
Regular Property Guided
Dynamic Symbolic Execution

Zhenbang Chen
(zbchen@nudt.edu.cn)

joint work with Yufeng Zhang, Ji Wang, Wei Dong and Zhiming Liu

College of Computer, National University of Defense Technology, China
Centre for Software Engineering, Birmingham City University, UK

2015.05.22

mailto:zbchen@nudt.edu.cn

Dynamic Symbolic Execution
(DSE)

• Explore path spaces systematically

• Test-case generation, bug-finding, bounded
verification, …

• Path explosion problem

2

DSE needs guiding

3

DSE needs guiding

3

Existing Work of Guiding
Symbolic Execution

• Improving coverage

• KLEE[OSDI’08], CREST[ASE’08], SGS[OOPSLA’13],
CGS[FSE’14], …

• Reach program points

• PEX[DSN’09], ESD[EuroSys’11], SDSE [SAS’11],
BitBlaze[ISSTA’11], …

• Exploring the difference between programs

• DiSE[PLDI’11], ZESTI [ICSE’12], KATCH[FSE’13], …

4

How about a Regular Property?

5

How about a Regular Property?

0 1 2 3
init

read

close

close

read

read, close

A bug property: a file is read after closed

5

How about a Regular Property?

0 1 2 3
init

read

close

close

read

read, close

A bug property: a file is read after closed

Program
Regular

Property P
(FSM)

∩ ∅≠ ？

5

How about a Regular Property?

0 1 2 3
init

read

close

close

read

read, close

A bug property: a file is read after closed

How to guide DSE to find a program path
satisfying P as soon as possible?

Program
Regular

Property P
(FSM)

∩ ∅≠ ？

5

Observation and Insight

• Many irrelevant paths exist

• Even for relevant paths, only the ones
with specific sequences can satisfy the
regular property

0 1 2 3
init

read

close

close

read

read, close

6

Observation and Insight

• Many irrelevant paths exist

• Even for relevant paths, only the ones
with specific sequences can satisfy the
regular property

Evaluate the possibility of a branch to
generate the paths satisfying the property

7

Key Idea

Evaluate a branch based on its history and future behaviors 8

Key Idea

Evaluate a branch based on its history and future behaviors 8

Key Idea

Evaluate a branch based on its history and future behaviors

history

8

Key Idea

Evaluate a branch based on its history and future behaviors

history future

8

Key Idea

Evaluate a branch based on its history and future behaviors

history futurehistory ∩ future ≠ ∅

8

Key Idea

Evaluate a branch based on its history and future behaviors

history futurehistory ∩ future ≠ ∅

8

Key Idea

Evaluate a branch based on its history and future behaviors

history

Preset: the state that
can be reached from
the beginning to the

branch location

Dynamic analysis

futurehistory ∩ future ≠ ∅

8

Key Idea

Evaluate a branch based on its history and future behaviors

history

Preset: the state that
can be reached from
the beginning to the

branch location

Dynamic analysis

future

Postset: the states from
which it can reach a

final state after
executing the rest
program after the
branch location

Static analysis

history ∩ future ≠ ∅

8

Sneak Preview of Results

• For finding the first accepted path

• >1880X speedup on iterations

• >258X time speedup on the programs
whose paths space is bigger than 100

• For 3 out of the 13 real world programs

• Guided method succeeds in 1 hour

• Pure method fails in 24 hours

9

Procedure
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular
Property
(FSM)

Program

Running
DSE

&Dynamic analysis

Finished? Next branch
selection

Report results

Input
generation

(2) DSE

An Example
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

11
A reader is read after closed

An Example
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

11
A reader is read after closed

An Example
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

11
A reader is read after closed

An Example
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

11
A reader is read after closed

An Example
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

11
A reader is read after closed

Pure DSE

Pure DSE-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

m > 0 ⋀ m ≤ 1 ⋀ tag != 0 ⋀ n > 0 ⋀ n ≤ 1

DFS

0 1 2 3
I

r

c

c

r

r,c

13

Pure DSE-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

m > 0 ⋀ m ≤ 1 ⋀ tag != 0 ⋀ n > 0 ⋀ n ≤ 1
m > 0 ⋀ m ≤ 1 ⋀ tag != 0 ⋀ n > 0 ⋀ n > 1

