM M ,
←−
M is used

to monitor the state of a static object [16] (calculated by
pointer analysis) until a fixed-point of Postset is reached.
The Postset(ptb, Cb) is represented by a set of pairs (ID, q),
where ID is the identity of a static object, and q is the state in
M from which the execution of the program after ptb under
the call string Cb can reach a final state of M .

For example, the program in Fig. 1 has only one static object
of InputStreamReader (line 3). We denote its identity by
or, and use

←−
M as the corresponding instance monitor. In the

initial configuration of the backward dataflow analysis, the
monitor

←−
M is in state {q3}. This is because the execution of

line 23 does not involve any event of
←−
M . When the first itera-

tion of dataflow analysis procedure progresses to the statement
at line 19, the state of the monitor changes to {q2, q3}, and
the state information at the location between line 18 and line
19 becomes stable with Postset = {(or, q2), (or, q3)}. When
the dataflow analysis reaches the branch statement at line 12,
the two branches are merged (by a join operation [16]) to
change the Postset of the program point above line 12 to
{(or, q1), (or, q2), (or, q3)}.

Note that the program in Fig. 1 is not interprocedural. For
an interprocedural program, we use the IFDS framework [20]
to encode our problem to enable an interprocedural backward
dataflow analysis.

E. IFDS Encoding

For the dataflow analysis of a program with method in-
vocations, IFDS works on the interprocedural control flow
graph (ICFG) of the program that connects the CFGs of the
individual procedures. In IFDS, the semantics of each node
in ICFG is interpreted as a flow function, whose input is the
facts that hold before the node, and output is the facts that
hold after executing the statement of the node. In principle,

IFDS converts an interprocedure dataflow analysis problem to
a graph reachability problem with a polynomial time solution.
Encoding an IFDS problem contains the definitions of four
kinds of flow functions: call-to-start, exit-to-return, call-to-
return and normal functions. For more details about the IFDS
framework, readers can refer to [20].

In the calculation of Postset for a program and an FSM M ,
a dataflow fact is an element in D = O × S, where O is the
set of the identities of the static objects in the program, and S

is the state set of
←−
M . Note that D is finite. The dataflow facts

are mainly manipulated by the call-to-return flow functions.
Let fcr be the call-to-return function of a method invocation

statement objectRef.methodName(...) (denoted by
m). If the execution of m does not correspond to any event of←−
M , fcr is the identity function. Otherwise, let em be the event
executing m, Om the set of the identities of the static objects
of the reference objectRef (calculated by pointer analysis),
init the initial state of

←−
M , and succ(q, e) the successor of

state q in
←−
M by the transition made by the event e. Then

fcr : D → D is the smallest function that satisfies the
following three conditions:
• For each (o, q) ∈ domain(fcr), if o /∈ Om, (o, q) ∈

range(fcr); otherwise, (o, succ(q, es)) ∈ range(fcr).
This means the events of a static object change the state
of the monitor.

• If succ(init, em) exits, we have (o, succ(init, em)) ∈
range(fcr) for each o in Om. This implies a new monitor
instance is created for a static object o.

• If objectRef points to multiple static objects, i.e.,
|Om| > 1, domain(fcr) ⊆ range(fcr). Alias is handled
conservatively by keeping all the possible facts.

All normal functions and exit-to-return functions are the
identity function because their corresponding statements do
not affect dataflow facts. If the execution of an invocation
statement sm is an event, the call-to-start function fcs of sm
is killall, which is a special flow function that kills all the
facts [20]. The reason is that an event is atomic and there is
no need to analyze the internal statements. If the execution of
sm is not an event, fcs is the identity function.

The flow functions defined above are distributive over the
union operator on sets of facts, which is an essential require-
ment of IFDS framework [20]. After getting the dataflow
facts, we can directly transform the facts to the corresponding
Postset by using the state mapping between

←−
M and M .

