
Symbolic Execution of MPI Programs
Xianjin Fu∗†, Zhenbang Chen†, Hengbiao Yu∗†, Chun Huang†, Wei Dong†, and Ji Wang∗†

∗State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha, China
†College of Computer, National University of Defense Technology, Changsha, China

Email: {xianjinfu, zbchen}@nudt.edu.cn, fishzqyhb@gmail.com, {chunhuang, wdong, wj}@nudt.edu.cn

Abstract—MPI is widely used in high performance computing.
In this extended abstract, we report our current status of
analyzing MPI programs. Our method can provide coverage of
both input and non-determinism for MPI programs with mixed
blocking and non-blocking operations. In addition, to improve
the scalability further, a deadlock-oriented guiding method for
symbolic execution is proposed. We have implemented our
methods, and the preliminary experimental results are promising.

I. INTRODUCTION

Message Passing Interface (MPI) is the de facto standard
for developing applications in high performance computing.
A lot of MPI programs are deployed to run on hundreds or
even thousands of machines. The programs on these machines
communicate by message passing to accomplish a parallel
task. Because of the high parallelism, MPI programs are
non-deterministic, and it is hard to ensure the correctness of
MPI programs. The typical errors of MPI programs include
deadlock, data type mismatch, resource error, etc.

The existing methods for finding the errors in MPI programs
are mainly dynamic methods, which fall into two categories:
correctness checking methods and verification methods. Cor-
rectness checking tools, such as Intel Message Checker [1],
record the runtime information of an MPI program, and
detect runtime errors, deadlocks or performance bottlenecks
based on the recorded information. Hence, these tools may
miss the errors that only happen under a specific case in
non-determinism. On the other hand, dynamic verification
tools, such as ISP [2], can explore different cases of the
non-determinism caused by non-deterministic communication
operations in MPI under a given input. However, both of these
two types of methods cannot provide an input coverage, which
results in missing input-related errors.

Symbolic execution [3] can systematically explore the path
space of a program to have the input coverage. Hence, our
basic idea is to use symbolic execution to analyze MPI
programs. In this extended abstract, we report the current
status of using symbolic execution to analyze MPI programs,
providing coverage of both input space and non-determinism.

II. MPI PROGRAMS

An MPI program will be run in terms of multiple inde-
pendent processes on different machines. A process P can
use the communication APIs provided by the MPI platform
(e.g. MPICH2) for communications. Non-blocking (or asyn-
chronous) communication APIs are frequently used in MPI
programs to improve the performance. The following three are
representative APIs related to asynchronous communications.

• ISend(dest, req) - asynchronously send a piece of data
to the process Pdest. Note, because this operation is a
non-blocking operation, it returns immediately after being
issued. The second parameter req is the indicator of the
status of this operation.

• IRecv(src, req) - asynchronously receive a message from
Psrc. Note that src can take the wildcard value “*”, which
means this operation expects a message from any process,
and the receiving of any message finishes the operation.
Hence, wildcard receives may cause non-determinism.

• Wait(req) - block until the message operation indicated
by req is finished. This blocking operation is often used
to ensure the readiness of the messages being exchanged.

Actually, many other non-blocking or blocking APIs can be
composed by these three. In addition to the non-blocking
APIs, there are blocking (or synchronous) communication
APIs in MPI, which wait until the message exchanging is
finished. In this extended abstract, we use Send(dest) and
Recv(src) to represent the blocking sending and receiving
APIs, respectively.

III. CHALLENGES FOR THE SYMBOLIC EXECUTION OF
MPI PROGRAMS

There are two challenges for the symbolic execution of MPI
programs:

1) Guarantee the coverage of the non-determinism caused
by the non-deterministic operations in MPI programs.

2) Improve the scalability of the symbolic execution.
The first challenge is to ensure the soundness of analyzing

MPI programs. Consider the following MPI program, in
which x is an input variable and a deadlock error exists.

P0 P1 P2

Send(1) if (x == ‘a’) Recv(0); else Recv(*); Send(1)
Recv(2)

No deadlock happens when x is ‘a’. When x is not ‘a’, the
deadlock will happen when the Recv(*) receives the message
from P2, because after it P1 expects a message from P2 and
P0 expects P1 to receive its message. Hence, in principle,
a deadlock may depend not only on the input, but also on
the matchings of the wildcard receives. We can use symbolic
execution to provide the input coverage, but how to explore all
the matchings of wildcard receives is challenging, especially
when considering non-blocking communications.

For the second challenge, symbolic execution has the path
explosion problem, which challenges the scalability of any



analysis based on symbolic execution. Hence, the problem is
inherited when we use symbolic execution. However, the prob-
lem becomes more challenging when analyzing MPI programs.
Because the running of an MPI program consists of multiple
processes, the execution of any statement in one process forks
a new state during symbolic execution. Hence, the path space
is exponential with the number of processes. Furthermore,
the path space is also exponential with the number of the
non-deterministic MPI operations during symbolic execution.
Therefore, how to improve the scalability of the symbolic
execution of MPI programs is challenging.