DFS

n > 1

0 1 2 3
I

r

c

c

r

r,c

(m=1, n=2, tag=1)13

Pure DSE-2nd Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=2, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

DFS

n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 2

14

Pure DSE-2nd Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=2, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

DFS

n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 2 Keep unfolding

14

Pure DSE-2nd Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=2, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

DFS

n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 2 Keep unfolding

BFS also gets stuck
14

Guided DSE

Guided DSE Procedure
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular
Property
(FSM)

Program

Running
DSE

&

Finished Next branch
selection

Report results

Input
generation

(2) DSE

Postset Calculation

17

int foo(int m, n, tag) {
InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0)
 w.close();
k = 0;
while (k++ < n)
{

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

Backward data flow
analysis [Clara, ICSE’10]

O(|E|×|D|3)
18

Postset
Calculation

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

Backward IFDS
data flow analysis

O(|E|×|D|3)
19

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

20

Backward IFDS
data flow analysis

O(|E|×|D|3)

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

20

Backward IFDS
data flow analysis

O(|E|×|D|3)

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

20

Backward IFDS
data flow analysis

O(|E|×|D|3)

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

0

1

2

3

init

read
close

close
read

read, close

Reader Property

20

Backward IFDS
data flow analysis

O(|E|×|D|3)

Guided DSE Procedure
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular
Property
(FSM)

Program

Running
DSE

&Dynamic analysis

Finished? Next branch
selection

Report results

Input
generation

(2) DSE

Preset-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)(m=1, n=1, tag=1)

0 1 2 3
init

read

close

close

read

read, close

22

Preset-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

{1}

{1}
{1}

{1}

{1}

0 1 2 3
init

read

close

close

read

read, close

23

Preset-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

{1}

{1}
{1}

{1}

{1}

0 1 2 3
init

read

close

close

read

read, close

23

init

Preset-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

{1}

{1}
{1}

{1}

{1}

0 1 2 3
init

read

close

close

read

read, close

24

init

Preset-1st Iteration
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(m=1, n=1, tag=1)(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1

{1}

{1}
{1}

{1}

{1}

0 1 2 3
init

read

close

close

read

read, close

25

init, read

init

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

Guided DSE-1st Iteration
(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

26

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

Guided DSE-1st Iteration
(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

26

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

Guided DSE-1st Iteration
(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{1,2, 3}

{1,2, 3}

{1,2, 3}

{3}

{2,3}
26

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{1,2, 3}

{1,2, 3}

{1,2, 3}

{3}

{2,3}

Guided DSE-1st Iteration

27

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{1,2, 3}

{1,2, 3}

{1,2, 3}

{3}

{2,3}

Guided DSE-1st Iteration

28

Lower Priority

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{1,2, 3}

{1,2, 3}

{1,2, 3}

{3}

{2,3}

Guided DSE-1st Iteration

29

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

(m=1, n=1, tag=1)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{1,2, 3}

{1,2, 3}

{1,2, 3}

{3}

{2,3}
m > 0 ⋀ m ≤ 1 ⋀ tag = 0

(m=1, n=1, tag=0)

Guided DSE-1st Iteration

29

(m=1, n=1, tag=0)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{2}

{3}
n > 0

0 1 2 3
I

r

c

c

r

r,c

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}

Guided DSE-2nd Iteration

30

Guided DSE
(m=1, n=1, tag=0)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{2}

{3}

n > 0

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}
31

Guided DSE
(m=1, n=1, tag=0)

m > 0

m ≤ 1

tag != 0

n > 0

n ≤ 1 n > 1

0 1 2 3
I

r

c

c

r

r,c

n ≤ 0

tag = 0

m > 1

m ≤ 0

{1}

{1}

{1}

{1}

{1}

{2}

{3}

n > 0

Only 2 iterations

int foo(int m, n, tag) {
InputStreamReader w = new ...; //{0}
int result = 0, k = 0, i = -1; //{1,2,3}
while (k++ < m) //{1,2,3}
{

i = w.read(); //{1,2,3}
if (i == -1) break; //{1,2,3}
result += i; //{1,2,3}

}
if (tag == 0) //{1,2,3}
 w.close(); //{1,2,3}
k = 0; //{2,3}
while (k++ < n) //{2,3}
{

i = w.read(); //{2,3}
if (i == -1) break; //{2,3}
result -= i; //{2,3}

}
return result; //{3}

}
31

Implementation &
Experiment Setup

• Implement based on JPF-JDart and WALA

• 13 real world open source Java programs

• 225K LOC in total

• Properties

• Typestate bug && User defined

• Analyze each program/property in 24 hours

32

Evaluate Guiding Further

• Relevant path

• Transition times

• Shortest distance to
the final state

0 1 2 3
init

read

close

close

read

read, close

33

Relevant path distribution

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Guided

Pure

Relevant path distribution

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Guided

Pure

Relevant path distribution

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Guided DSE explore more relevant paths
than the pure DSE, and earlier.