For example, the set of dataflow facts between line 11 and
line 12 in Fig. 1 is {(os, {q2, q3}), (os, {q1, q2, q3})}, and the
corresponding Postset is {(os, q1), (os, q2), (os, q3)}.

In theory, for a call strings based context sensitive dataflow
analysis, a larger bound of call string improves the precision,
but also increases the overhead of the analysis. A practical
analysis often seeks an appropriate bound to get a balance
between precision and efficiency (c.f. Section IV-C).

Furthermore, there is no accepted path of the program
when an over-approximation is obtained by the analysis and
Postset(pte, ε) does not contain the initial state of M , where



pte is the start point of the program and ε is the empty
call string. In this case, there is no need to perform DSE
anymore. However, due to the limitations of static analysis,
it is sometimes hard to get a non-trivial over-approximation.

F. Discussion

Our guided DSE combines the complementary advantages
for precision and scalability. The static analysis phase mainly
contains the two procedures that construct ICFG and compute
Postset, respectively. The former is commonly used, and the
latter is essentially the static typestate checking by backward
dataflow analysis [17]. The worst complexity of the algorithm
solving IFDS problems is O(|E| × |D|3) [20], where |E| is
the number of the edges in ICFG, and |D| is the size of the
fact domain. The dynamic analysis uses the object-sensitive
runtime checking [18] in runtime verification.

Our approach has the following advantages:
• Scalability: The main procedure of our approach is

DSE, which is more scalable than traditional symbolic
execution [13] because of utilizing concrete execution.
The dynamic and static analyses for calculating guiding
information are also scalable.

• Absence of false positive: Compared to static analysis
techniques, our approach does not produce any false
alarm, since DSE executes programs concretely.

• Replay: Our approach can generate the paths satisfying
the regular property, while static analysis does not.

There are sources of imprecision in the guided DSE: 1)
the imprecision of Preset and Postset (in comparison with
Presetideal and Postsetideal), and 2) the imprecision of the
interoperation of dynamic and static analyses. The imprecision
will be empirically evaluated in Section IV-C.

When evaluate the history of an off-path-branch b, we
actually use the prefix of the current path up to b, rather
than that of an unexplored path along b. This may cause
imprecision when the event sequence in the prefix varies
with the input. The source of the imprecision of Postset
includes the following three aspects: 1) the current state-of-art
of static analysis, e.g., complex mechanisms of programming
languages bring obstacles to static analysis; 2) the intrinsic
imprecision of dataflow analysis, where the feasibility of paths
is not considered; 3) the static analysis for Postset does
not consider the return values of invocations for efficiency.
Consider the program in Fig. 5. The next method may
be inappropriately invoked when the hasNext invocation
returns false. However, our static analysis considers that
the program obeys the contract of Iterator, i.e., a next
invocation should be preceded by an invocation of hasNext
with true return value.

1 boolean result = iterator.hasNext();
2 result = result && ...;
3 if(!result)
4 iterator.next();

Fig. 5. Example of the unsoundness of static analysis

The interoperation of dynamic and static analyses is also
imprecise. Preset is calculated for runtime objects, while

Postset for static objects. In Equation (1), a runtime object
and a static object are considered as equivalent if they orig-
inate from the same statement. However, an object creation
statement inside a loop may create multiple runtime objects,
all of which are related to one static object in static analysis.

IV. EVALUATION

We evaluate the guided DSE on the following two questions:
• Effectiveness and efficiency. Can the guided DSE effec-

tively find the paths satisfying a regular property? How
efficient is it compared with the pure DSE?

• Overhead. Is it costly to compute the information for
guiding DSE? The overhead should be acceptable com-
pared with the resources needed for DSE.

