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Regular Property Verification

• Regular properties/FSMs are widely used

• Model-based testing

• Typestate analysis, e.g., runtime verification

• API protocol specification and mining

• Verifying regular properties is challenging 
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Dynamic Symbolic Execution (PLDI’05)  3



Challenge of Symbolic Execution

• Path explosion problem
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How to boost completing path exploration and finding 
counterexample?



Observation and Insight
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• Many irrelevant paths exist

• For relevant paths

• The ones with specific sequences can 
violate the regular property

• Many are equivalent w.r.t. verification



Observation and Insight

• Many irrelevant paths exist

• For relevant paths

• The ones with specific sequences can 
violate the regular property

• Many are equivalent w.r.t. verification
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Prune irrelevant, uninteresting relevant and equivalent 
paths, and explore counter-example paths earlier



Key Idea

 7

Symbolic Verification of Regular Properties
Hengbiao Yu†, Zhenbang Chen†, Ji Wang†, Zhendong Su‡, Wei Dong†

†College of Computer, National University of Defense Technology, Changsha, China
‡Department of Computer Science, University of California, Davis, USA

Email: {zbchen, wj}@nudt.edu.cn, su@cs.ucdavis.edu, wdong@nudt.edu.cn

Abstract—(To be Revised)
This paper addresses the scalability of sound regular property

verification, with no false positive, for real-world Java programs.
We present a symbolic execution based framework for ver-

ifying regular properties. In order to mitigate the inherent
state explosion problem of symbolic execution, we employ the
synergy of path slicing and property guiding. We enhance the
guiding approach with supporting for multiple objects property.
In addition, a prediction cache based selective slicing is applied
to reduce the time consuming for path slicing.

We have implemented our technique a prototype based on JPF,
WALA and Javaslicer, and evaluated it on 13 real-world open
source Java programs, a total of 225K lines of code. For the
whole 26 verified programs (including mutants), our method can
successfully verify the most tasks within 24 hours, compared with
DFS, pure property guiding and path slicing, the improvements
are 70%, 40%, and 25% respectively. Since dynamic symbolic
execution run programs both symbolically and concretely, all the
reported violations are real. The results of extensive experiment
show the effectiveness and efficiency of our method.

I. INTRODUCTION

A regular property is a property that can be specified by a
finite state machine (FSM) [?]. Regular properties are widely
used for property specification in many software analysis and
verification techniques, e.g., model-based testing [?], typestate
analysis [?] and model checking [1]. Verifying the satisfaction
of a program with respect to a regular property is a challenging
problem in software engineering.

The existing work of verifying regular properties can be
divided to two categories: static verification and dynamic
verification. Static verification, such as [?], [?] and [?], ab-
stracts the program soundly for verification, which usually
enjoys high coverage, but bothered by the problem of false
alarms. On the other hand, the methods of dynamic verification
[?][?][?] run the program and verify the program execution
online. Hence, dynamic verification ensures the completeness
of the analysis, i.e., every reported violation is real. However,
dynamic approaches can only verify the program behaviour
under specific inputs, which may result in the missing of bugs.

Symbolic execution [?][?] achieves a tradeoff between static
and dynamic approaches by using symbolic values to execute
a program. The key step in symbolic execution is it explores
all the possible cases when encountering a branch statement
by state forking or reruning the program. The path space of
a program can be systematically explored by symbolic execu-
tion. Compared with static and dynamic approaches, symbolic
execution has a better precision and coverage, respectively.

To verify a program M with respect to a regular property
P , we can use symbolic execution to explore the path spaces
of M . If there exists a path p that does not satisfy P , i.e., p
can drive the FSM of ¬P to an accept state, a violation is
found, and we call p a counterexample path; otherwise, M

satisfies P . However, symbolic execution is challenged by the
path explosion problem, due to the exponential increase of
the path space with respect to the number of branches in the
program. Hence, the verification procedure may not produce
any result. How to steer symbolic execution to complete the
exploration of path space or find a counterexample as soon as
possible is a critical problem.