Guided

Pure

State Transition Difference

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
ta

te
 t

ra
n

si
tio

n
 d

iff
e

re
n

ce

Path number

guided

256GB memory and four 2.13GHz XEON CPUs. We run
each analysis task by allocating 10GB memory to the JVM,
i.e., setting both -Xmx and -Xms to be 10GB.

5.2 Experimental Results

5.2.1 Effectiveness
Table 2 shows parts of the experimental results. For each

combination, i.e., the three kinds of analyses are DSE with-
out guiding (pure), DSE with regular property based guid-
ing (guided), and DSE with guiding and refinement (refine).
The “#iters” column shows the number of the iteration
when the first path satisfying the property is found; the
“Time(s)” column shows the time needed for finding the
first accepted path, where the number in the brackets is
the time used for static analysis. The four columns in the
“Paths”big column show the numbers of the accepted paths
(Apt), the relevant paths (Rel), the redundant paths (Red)
and the total paths (Tot) explored during each analysis, re-
spectively. The rates in the Rel column indicate the per-
centages of the relevant paths in the analyses.
As shown in Table 2, our guided DSE successfully finds a

path satisfying the property for each combination. In one
hour analysis, the pure method fails for 9 cases, whose per-
centage is 50% (9/18). For the rest 9 cases, in which both
pure method and guided method can successfully find a path
satisfying the property, our guiding method outperforms the
pure method significantly with respect to the needed itera-
tions. In addition, for these 9 cases, the speedup of the time
for finding the first path varies from 0.07X to 50.8X, with an
average of 16.1X. In 4 cases, i.e., soot-c, bloat, ftpclient
and htmlparser, our method needs more time. The reason
is that both pure and guided methods need few iterations to
find the first accepted path in these programs, and the time
for static analysis dominates the time of guiding method for
finding the first accepted path.
Table 2 also list the numbers of di↵erent kinds of the paths

explored during analyses. In principle, we want to explore
more relevant paths of the program being analyzed, because
the irrelevant paths will definitely not satisfy the property.
Figure ?? shows the percentage of the relevant paths ex-

plored for each program. We can observe that the percent-
age when using the guiding method is no less than that of
the pure method. For 10 out of 18 cases (55.6%), our guiding
method has a higher percentage in relevant paths. For the
case of udlparser, both methods have a very low percentage
of the relevant path, because the property is a reachability
property, i.e., a relevant path is an accepted path.
In addition to the percentage, we also want to explore rele-

vant paths more earlier, which may result in finding accepted
paths earlier. Hence, we select the combinations in which
both many relevant and redundant paths are explored, and
try to observe the distribution of the relevant paths explored
during analyses.
Figure 4 shows the relevant path distribution during one

hour. The X-axis is the time during analysis in seconds. The
Y-axis is the number of the relevant paths that begin to be
explored at each second. We can observe that the guided
and refine methods explore more relevant paths at the be-
ginning, and the number decreases after around 600 second
(10 minutes). On the other hand, for the pure method, the
number of the relevant paths increases after 2000 seconds
(more than 30 minutes). Hence, from the global view, the

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Figure 4: Relevant path distribution

guided DSE explore relevant paths more earlier than the
pure method.
However, the metrics of relevant paths are still not enough

to show the guiding ability of our method, because our
method can also “prune” the relevant paths that do not sat-
isfy the property. To evaluate the guiding ability of our
method further, we use the following two metrics.

• The times of the state transitions in a path. This met-
ric reflects one of the abilities to drive a program to-
wards the paths satisfying the property. For the FSM
of a regular property, if there is no state transition
along a path according to the FSM, the property will
not be satisfied, even there are relevant objects gener-
ated in the path (except the case that the initial state is
also the final state, which is rare in practice). Clearly,
a relevant path may not result in any state transition.