A. Implementation

We have implemented the guided DSE for Java programs
based on the DSE engine JPF-JDart [14], JDart for short, and
the static analysis platform WALA [15]. Our implementation
has improved many modules of JDart, including the core con-
trol module, the core data structures, etc. These improvements
substantially enhance the efficiency, scalability, feasibility and
robustness of JDart. For example, we use a tree to store the
explored part of the path space, and Glazed Lists library [21]
to implement the worklist. To enhance the feasibility of JDart
further, we have integrated JPF-nhandler [22] into JDart, which
helps SPF/JPF [23], [24] to handle the environment problem
automatically. In the implementation of the static analysis, the
values of Postset are stored in a cache so that they can be
obtained instantaneously during DSE. The dynamic analysis
is implemented as a listener in JPF.

B. Experimental Setup

Table I lists the programs in our experiments. The thirteen
programs are all real-world open source Java programs. The
number of lines of code (LOC) is counted by Metrics [25].

TABLE I
THE PROGRAMS USED IN THE EXPERIMENTS

Program LOC Brief Description
rhino-a 19799 Javascript interpreter
schroeder 11092 Sampled audio editor
soot-c 32358 Static analysis tool
toba-s 5720 Java bytecode to C compiler
jlex 4400 Lexical analyzer
bloat 45375 Java bytecode optimization
bmpdecoder 531 BMP file decoder
ftpclient 2436 FTP client in Java
htmlparser 21830 HTML parser in Java
fastjson 20223 JSON library from alibaba
udl 26896 UDL [26] language library
jep 28892 Mathematics library
sixpath 5927 XPath library
Total 225479 13 open source programs

The first four programs rhino-a, schroeder, soot-c
and toba-s are from the Ashes suite3 benchmark. Jlex
is a lexical analyzer for Java. Bloat is from the DaCapo

3http://www.sable.mcgill.ca/ashes/



benchmark [27]. BMPDecoder is a widely used Java library
for decoding BMP files, in which many bit operations are
used. Ftpclient is an FTP client program with often used
parameters of FTP operations. The rest of the programs are
library programs, such as htmlparser for parsing HTML
pages and fastjson for JSON strings.

TABLE II
BUG PROPERTIES USED IN THE EXPERIMENTS

Property Meaning
Enumeration Call hasMoreElements before nextElement
Iterator Call hasNext before next
Reader Do not read a closed stream
Writer Do not write a closed stream
Socket Do not use a closed socket

The regular properties in our experiments can be classified
into two categories. The properties in Table II are for “bug
finding” (noted as “bug regular properties” in the rest of this
paper). We use these properties to check the first eight pro-
grams listed in Table I. These properties are also widely used
in the literature on typestate analysis. The second category
of properties are application specific and defined manually.
For example, for htmlparser, we specify a user-defined
regular property that requires the input to be a JSP string (i.e.,
formatted as “<%...%>”).

We create a test driver for each library program to provide
the entry point for analysis. The initial inputs for DSE are con-
structed randomly. For soot-c, bloat and ftpclient,
we set the input arguments to be symbolic variables. This is
why the path spaces of these three programs are small. For
the other programs, we set each input byte to be symbolic.
For each program/property combination, we carry out both the
pure DSE and the guided DSE for the purpose of comparison.
Since exploring all the paths of each program is usually
infeasible, we limit the time for each analysis to 24 hours.
All the experiments are carried out on a server with 256GB
memory and four 2.13GHz XEON CPUs using JDK 1.7. We
run each analysis with 10GB heap memory of JVM.

C. Effectiveness and Efficiency
Table III shows parts of the experimental results of both

the pure DSE (denoted as pure in the table) and the guided
DSE (denoted as guided in the table). The “#iters” column
shows the number of the iterations for finding the first accepted
path; the “Time(s)” column shows the time needed for finding
the first accepted path, where the numbers in the brackets are
the time for static analysis. The four columns in the “Paths”
column show the numbers of the accepted paths, the relevant
paths (with ratio), the irrelevant paths and the total paths
explored during each analysis, respectively.