IV. METHODS AND IMPLEMENTATION

We present in this section how the two challenges are coped
with. Then, our implementation is briefly introduced.

A. Coverage of Non-determinism

Our key observation of MPI programs is that the different
processes of the program run independently without sharing
memory. Hence, unlike multi-threaded programs, there is no
data race errors in MPI application programs. This observation
implies that the occurrence of an error does not depend on
the sequence of the executions of the local statements in
different processes. Thus, we use a round-robin scheduler to
linearize the running of an MPI program under a given number
of processes. A process is preempted when encountering a
blocking operation such as Send or Recv. If a process is
preempted, we turn to the next non-blocked process with the
smallest rank, till all the processes are blocked.

The key idea of guaranteeing the coverage of non-
determinism is called lazy matching. During symbolic ex-
ecution, when MPI operations are encountered, the opera-
tions are recorded, but not executed. The symbolic execution
procedure tries to advance the non-blocking processes until
all the processes are blocked. Then, we match the recorded
communication operations, and then do the symbolic execution
of the matched operations. When there are multiple matches
for a wildcard receive, we explore all of the matches by forking
a new state for each. In this way, the potential matchings of
wildcard receives can be systematically explored.

Note that, lazy matching permits the execution of the opera-
tions in an MPI program out of statement order. However, the
“non-overtaking” rule required by MPI standard are preserved.
For example, when two send operations (maybe non-blocking)
in the same process are matched with a receive operation in
another process, the first send operation in the program order
should be matched with the receive operation.

B. Scalability

We tackle the path explosion problem as follows. First, the
round-robin scheduler avoids exploring all the interleavings
of different processes. Inspired by the idea of partial order re-
duction, we only execute the local statements of the processes
in one sequence, while ensuring the soundness. Second, in
order to accelerate the discovery of deadlocks, we propose
a deadlock-oriented guiding method for symbolic execution.
We convert the guiding problem to a deadlock model checking

problem, and leverage a state-of-the-art model checker to help
the symbolic executor to find deadlocks faster.

C. Implementation

Based on Cloud9 symbolic executor [4], we have imple-
mented the proposed method for analyzing C MPI programs.
We use a multi-threaded MPI library as the environment
model for symbolic execution. Now, our prototype supports
the analysis of the C MPI programs in which there exist both
blocking and non-blocking operations. We can detect the errors
including deadlock, runtime errors, synchronization error, etc.

V. PRELIMINARY EXPERIMENTAL RESULTS

Table I gives the preliminary experimental results of dead-
lock detection. The programs in the table are from [5], except
as-deadlock, which is from [2]. For as-deadlock, guiding is
slower than the case of no guiding, since the guiding method
needs to explore at least two paths to detect a deadlock when
the first path does not hit the deadlock.

TABLE I
PRELIMINARY EXPERIMENTAL RESULTS

Programs #procs #MPI #path Deadlock Time(s)
calls guide no guide

GaussElim 4 40 48 no 17.5 17.3
Floyd 2 34 1 no 8.2 7.6
DTG 5 16 3 no 8.8 6.9

as-deadlock 3 15 2 yes 6.7∗ 6.0∗

Heat 2 34 2 no 11.4 10.3
5 85 300 yes 11.8∗ 88.0∗

*mark means that the time is from start to the first found deadlock.

VI. RELATED WORK

The closest related work is TASS [6], which extracts a
model from an MPI program and symbolic executes the
model. The feasibility of TASS is limited by its simple MPI
environment model. In addition, TASS does not support the
analysis of asynchronous MPI programs. Similar to TASS, our
previous work [7] is also targeting the MPI programs in which
only synchronous operations exist.

ACKNOWLEDGMENT

This work is supported in part by National 973 Program
(2014CB340703) and National Natural Science Foundation
(61120106006, 61272140, 61472440) of China.

REFERENCES

[1] J. DeSouza, B. Kuhn, B. R. de Supinski, V. Samofalov, S. Zheltov, and
S. Bratanov, “Automated, scalable debugging of mpi programs with intel
message checker,” in SE-HPCS, 2005.

[2] S. Vakkalanka, G. Gopalakrishnan, and R. Kirby, “Dynamic verification
of MPI programs with reductions in presence of split operations and
relaxed orderings,” in CAV ’08, 2008, pp. 66–79.

[3] J.King, “Symbolic execution and program testing,” Communications of
the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[4] S. Bucur, V. Ureche, C. Zamfir, and G. Candea, “Parallel symbolic
execution for automated real-world software testing,” in EuroSys ’11,
2011, pp. 183–198.

[5] V. Forejt, D. Kroening, G. Narayanaswamy, and S. Sharma, “Precise
predictive analysis for discovering communication deadlocks in MPI
programs,” in FM ’14, 2014, pp. 263–278.

[6] S. Siegel and T. Zirkel, “TASS: The toolkit for accurate scientific
software,” Mathematics in Computer Science, vol. 5, no. 4, pp. 395–426,
2011.

[7] X. Fu, Z. Chen, Y. Zhang, C. Huang, and J. Wang, “MPISE: Symbolic
execution of MPI programs,” in HASE ’15, 2015.