• The shortest distance to the final state of the FSM.
This metric reflects how close a path is to satisfy the
property. If a path already satisfies a property, then
the distance is 0; if there is no sensitive object gener-
ated during the path, the distance is 1, denoted by
�1 in our implementation; otherwise, the value is the
shortest distance from the current state of the sensitive
object to the final state of the FSM.

For the state transition metric, we record the state tran-
sition times of each path explored in the analysis. Figure 5
displays the results after synthesising the state transition
information of all the combinations.
In Figure 5, the X-axis is the path number, and Y-axis is

the di↵erent between the transition times of the path under
guided or refine method and that of the path under the pure
method. For the ith path p, the value on Y-axis of p under
guided DSE is calculated as follows.

V alue(i) =
X

c2Combinations

ST c

g

(i)�
X

c2Combinations

ST c

p

(i)

where ST c

g

(i) and ST c

p

(i) are the times of the state transi-
tions happened in the ith path when analyzing the combina-
tion c with guided method and pure method, respectively.
In the same way, we can calculate the value of the refine
method. We select the first 50000 paths for observation.

35

State Transition Difference

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
ta

te
 t

ra
n

si
tio

n
 d

iff
e

re
n

ce

Path number

guided

256GB memory and four 2.13GHz XEON CPUs. We run
each analysis task by allocating 10GB memory to the JVM,
i.e., setting both -Xmx and -Xms to be 10GB.

5.2 Experimental Results

5.2.1 Effectiveness
Table 2 shows parts of the experimental results. For each

combination, i.e., the three kinds of analyses are DSE with-
out guiding (pure), DSE with regular property based guid-
ing (guided), and DSE with guiding and refinement (refine).
The “#iters” column shows the number of the iteration
when the first path satisfying the property is found; the
“Time(s)” column shows the time needed for finding the
first accepted path, where the number in the brackets is
the time used for static analysis. The four columns in the
“Paths”big column show the numbers of the accepted paths
(Apt), the relevant paths (Rel), the redundant paths (Red)
and the total paths (Tot) explored during each analysis, re-
spectively. The rates in the Rel column indicate the per-
centages of the relevant paths in the analyses.
As shown in Table 2, our guided DSE successfully finds a

path satisfying the property for each combination. In one
hour analysis, the pure method fails for 9 cases, whose per-
centage is 50% (9/18). For the rest 9 cases, in which both
pure method and guided method can successfully find a path
satisfying the property, our guiding method outperforms the
pure method significantly with respect to the needed itera-
tions. In addition, for these 9 cases, the speedup of the time
for finding the first path varies from 0.07X to 50.8X, with an
average of 16.1X. In 4 cases, i.e., soot-c, bloat, ftpclient
and htmlparser, our method needs more time. The reason
is that both pure and guided methods need few iterations to
find the first accepted path in these programs, and the time
for static analysis dominates the time of guiding method for
finding the first accepted path.
Table 2 also list the numbers of di↵erent kinds of the paths

explored during analyses. In principle, we want to explore
more relevant paths of the program being analyzed, because
the irrelevant paths will definitely not satisfy the property.
Figure ?? shows the percentage of the relevant paths ex-

plored for each program. We can observe that the percent-
age when using the guiding method is no less than that of
the pure method. For 10 out of 18 cases (55.6%), our guiding
method has a higher percentage in relevant paths. For the
case of udlparser, both methods have a very low percentage
of the relevant path, because the property is a reachability
property, i.e., a relevant path is an accepted path.
In addition to the percentage, we also want to explore rele-

vant paths more earlier, which may result in finding accepted
paths earlier. Hence, we select the combinations in which
both many relevant and redundant paths are explored, and
try to observe the distribution of the relevant paths explored
during analyses.
Figure 4 shows the relevant path distribution during one

hour. The X-axis is the time during analysis in seconds. The
Y-axis is the number of the relevant paths that begin to be
explored at each second. We can observe that the guided
and refine methods explore more relevant paths at the be-
ginning, and the number decreases after around 600 second
(10 minutes). On the other hand, for the pure method, the
number of the relevant paths increases after 2000 seconds
(more than 30 minutes). Hence, from the global view, the

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Figure 4: Relevant path distribution

guided DSE explore relevant paths more earlier than the
pure method.
However, the metrics of relevant paths are still not enough

to show the guiding ability of our method, because our
method can also “prune” the relevant paths that do not sat-
isfy the property. To evaluate the guiding ability of our
method further, we use the following two metrics.