This paper address the scalability problem of verifying reg-
ular property via dynamic symbolic execution (DSE) [?], [?].
We propose a method, called symbolic verification, to boost the
procedure of verification. There are two observations behind
our method: 1) usually, there exists large portion of irrelevant
paths with respect to the regular property in the program
under verification; 2) the portion of the counterexample paths
is often very small. Hence, during the procedure of DSE,
it is desirable to prune the irrelevant paths and explore the
counterexample paths in priority. In this way, the verification
procedure can be boosted to have an earlier completion, i.e.,
finding a counterexample or verifying the satisfaction of the
program with respect to the regular property.

The main novelty of our approach is the design of the
algorithm that makes a synergy of slicing [?] and property
guiding [?] techniques. For the verification of a regular prop-
erty P , we slice a path with respect to the statements related
to P . The paths of sliced branches can be soundly pruned.
Besides, we use ¬P to guide the selection the branch to be
explored, aiming to find a counterexample path in advance.
In our synergy algorithm, the two combined techniques can
complement with each other. In addition, slicing can boost
the efficiency of guiding by only exploring one of equivalent
relevant paths.

We have implemented symbolic verification for Java pro-
grams based on our tool in [?] and Javaslicer [?]. An extensive
experiments have been carried out on XXX real-word Java
programs and the regular properties involving single or multi-
ple objects. The experimental results demonstrate that (To Be
written).

The main contributions of this paper are as follows:

• A DSE based synergy algorithm for verifying regular
properties. The algorithm integrates path slicing and reg-
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Program LOC Brief Description
rhino-a 19799 Javascript interpreter
soot-c 32358 Static analysis tool

jlex 4400 Lexical analyzer
bloat 45375 Java bytecode optimization

bmpdecoder 531 BMP file decoder
ftpclient 2436 FTP client in Java

pobs 5488 Java parser objects
jpat 3245 Java string parser

jericho 25657 Jericho HTML Parser 
nano-xml 3317 Non-validating XML parser

htmlparser 21830 HTML parser in Java
xml 5138 XML parser in Java

fastjson 20223 JSON library from alibaba
jep 42868 Mathematics library
udl 26896 UDL language library

Total 259642 15 open source programs

init, read, close, read
init, read, read, close, read
init, read, read, close, read, read

Do not stop when 
a violation is found

19/5/2018, 2*47 PMThe seal of the University of California, Davis
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int x = secret();

int y = 0;

y = foo(x);

print(y);

return p;

•0 •x •y

•0 •x •y

•0 •x •y

•0 •x •y

•0 •p

•0 •p

normal
edge

call-to-
return
edge

call edge

return edge

control-flow edge

data-flow edge

violation of info-flow policy

Figure 2: Exploded super-graph for an IFDS information-flow analysis

Separable vs. non-separable functions The flow functions
in Figure 1 are what is frequently called “separable”: their
output only depends on the current statement but not on
the input value. This can be seen by the fact that all edges
contained in the graphs connect only to the unconditional
input 0. For separable IFDS problems, the IFDS algorithm
has the better complexity bound O(ED).

•0

•
0

•a

•a

•b

•
b

Many analysis problems, such as truly-
live variables [7] or secure information
flow [1], however, use flow equations that
are non-separable. For instance, the func-
tion representation to the right could be
chosen to model an assignment b=a in
an information-flow analysis. Here, a has
the same value as before the assignment,
modeled by the arrow from a to a , and b obtains a’s value,
modeled by the arrow from a to b . If b was previously hold-
ing a secret value, then it will only remain to do so if a con-
tained a secret value as well. This is modeled by a missing
arrow from b to b .

The IDE framework
The IDE framework for “inter-procedural distributed envi-
ronment transformers” by the same authors [9] is an exten-
sion of IFDS that effectively allows a program analysis to
extend the reachability to a value-computation problem. If a
data-flow fact d from the domain D is reachable at a given
statement, then the IDE algorithm will compute a value from
a secondary domain V along all paths that reach d. IFDS can
be modeled as a special case of IDE in which this “value do-
main” V is the binary domain {>,?}. The complexity of
the IDE algorithm is the same as for IFDS: O(ED3).