We have automatically found two known typestate bugs in
rhino-a and bloat, which are reported originally in [5]
and [17] as potential bugs but confirmed manually. For the
other six programs checked against bug properties, we find
no bug within 24 hours. Since the violations of the properties
listed in Table II are often serious bugs. We believe that most
of these bugs are fixed during development, where our tool
can be used appropriately as a bug finder.

To evaluate our approach further, we randomly inject bugs
into the target programs as follows. We collect all the branch
statements that make the execution tree of a program during
the pure DSE; then we randomly select three branches to
inject an event statement with respect to the property, e.g., an
invocation of method close for Socket property. In Table
III, programs with injections are tagged with “-bugX”. In
fact, an injection may not cause a bug. This is also vali-
dated by the experimental results (e.g., schroeder-bug3
and toba-s-bug2). The programs without bugs are not
displayed in the table.

Table III shows, for 20 out of 21 combinations (95.2%), the
guided DSE successfully finds at least one path satisfying the
property, while the pure DSE fails for 4 combinations in 24
hours. For jlex-bug3, both methods fail to find a bug. This
result shows the effectiveness of our guided DSE in finding
the paths satisfying a regular property.

Table III also shows that 19 out of the 20 program/property
combinations (95%) need the same or fewer iterations for
the guided DSE to find the first accepted path. For the
combinations on which an accepted path is found, the average
speedup of the guided DSE on the number of the iterations for
finding the first accepted path is more than 1880X. The time
used for static analysis ranges from 4.24s (bmpdecoder) to
99.5s (soot-c). The speedup on the time for finding the
first accepted path of the programs whose path space contains
more than 100 paths is more than 258X in average. For those
programs with small path spaces (such as bloat, soot-c
and ftpclient), the guided DSE does not outperform the
pure DSE. This is because the path spaces is so small that
the static analysis dominates the time of the whole analysis.
Overall, compared with the pure DSE in finding the first
accepted path, the guided DSE 1) needs much less iterations,
and 2) is much more efficient on the analysis time for programs
with large path spaces.

We further inspect the guiding ability of the guided DSE
from the following three perspectives:
• The percentage and the distribution of the relevant paths

during analyses. We not only want to explore more
relevant paths, but also earlier.

• The number of state transitions along a path. If there are
no state transitions along a path, the path will not be
accepted, even if there are sensitive objects created along
the path (except for the trivial case in which the initial
state is also a final state).

• The shortest distance to the final state at the end of a path.
To some extent, this perspective reflects how close a path
is to be accepted. The distance is 0 if a path is already
accepted, ∞ if there is no sensitive object generated
during the path and otherwise the shortest distance from
the current state to the final state of the monitor when
the path is finished.

Table III lists the numbers of different kinds of paths
explored during analysis and the percentage of the relevant
paths in each analysis. For 19 out of the 21 programs, the
guided DSE has a higher percentage of relevant paths than



TABLE III
EXPERIMENTAL RESULTS (S.A.: STATIC ANALYSIS)

Program Mode First Path Paths
(Property) #iters Time(s)(S.A.) Accepted Relevant(ratio) Irrelevant Total

rhino-a
(Enumeration)

pure >5922 >24hours 0 1 (0.02%) 5921 5922
guided 11126 325.24 (9.69) 6 198191 (59.98%) 132251 330442

bloat
(Iterator)

pure 2 5.04 20 42 (100%) 0 42
guided 2 18.18 (13.39) 20 42 (100%) 0 42

schroeder-bug1
(Reader)

pure 1 2.38 1 35 (100%) 0 35
guided 1 7.4 (5.11) 1 35 (100%) 0 35

schroeder-bug2
(Reader)

pure 656 5839.26 2 659 (100%) 0 659
guided 5 12.57 (5.72) 3 659 (100%) 0 659

soot-c-bug1
(Writer)

pure 7 9.82 3 15 (57.69%) 11 26
guided 2 104.81 (99.5) 3 15 (57.69%) 11 26

soot-c-bug2
(Writer)