• The times of the state transitions in a path. This met-
ric reflects one of the abilities to drive a program to-
wards the paths satisfying the property. For the FSM
of a regular property, if there is no state transition
along a path according to the FSM, the property will
not be satisfied, even there are relevant objects gener-
ated in the path (except the case that the initial state is
also the final state, which is rare in practice). Clearly,
a relevant path may not result in any state transition.

• The shortest distance to the final state of the FSM.
This metric reflects how close a path is to satisfy the
property. If a path already satisfies a property, then
the distance is 0; if there is no sensitive object gener-
ated during the path, the distance is 1, denoted by
�1 in our implementation; otherwise, the value is the
shortest distance from the current state of the sensitive
object to the final state of the FSM.

For the state transition metric, we record the state tran-
sition times of each path explored in the analysis. Figure 5
displays the results after synthesising the state transition
information of all the combinations.
In Figure 5, the X-axis is the path number, and Y-axis is

the di↵erent between the transition times of the path under
guided or refine method and that of the path under the pure
method. For the ith path p, the value on Y-axis of p under
guided DSE is calculated as follows.

V alue(i) =
X

c2Combinations

ST c

g

(i)�
X

c2Combinations

ST c

p

(i)

where ST c

g

(i) and ST c

p

(i) are the times of the state transi-
tions happened in the ith path when analyzing the combina-
tion c with guided method and pure method, respectively.
In the same way, we can calculate the value of the refine
method. We select the first 50000 paths for observation.

97.05% 91.55%

35

State Transition Difference

-6

-4

-2

 0

 2

 4

 6

 8

 10

 12

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
ta

te
 t

ra
n

si
tio

n
 d

iff
e

re
n

ce

Path number

guided

256GB memory and four 2.13GHz XEON CPUs. We run
each analysis task by allocating 10GB memory to the JVM,
i.e., setting both -Xmx and -Xms to be 10GB.

5.2 Experimental Results

5.2.1 Effectiveness
Table 2 shows parts of the experimental results. For each

combination, i.e., the three kinds of analyses are DSE with-
out guiding (pure), DSE with regular property based guid-
ing (guided), and DSE with guiding and refinement (refine).
The “#iters” column shows the number of the iteration
when the first path satisfying the property is found; the
“Time(s)” column shows the time needed for finding the
first accepted path, where the number in the brackets is
the time used for static analysis. The four columns in the
“Paths”big column show the numbers of the accepted paths
(Apt), the relevant paths (Rel), the redundant paths (Red)
and the total paths (Tot) explored during each analysis, re-
spectively. The rates in the Rel column indicate the per-
centages of the relevant paths in the analyses.
As shown in Table 2, our guided DSE successfully finds a

path satisfying the property for each combination. In one
hour analysis, the pure method fails for 9 cases, whose per-
centage is 50% (9/18). For the rest 9 cases, in which both
pure method and guided method can successfully find a path
satisfying the property, our guiding method outperforms the
pure method significantly with respect to the needed itera-
tions. In addition, for these 9 cases, the speedup of the time
for finding the first path varies from 0.07X to 50.8X, with an
average of 16.1X. In 4 cases, i.e., soot-c, bloat, ftpclient
and htmlparser, our method needs more time. The reason
is that both pure and guided methods need few iterations to
find the first accepted path in these programs, and the time
for static analysis dominates the time of guiding method for
finding the first accepted path.
Table 2 also list the numbers of di↵erent kinds of the paths

explored during analyses. In principle, we want to explore
more relevant paths of the program being analyzed, because
the irrelevant paths will definitely not satisfy the property.
Figure ?? shows the percentage of the relevant paths ex-

plored for each program. We can observe that the percent-
age when using the guiding method is no less than that of
the pure method. For 10 out of 18 cases (55.6%), our guiding
method has a higher percentage in relevant paths. For the
case of udlparser, both methods have a very low percentage
of the relevant path, because the property is a reachability
property, i.e., a relevant path is an accepted path.
In addition to the percentage, we also want to explore rele-

vant paths more earlier, which may result in finding accepted
paths earlier. Hence, we select the combinations in which
both many relevant and redundant paths are explored, and
try to observe the distribution of the relevant paths explored
during analyses.
Figure 4 shows the relevant path distribution during one

hour. The X-axis is the time during analysis in seconds. The
Y-axis is the number of the relevant paths that begin to be
explored at each second. We can observe that the guided
and refine methods explore more relevant paths at the be-
ginning, and the number decreases after around 600 second
(10 minutes). On the other hand, for the pure method, the
number of the relevant paths increases after 2000 seconds
(more than 30 minutes). Hence, from the global view, the