IDE can be quite useful from a performance point of view.
For example, consider the problem of constant propagation.
In such a setting, any statement s must be associated with
information about a mapping from a finite set of variables
x 2 Var in scope at s to values val(x) 2 N. In theory, such
a problem could be solved in IFDS by using a finite domain
D := Var⇥N, assuming that we put a finite upper bound on
the representation of N. However, as can easily be seen, this
would cause the domain D to grow infeasibly large. In IDE,
on the other hand, one can model the problem by choosing
just D := Var as the finite domain and V := N as the value
domain. Since the size of V is irrelevant to the complexity
of the IDE algorithm, IDE will terminate more quickly [9].

3. IFDS/IDE Implementation
We have implemented an IDE solver as an extension to
Soot. The implementation is written in pure Java. The solver
itself is also absolutely generic; it has no dependencies on
Soot and can therefore, in principle, even be re-used for
other static-analysis frameworks. We achieve this genericity
through the use of Java’s generic type parameters.

3.1 User perspective
Figure 3 shows how users define an IFDS problem; one
simply creates a class implementing the interface shown,
and passes it to an IFDSSolver object, followed by a call
to solve(). Our actual solver is completely generic and
has no dependencies on Soot. We achieve this genericity
through type parameters. The parameters N,D,M represent
nodes (typically Unit), data-flow facts (client specific) and
methods respectively (typically SootMethod). The method
initialSeeds returns the initial information used to boot-

3 2012/5/7
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Sneak Preview of Results

• For 39 verification tasks (1 hour for each)

• 30 are completed by our method

• DFS (22), pure guiding (22) and slicing (23)

• For the completed verification tasks

• >8.4X, >8.6X, and >7X time speedups over 
DFS, pure guiding and path slicing
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Synergic Framework
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int foo(int m, n, tag) {
InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular 
Property
(FSM)

Program

Running
&Dynamic analysis

Finished? Guided branch 
selection

Report results

Input 
generation

(2) DSE

Slicing the path



An Example
int foo(int m, int n, int[] a) {

InputStreamReader w = new …;
if (m > 50) m++;
for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i+1]) {
int temp = a[i];
a[i+1] = a[i];
a[i] = temp;

}
}
if (a[i] == 100) 

w.close();
while (n-- > 0){

int j = w.read();
if (j == -1) break;
m += j;

}
return m;   

}
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int foo(int m, int n, int[] a) {
InputStreamReader w = new …;
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int foo(int m, int n, int[] a) {
InputStreamReader w = new …;
if (m > 50) m++;
for (int i = 0; i < a.length-1; i++) {

if (a[i] > a[i+1]) {
int temp = a[i];
a[i+1] = a[i];
a[i] = temp;

}
}
if (a[i] == 100) 

w.close();
while (n-- > 0){

int j = w.read();
if (j == -1) break;
m += j;

}
return m;   

}
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n > 0

n ≤ 1

a[1]=100

a[0]>a[1]

(m=1, n=1, a={0, 100})

2nd Iteration

n > 0 history ∩ future = ∅

Equivalence

init, close, read≈
init, close, read+



An Example
int foo(int m, int n, int[] a) {

InputStreamReader w = new …;
if (m > 50) m++;
for (int i = 0; i < a.length - 1; i++) {

if (a[i] > a[i+1]) {
int temp = a[i];
a[i+1] = a[i];
a[i] = temp;

}
}
if (a[i] == 100) 

w.close();
while (n-- > 0){

int j = w.read();
if (j == -1) break;
m += j;

}
return m;   

}
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Cannot read after closed
Reader property

Only 2 paths are needed to 
complete verification

Method Result

DFS Unfolding two loops

Guiding 2nd path, Unfolding two loops

Path Slicing Only one branch is sliced



Implementation & 
Experiment Setup

• Implement for Java based on RGSE

• 16 real world open source Java programs

• 270K LOC in total
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Program LOC Brief Description
rhino-a 19799 Javascript interpreter
soot-c 32358 Static analysis tool

jlex 4400 Lexical analyzer
bloat 45375 Java bytecode optimization

bmpdecoder 531 BMP file decoder
ftpclient 2436 FTP client in Java

pobs 5488 Java parser objects
jpat 3245 Java string parser

jericho 25657 Jericho HTML Parser 
nano-xml 3317 Non-validating XML parser

htmlparser 21830 HTML parser in Java
xml 5138 XML parser in Java

fastjson 20223 JSON library from alibaba
jep 42868 Mathematics library
udl 26896 UDL language library