pure 10 11.66 1 13 (54.17%) 11 24
guided 2 89.93 (84.85) 1 13 (54.17%) 11 24

soot-c-bug3
(Writer)

pure 4 7.81 3 15 (57.69%) 11 26
guided 2 103.03 (97.94) 3 15 (57.69%) 11 26

toba-s-bug1
(Reader)

pure 1 1.99 1 26 (100%) 0 26
guided 1 7.67 (5.86) 1 26 (100%) 0 26

toba-s-bug3
(Reader)

pure 15 8.38 1 1339 (100%) 0 1339
guided 2 9.58 (6.11) 1 1339 (100%) 0 1339

jlex-bug1
(Reader)

pure 1346 27.28 1 526993 (100%) 0 526993
guided 1346 37.78 (8.43) 115 3376633 (100%) 0 3376633

jlex-bug2
(Reader)

pure 73620 2317.92 8 549792 (100%) 0 549792
guided 2 10.44 (7.73) 14565 1131821 (100%) 0 1131821

jlex-bug3
(Reader)

pure >546866 >24hours 0 546866 (100%) 0 546866
guided >4618215 >24hours (7.98) 0 4618215 (100%) 0 4618215

bmpdecoder-bug2
(Reader)

pure 28 88.55 4 104 (100%) 0 104
guided 2 6.88 (4.69) 4 107 (100%) 0 107

bmpdecoder-bug3
(Reader)

pure 4 3.41 10 132 (100%) 0 132
guided 6 12.85 (4.24) 10 133 (100%) 0 133

ftpclient-bug1
(Socket)

pure 3 4.46 8 40 (100%) 0 40
guided 3 23.39 (19.23) 8 40 (100%) 0 40

ftpclient-bug2
(Socket)

pure 17 8.44 2 34 (100%) 0 34
guided 3 23.3 (19.35) 2 34 (100%) 0 34

htmlparser
(UserDefined)

pure 214 18.04 21726 196495 (75.16%) 64926 261421
guided 9 14.22 (9.79) 151 81888 (72.09%) 31709 113597

fastjason
(UserDefined)

pure >462323 >24hours 0 1160 (0.25%) 461163 462323
guided 929 43.68 (13.62) 2753 2573596 (100%) 1 2573597

udl
(UserDefined)

pure 1204 266.16 1 1 (0.03%) 3430 3431
guided 142 31.06 (16.85) 1 1 (0.03%) 3430 3431

jep
(UserDefined)

pure 26327 1250.07 106 9202 (26.21%) 25903 35105
guided 288 21.96 (8.97) 106 9186 (26.18%) 25903 35089

sixpath
(UserDefined)

pure >31786 >24hours 0 19 (0.06%) 31767 31786
guided 3790 945.4 (8.94) 27 29374 (87.85%) 4063 33437

the pure DSE. The only two exceptions are htmlparser
and jep, for which the percentage of relevant paths of our
method is slightly lower. In addition to the percentage, we also
want to explore relevant paths earlier so that the target paths
can be found earlier. For this, we select the program/property
combinations for which a plenty of relevant and irrelevant
paths are explored, and observe the distribution of the relevant
paths in the first hour of analyses.

The guided DSE explore relevant paths earlier than irrele-
vant paths. Fig. 6 shows the distribution of the relevant paths
during the first one hour. The X-axis represents the time in
seconds during analysis. The Y-axis represents the number of
the relevant paths that are explored at each second. We can
see that the guided DSE explores more relevant paths at the

beginning, and the number starts to decrease from about 250
seconds. In contrast, the number of the relevant paths explored
by the pure DSE increases after 1300 seconds. Besides, Fig. 6
also shows the guided DSE tends to explore more relevant
paths than the pure DSE.

Fig. 7 shows the difference between the numbers of state
transitions of the guided DSE and the pure DSE. The X-axis
represents the order of the paths in which they are explored,
and Y-axis is the difference between the numbers of state
transitions of the path under the guided DSE and that of the
path under the pure DSE. For the ith path pi, the value on
Y-axis of pi is calculated as follows.

