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Abstract—Currently, the performance problems of software
systems gets more and more attentions. Among various diagnosis
methods based on system traces, principal component analysis
(PCA) based methods are widely used due to the high accuracy of
the diagnosis results and requiring no specific domain knowledge.
However, according to our experiments, we have validated several
shortcomings existed in PCA-based methods, including requiring
traces with a same call sequence, inefficiency when the traces
are long, and missing performance problems. To cope with
these issues, we introduce a segmentation based online diagnosis
method in this poster.

Index Terms—performance problem diagnosis; principal com-
ponent analysis; system trace; software reliability

I. INTRODUCTION

Nowadays, the performance of software systems gets more
and more attentions from academia and industry, since perfor-
mance problems may bring enormous loss. For example, on
June 29th 2010, a system of Amazon experienced intermittent
performance problems for three hours, which made Amazon
lose about 1.75 million dollars per hour [1]. Due to the com-
plexity of modern software systems, performance problems
can hardly be solved in design stage with traditional tech-
niques, such as testing, validation and verification, especially
for large-scale distributed software systems. As a complement,
online methods are employed for further improving the relia-
bility of software systems, like runtime monitoring.

Many existing online methods diagnose performance prob-
lems based on system call sequences, or called traces, which
are obtained by various tracing systems or inferred from sys-
tem logs. The trace records the execution processes of system
operations, e.g., the trace “socket, bind, listen, connect, accept”
records the process of a TCP connection operation. Concur-
rently, the trace also records the related performance metric
values of each call, such as execution time and resource usage.
Among various technologies, principal component analysis
(PCA) [2] is widely used in analyzing traces, due to the high
accuracy of the diagnosis results and requiring no specific
domain knowledge [3]. By separating the space of metric
values into normal and abnormal subspaces, the PCA-based
methods (e.g., [3], [4]) effectively detect the abnormal traces
from a trace set and locate the corresponding root causes in
each abnormal trace.

However, according to our experiments, we also validated
three shortcomings existed in these PCA-based methods. 1)

Requiring traces with a same call sequence. PCA is mean-
ingful only for a cluster of traces with a same call sequence.
However, the traces of real-world software systems are often
different from each other, even for a same operation. Hence,
when diagnosing, some trace clusters would be small, which
influences the accuracy of the diagnosis results. 2) Inefficient
with long traces. PCA is a computation-intensive process,
especially when calculating the principal components. These
methods become inefficient when dealing with long traces,
which widely exist in real-world software systems. 3) Missing
performance problems. The threshold in PCA used for judging
abnormal traces relates to each trace instance in the trace clus-
ter. When some very abnormal traces exist, the less abnormal
ones would be neglected.

In this poster, we give a segmentation based diagnosis
method to improve the traditional PCA-based methods. Two
key ideas lead us to this approach. First, a complex system
operation can be divided into many simple actions. For
example, the operation of read a file from Hadoop Distributed
File System (HDFS) [6] composes of many actions of reading
data blocks. Therefore, we segment long traces into shorter
segments before starting PCA and integrate the results after
finishing the PCA. The segmentation process brings following
benefits. 1) Segments can be treated as short traces, on
which PCA is pretty efficient. 2) Simple actions have a
higher probability of containing a same call sequence, which
potentially leads to a larger capacity of some trace clusters
and hence increases the accuracy of the diagnosis results. 3)
The whole diagnosis process can be well supported by various
parallel technologies. Second, removing the most abnormal
traces is helpful for detecting the less ones. Since the very
abnormal traces conceal the less ones, we repeat the diagnosis
process and remove the detected abnormal traces from the
trace clusters after each diagnosis. The repeated process leads
to finding more problems.

II. EXPERIMENTS TO VALIDATE THE SHORTCOMINGS

To validate the aforementioned shortcomings, we imple-
mented a PCA-based method (Ref. [3]) and evaluated it
on an open trace data set, called TraceBench [5], which is
collected on a real HDFS system. The experiment composes
of two parts: fixing the trace length (7 in our experiment)
and changing the trace number, and fixing the number (set



TABLE I
EXPERIMENTAL RESULTS

Number 100 200 300 400 500
Time (ms) 31 65 95 130 154
#Anomaly 12,12,0 17,17,0 19,2,0 30,1,0 30,1,0

Length 33 66 99 134 167
Time (ms) 84 1, 413 8, 359 35, 269 100, 023
#Anomaly 0,0,0 1,1,0 1,1,0 1,1,0 0,0,0

to 7) and changing the length. Table I shows the results,
where the items in the Time row indicate the diagnosis time
of each trace cluster and the items in the #Anomaly row
are formatted as (total abnormal traces),(correctly detected
abnormal traces),(incorrectly detected abnormal traces).

The diagnosis time increases slowly with the trace num-
ber and fast with the trace length. Actually, most diagnosis
time is spent on calculating the principal components of a
performance matrix, whose computation complexity is O(nl2)
[4], where n represents the trace number and l represents the
trace length. Hence, the idea of dividing long traces into short
segments is helpful for improving the efficiency of diagnosis.

Considering the diagnosis results, the number of incorrectly
detected abnormal traces (or called false alarms) in each
diagnosis is 0, which indicates the high accuracy of PCA-
based methods. On the other hand, the method may miss
performance problems. As an example, only 1 of 30 abnormal
traces are detected when the trace number is 400 in the upper
part of Table I, but another 27 abnormal traces are correctly
found in the next diagnosis after removing the detected one.
This example motivates our idea of repeating the diagnosis
process.

III. SEGMENTATION BASED DIAGNOSIS

Fig. 1 shows the architecture of our method, in which
the content surrounded by the dashed boxes illustrates the
process of a traditional PCA-based method, i.e., Ref. [3]. This
method mainly consists of three steps: 1) clustering traces
into different clusters according to the call sequences and
constructing the performance matrices from the performance
metric values for each cluster; 2) detecting the abnormal
traces in each cluster by applying PCA on each corresponding
performance matrix; 3) locating the problematic calls in each
abnormal trace and giving corresponding information of these
calls. More details can be referred to Ref. [3] and Ref. [4].
Comparing with this traditional method, we add some steps,
including segmenting, re-clustering, integrating, removing and
repeating.

Before diagnosing, we divide the trace clusters into segment
clusters according to the segmentation of corresponding call
sequences, and then re-cluster these segment clusters, to re-
duce the computation during PCA and to potentially enlarge
the capacities of certain clusters. Several strategies can be
adopted during segmenting, including semantic segmentation,
sub-tree based segmentation, manual segmentation, and so on,
which we will deeply investigate in future. After diagnosing
on each segment cluster, we integrate the results. We consider
that the problems detected in a segment are also the problems
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Fig. 1. The architecture of our method.

existed in the corresponding trace. Therefore, we define the
problems of a trace as all the problems found in the con-
tained segments. The whole process can be implemented as a
MapReduce [6] job, which can greatly expedite the diagnosis.

For each cluster, we repeat the diagnosis process and remove
the detected traces after each diagnosis, to find more prob-
lems. Once one or more of following conditions are satisfied,
the repeated process stops: 1) no more abnormal traces are
detected; 2) the proportion between the number of detected
traces and the number of all traces exceeds a threshold; 3) the
detected traces greatly decrease than the previous analysis.
The repeated process is deemed to find more problems and
also may bring more false alarms, where the mechanisms like
voting and ranking are good choices for dealing with this side
effect.
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