Total 259642 15 open source programs



Implementation & 
Experiment Setup

• Implement for Java based on RGSE

• 16 real world open source Java programs

• 270K LOC in total

• Properties

• JDK’s single- and multi-objects typestate properties

• User defined

• Verify each program/property in 1 hour
 21



Results
• Use the fewest iterations to complete path 

exploration

• For 24 tasks with counterexamples, slicing 
can boost the finding in 7 (29%) tasks

• #iterations using our slicing is two orders of 
magnitude less than that using path slicing

• Completed tasks by us but not by path slicing

• Cannot finish after 24 hours except jep
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Table 3: Experiment results of analysis time (D: DFS, G: pure guiding, S: pure path slicing, S0 : SRV)
Program
(Property) Type Total Time(s) First Violation Time(s)

D G S S
0

D G S S
0

soot-c
(Writer)

O 28.43 374.23 95.14 398.98 NO NO NO NO
bug1 28.59 354.26 101.32 413.83 18.41 343.72 85.01 413.71
bug2 27.61 358.01 97.06 389.1 19.39 346.6 81.62 389.09
bug3 26.71 369.87 104.37 469.51 15.12 358.99 83.77 469.39

soot-c
(Writer⇤)

O 27.2 177.91 91.86 214.85 NO NO NO NO
bug4 29.82 187.74 97.91 219.26 NO NO NO NO
bug5 27.9 187.41 98.15 218.9 15.71 176.27 79.4 216.47
bug6 29.2 174.32 103 206.73 NO NO NO NO

bloat (Iterator) O 24.49 48.1 57.56 66.97 10.13 36.02 35.2 50.14

bloat
(Iterator⇤)

O 27.1 71.75 54.23 90.54 NO NO NO NO
bug1 29.2 71.81 102.07 128.85 NO NO NO NO
bug2 25.85 70.02 60.74 92.19 25.85 70.02 42.86 92.19
bug3 26.63 72.05 64.57 96.88 26.63 70.95 40.11 78.92

bmpdecoder
(Reader)

O 8.65 16.97 21.71 16.71 NO NO NO NO
bug1 9.18 17.45 19.79 22.04 NO NO NO NO
bug2 9.15 17.92 21.01 18 7.93 12.54 20.48 17.96
bug3 9.26 17.88 20.97 23.26 NO NO NO NO

ftpclient
(Socket)

O 12.44 37.08 37.83 49.78 NO NO NO NO
bug1 14.12 41.48 42.12 55.1 9.19 36.44 38.89 54.55
bug2 13.57 37.66 37.47 50.55 11.73 33.96 37.2 50.55
bug3 15.52 40.45 40.29 53.39 NO NO NO NO

jlex
(Reader)

O TO TO TO 29.48 NA NA NA NO
bug1 TO TO TO TO 12.75 23.35 400.71 63.97
bug2 TO TO TO TO NA 14.58 NA 27.04
bug3 TO TO TO TO NA NA NA NA

jlex
(Reader⇤)

O TO TO TO 29.81 NA NA NA NO
bug4 TO TO TO TO NA 20.07 NA 52.24
bug5 TO TO TO TO 217.56 38.18 NA 109.39
bug6 TO TO TO TO 51.33 146.88 NA NA

rhino-a (Enumeration) O TO TO TO TO NA NA NA NA
jpat (UserDe�ned) O TO TO TO 46.94 NA 23.36 NA 43.99

nano-xml (UserDe�ned) O TO TO TO 19.18 NA 14.02 NA 19.16
pobs (UserDe�ned) O TO TO 21.44 26.31 NA 14.96 20.79 23.07
jericho (UserDe�ned) O TO TO 53.7 27.66 NA 19.6 53.33 27.66
fastjason (UserDe�ned) O TO TO TO 102.6 NA NA NA 102.52

jep (UserDe�ned) O 2590.38 1090.05 TO 167.87 1439.06 29.72 NA 167.84
htmlparser (UserDe�ned) O TO TO TO TO 27.62 50.95 NA 106.03

udl (UserDe�ned) O TO TO TO TO NA 2829.57 NA NA
xmlparser (UserDe�ned) O TO TO TO 24.89 NA 18.25 NA 24.89

speedups over DFS and pure path slicing in �nding the �rst coun-
terexamples. When a violation is very deep and there possibly exist
a large number of relevant paths, it cannot be detected without
slicing. For example, for fastjason, pure guiding fails to detect
a violation within one hour, while SRV needs only 102.6 seconds.
Within one hour, guiding and SRV can �nd a counterexample for
23 and 22 programs respectively, while DFS and pure path slicing
can only �nd 15 and 13, indicating the e�ectiveness and e�ciency
of guiding.