V alue(i) =
∑

c∈Combinations

ST c
g (pi)−

∑
c∈Combinations

ST c
p (pi)
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where ST c
g (pi) and ST c

p (pi) are the numbers of the state
transitions in pi when analyzing combination c with the guided
DSE and the pure DSE, respectively. Fig. 7 shows the results
of the first 10 thousands paths. For 97.05% of the first 4000,
the guided DSE causes more state transitions than the pure
DSE. Although for some of the rest 6000 paths the pure DSE
causes more state transitions, there are still 91.55% of the
points above 0 on Fig. 7. This shows the guided DSE causes
more state transitions.
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We also inspect the guided DSE from the perspective about
the shortest distance in a similar way. Fig. 8 displays the sum
of the distance of the ith path in each combination. We can
see for 99.6% of the paths, the distance to the final state under
the pure DSE is larger than that under the guided DSE. This
indicates the guided DSE tends to explore the paths that drive
the FSM closer to a final state.

Call string bound. In theory, the larger the bound of the
call string, the more precise the analysis result will be. In
our experiments, we have tried different call string bounds
(1 to 4) for all the combinations. One of the findings shows
that to complete the analysis in an acceptable time, the call
string bounds are often confined to be less than 5 due to
the scale of the programs. For example, for soot-c and
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udlparser, the static analysis phase does not finish in
one hour if the call string bound is larger than 2. Another
result of the experiment shows that the guided DSE gains
no improvement in the analysis precision with increased call
string bounds. The reason is that real-world programs usually
have complex call graphs. Hence, in our experiments, the call
string bounds are set uniformly to 1.

The precision of guiding. We evaluate the precision of
the guiding information as follows. During DSE, we directly
prune away the off-path-branches for which the intersections
of Preset and Postset are empty, and compare the results
with those in Table III. We can see the same results for 18 out
of the 20 (90%) combinations. This indicates that the guiding
information for DSE is pretty precise for the combinations.

D. Overhead

In general, the time/memory overhead varies with the scale
and complexity of the target program. Compared with the
pure DSE, the time overhead of the guided DSE is mainly
caused by the static analysis. In our experiments, the time
overhead is very low (less than 6%) for most programs. For
programs soot-c, bloat and ftpclient, however, the
time overhead is bigger than 30%. The reason is that static
analysis dominates the whole analysis time due to the small
path spaces of these programs.

The extra memory overhead consists of 1) the memory
used for static analysis and 2) the memory used to store the
call string and Preset for each off-path-branch during DSE.
For 1), we use jConsole to monitor the memory overhead
during static analysis. The memory used for static analysis
ranges from 461MB (schroeder) to 2GB (soot-c). It
is necessary to point out this result may change under a
different configuration because of the memory management
mechanisms of JVM. For 2), we calculate the memory for
storing call string and Preset by the memory size calculation
tool Jamm [28] for Java. The results show this part of memory
overhead is less than 55MB in most cases. The only exception
is schroeder-bug2 which needs 580MB. The reason is
that too many symbolic variables are introduced during DSE.
Overall, the memory overhead is acceptable.



E. Threats to Validity

The threats to the validity of our experiments are mainly
external because of the limited samples of program/property
combinations. We have used 13 real-world open source Java
programs, and the LOCs of these programs vary from 0.5K
to 45K. Five of these 13 programs are from Java program
analysis benchmarks, and these five programs are also used
in the existing work of static typestate analysis [5][17]. These
programs cover different types of applications and libraries,
including parsing, optimization, network, etc. Some of these
programs are used widely, such as fastjson. These pro-
grams are quite representative for evaluating DSE methods.
In addition, although our target programs in this paper are
Java programs, our approach can be used for analyzing the
programs in other languages, such as C and C++. For the
properties used in the experiments, the properties in Table
II are representative contracts of Java libraries, and are also
frequently used in typestate analysis. The application specific
user-defined properties are defined by ourselves. These proper-
ties are not complex FSMs, and are easy to define. We believe
that user-defined properties are an important part during the
application of our guided DSE in practice.