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500 3000 3500

N
u

m
b

e
r

o
f

re
le

va
n

t
p

a
th

s

Time(s)

pure
guided

Figure 4: Relevant path distribution

guided DSE explore relevant paths more earlier than the
pure method.
However, the metrics of relevant paths are still not enough

to show the guiding ability of our method, because our
method can also “prune” the relevant paths that do not sat-
isfy the property. To evaluate the guiding ability of our
method further, we use the following two metrics.

• The times of the state transitions in a path. This met-
ric reflects one of the abilities to drive a program to-
wards the paths satisfying the property. For the FSM
of a regular property, if there is no state transition
along a path according to the FSM, the property will
not be satisfied, even there are relevant objects gener-
ated in the path (except the case that the initial state is
also the final state, which is rare in practice). Clearly,
a relevant path may not result in any state transition.

• The shortest distance to the final state of the FSM.
This metric reflects how close a path is to satisfy the
property. If a path already satisfies a property, then
the distance is 0; if there is no sensitive object gener-
ated during the path, the distance is 1, denoted by
�1 in our implementation; otherwise, the value is the
shortest distance from the current state of the sensitive
object to the final state of the FSM.

For the state transition metric, we record the state tran-
sition times of each path explored in the analysis. Figure 5
displays the results after synthesising the state transition
information of all the combinations.
In Figure 5, the X-axis is the path number, and Y-axis is

the di↵erent between the transition times of the path under
guided or refine method and that of the path under the pure
method. For the ith path p, the value on Y-axis of p under
guided DSE is calculated as follows.

V alue(i) =
X

c2Combinations

ST c

g

(i)�
X

c2Combinations

ST c

p

(i)

where ST c

g

(i) and ST c

p

(i) are the times of the state transi-
tions happened in the ith path when analyzing the combina-
tion c with guided method and pure method, respectively.
In the same way, we can calculate the value of the refine
method. We select the first 50000 paths for observation.

97.05% 91.55%

35

Guided DSE causes more state
transitions

Conclusion

36

DSE needs guiding

3

Key Idea

Evaluate a branch based on its history and future behaviors

Preset: the state that
can be reached from
the beginning to the

branch location

history

Dynamic analysis

Postset: the states from
which it can reach a

final state after
executing the rest
program after the
branch location

future

Static analysis

Preset ∩ Postset ≠ ∅

8

Procedure
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular
Property
(FSM)

Program

Running
DSE

&Dynamic analysis

Finished? Next branch
selection

Report results

Input
generation

(2) DSE

How about a Regular Property?

0 1 2 3
init

read

close

close

read

read, close

A bug property: a file is read after closed

How to guide DSE to find a program path
satisfying P as soon as possible?

Program
Regular

Property P
(FSM)

∩ ∅≠ �

5

Conclusion

• Next step: multi-objects properties,
combination with slicing, applications…

36

DSE needs guiding

3

Key Idea

Evaluate a branch based on its history and future behaviors

Preset: the state that
can be reached from
the beginning to the

branch location

history

Dynamic analysis

Postset: the states from
which it can reach a

final state after
executing the rest
program after the
branch location

future

Static analysis

Preset ∩ Postset ≠ ∅

8

Procedure
int foo(int m, n, tag) {

InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular
Property
(FSM)

Program

Running
DSE

&Dynamic analysis

Finished? Next branch
selection

Report results

Input
generation

(2) DSE

How about a Regular Property?

0 1 2 3
init

read

close

close

read

read, close

A bug property: a file is read after closed

How to guide DSE to find a program path
satisfying P as soon as possible?

Program
Regular

Property P
(FSM)

∩ ∅≠ �

5

Thank you
Any Questions?

37