Pruning branches with positive heuristic values can boost �nding
counterexamples. For the 24 tasks with counterexamples found,
slicing can boost guiding by reducing the number of iterations
for �nding the �rst counterexample in 7 (29%) tasks. Notably, for
fastjason, SRV needs only 5 iterations, but all the other modes
fail to detect a violation after thousands of iterations. To inspect the

boosting of slicing to guiding further, we collect the information of
the pruned branches with positive heuristic values.

Figure 7 shows the improvement by synthesizing the results of
all the tasks, where the X -axis is the path order for the �rst 2000
paths, and the Y -axis is the number of the pruned branches with a
positive heuristic value for guiding. As shown in the �gure, much
of the boosting happens during the early stage, i.e., in the �rst 1500
paths, which indicates the necessity of selective slicing.

In addition, we collect the information about iterations, and the
results show that SRV uses the fewest iterations to complete path
exploration. Speci�cally, the iterations using our slicing algorithm
is two orders of magnitude less than that using path slicing [27].
Furthermore, we adjust the time threshold to 24 hours for the failed
tasks, and found that all the tasks were still failed to be veri�ed,
except that program jep can be veri�ed in pure slicing mode.



Completed Verification Tasks

G+S’ can complete the most number of 
tasks under a given time threshold

# Rate
G+S’ 30 76.9%
DFS 22 56.4%

Guiding 22 56.4%

Slicing 23 58.9%
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39 tasks in total
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Figure 5: Completed tasks under a time threshold.

pruned branches drops signi�cantly after 1500 iterations, which
indicates the necessity of selective slicing.
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Figure 6: Branch pruning of each path.

Threats to Validity. Threats to the validity of our evaluation re-
sults are mainly external. The programs are representative because
(1) the programs are of various types, such as parser, network
manipulation and optimization; (2) the programs are of di�erent
sizes, i.e., from 0.5K to 45K LOC, and totally 259K; and (3) they are
commonly used for evaluating Java program analyses [6, 20, 46].
In addition, the veri�ed regular properties are mainly common
contracts [17] of Java programs. User-de�ned properties also have
practical meaningsw.r.t. programs’ functionalities. Finally, although
SRV is implemented and evaluated for Java, it is general and can
be applied to programs in other languages, such as C and C++.

5 RELATEDWORK
Symbolic regular veri�cation (SRV) is related to existing work on
checking or verifying regular properties, including static analy-
sis [6, 13, 20], dynamic analysis [1, 11], software model check-
ing [3, 36], symbolic execution [15, 46]. Compared with existing
approaches, SRV achieves a practical balance between soundness
and completeness by improving the scalability of veri�cation via

the synergy of slicing and guiding, while ensuring completeness.
In what follows, we brie�y review existing work and compare it
with SRV.

The closest related work to SRV is regular property guided
DSE [46] andW��������� [15]. Di�erent from the objective of [46],
i.e., �nding an accepted path as soon as possible, SRV aims to quickly
complete the path exploration of the program by employing slic-
ing to prune redundant paths, and the slicing can also reduce the
iterations for �nding counterexample paths. Besides, SRV supports
the guiding w.r.t. multi-object regular properties. Compared with
W��������� [15], which uses path slicing [26] to prune redun-
dant paths for verifying system rules via symbolic execution, as
demonstrated by the evaluation results (cf. Section 4.2), SRV is more
scalable because it can prune more paths and �nd violations faster.