V. RELATED WORK

The methods of guiding symbolic execution have been pro-
posed for different goals, including improving coverage [29],
[30], [31], [32], [33], reaching a statement [34], [35], [36],
[37], checking a rule [38], [39] and exploring the difference
between versions of a program [40], [41], etc.

Both approaches presented in [38] and [39] slices programs
or paths against a rule to prune paths during symbolic execu-
tion. The method in [39] first slices the program after the in-
strumentations for checking a regular property, and then feeds
the sliced program into KLEE [29] for symbolic execution
to detect bugs. Hence, there is no guiding support during the
symbolic execution for checking the regular property. The rule-
directed symbolic execution [38] is most related to our work.
There, path slicing is used to slice the irrelevant parts of the
current path to prune irrelevant paths or the relevant paths
equivalent to the current. The guided DSE and the path slicing
based approach in [38] complement to each other. Our guided
DSE can provides a priority order for the off-path-branches
to be explored; whereas, the slicing based approach prunes
redundant off-path-branches. In addition, when the current
explored path is irrelevant, the approach in [38] prunes the off-
path-branches along which there will be no event. The guided
DSE not only gives a lower priority to the pruned branches,
but also gives different priorities for the remaining branches.
In our experimental results (c.f. Table III), the portions of the
irrelevant paths in many programs under the guided DSE are
not low.

The existing work [34], [35], [36] for guiding symbolic
execution toward reaching one statement uses the information
of the distance to the target statement for guiding. In [37], a
backward symbolic analysis method is proposed to infer the
weakest precondition for reaching a statement. The work in

[42] proposes a static analysis method to generate a shortest
path to cover multiple statements as more as possible. Our
work can be used to achieve the same goal of reaching one
or multiple statements, because FSM is expressive enough to
specify reachability properties.

The methods for statically analyzing programs against
regular properties differ mainly in soundness, precision and
scalability. Sound methods [5], [17], [1], [43], usually used
for verification, abstract the target program using different
abstract domains [44] to have a tradeoff between precision
and scalability. Some methods, e.g., [7], [45], [46], are neither
sound nor complete, but they have been validated to perform
well on bug finding. Dynamic methods, such as runtime veri-
fication [8], [9], complements the static methods by improving
scalability and precision, but with the sacrifice of soundness.
We combine static analysis and dynamic analysis to analyze
a program against regular properties.

Finally, the tools of software model checking, such as
SLAM [47], use static analysis to extract a model from a
program, and check the model against regular properties to find
bugs or verify the program. YOGI [48], [49], [50] improves
SLAM by the synergy of DSE and predicate abstraction to
make the analysis faster [51]. Compared with the work in
YOGI, the guiding method of our guided DSE uses a static
analysis with a polynomial complexity, which leads to a better
scalability.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposes a new DSE method, called regular
property guided DSE, to automatically find the program paths
satisfying a regular property. With the synergy of static analy-
sis and dynamic analysis, the guided DSE is effective and scal-
able in finding the paths satisfying a regular property. We have
implemented the guided DSE for Java programs. The results
of the extensive experiments on real-world programs show
that our method is highly efficient for steering DSE against
regular properties. Future work will be in several directions:
(1) Until now, no regular property involving multiple objects
is supported. We will investigate how the guided DSE can be
extended to solve this problem. (2) We are also interested in
developing a guiding method for other types of properties,
such as context-free properties. (3) The precision and effi-
ciency of our guiding method can be improved by using more
advanced alias analysis techniques [52], [53]. (4) Furthermore,
we plan to work on the applications and optimizations of our
method on some specific software engineering topics, e.g.,
typestate analysis and path-oriented test case generation.
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