Meta Compilation (MC) [18, 19] is a scalable static approach to
detect violations of properties speci�ed by a simple state machine
language. MC is neither sound nor complete. ESP [16] is a path-
sensitive static veri�er for the properties speci�ed by FSMs. ESP
achieves strong scalability by merging symbolic states at certain
merging points in the control �ow graph of the program. However,
ESP may produce false alarms due to imprecise modeling of pro-
gram statements. In [20], a staged static typestate property [41]
veri�cation framework is proposed based on a parametric abstract
domain. The false alarms can be eliminated gradually by the staged
analysis. Clara [6] employs forward and backward data �ow analy-
sis to remove instrumentations for runtime monitoring of typestate
properties. Our guiding method makes the backward analysis of
Clara to be inter-procedural for calculating Postset. Compared with
static approaches, SRV enjoys completeness by trading scalability
because it executes the program under veri�cation.

Dynamic veri�cation methods are mainly from runtime veri�-
cation [29]. The basic procedure of these methods is to generate a
monitor for veri�cation from a property, and the monitor is usually
implemented via instrumentations to the program. The veri�cation
takes place at runtime based on the information collected by instru-
mentations. Hence, dynamic approaches verify a single program
path. JavaMOP [11] and Tracematches [1] are representative tools
for runtime veri�cation of Java programs. Our guiding method uses
the idea of monitoring in runtime veri�cation to calculate Preset,
and the monitoring is implemented at the virtual machine level.
Compared with dynamic approaches, SRV employs DSE to explore
the path space of the program systematically, which improves code
coverage and �nds more bugs.

Software model checking has also been explored for verifying
regular properties of programs. SLAM [3] uses predicate abstrac-
tion [4] to obtain an abstract model of a program. Then, at the model
level, SLAM uses model checking to verify regular properties. When
a counterexample is found by model checking, it is reported when
it is a real violation; otherwise, the counterexample is used to re�ne
the abstract model. YOGI [36] improves SLAM by integrating DSE
to speed up model re�nement and �nding real counterexamples.
Compared with these approaches, SRV is lightweight and scalable
because it adopts e�cient static analysis to boost veri�cation.

SRV is also closely related to existing work on symbolic exe-
cution [22, 28]. Guiding and pruning are commonly investigated
for improving the scalability of symbolic execution. For guiding

10



Conclusion
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Regular Property Verification

• Regular properties/FSMs are widely used

• Model-based testing

• Typestate analysis, e.g., runtime verification

• API protocol specification and mining

• Verifying regular properties is difficult

2
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int foo(int m, n, tag) {
InputStreamReader w = new ...;
int result = 0, k = 0, i = -1;
while (k++ < m)
{

i = w.read();
if (i == -1) break;
result += i;

}
if (tag == 0) w.close();
k = 0;
while (k++ < n){

i = w.read();
if (i == -1) break;
result -= i;

}
return result;

}

(1)
Static analysis

Regular 
Property
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Program

Running
&Dynamic analysis

Finished? Guided branch 
selection

Report results

Input 
generation

(2) DSE

Slicing the path
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Abstract—(To be Revised)
This paper addresses the scalability of sound regular property

verification, with no false positive, for real-world Java programs.
We present a symbolic execution based framework for ver-

ifying regular properties. In order to mitigate the inherent
state explosion problem of symbolic execution, we employ the
synergy of path slicing and property guiding. We enhance the
guiding approach with supporting for multiple objects property.
In addition, a prediction cache based selective slicing is applied
to reduce the time consuming for path slicing.

We have implemented our technique a prototype based on JPF,
WALA and Javaslicer, and evaluated it on 13 real-world open
source Java programs, a total of 225K lines of code. For the
whole 26 verified programs (including mutants), our method can
successfully verify the most tasks within 24 hours, compared with
DFS, pure property guiding and path slicing, the improvements
are 70%, 40%, and 25% respectively. Since dynamic symbolic
execution run programs both symbolically and concretely, all the
reported violations are real. The results of extensive experiment
show the effectiveness and efficiency of our method.

I. INTRODUCTION

A regular property is a property that can be specified by a
finite state machine (FSM) [?]. Regular properties are widely
used for property specification in many software analysis and
verification techniques, e.g., model-based testing [?], typestate
analysis [?] and model checking [1]. Verifying the satisfaction
of a program with respect to a regular property is a challenging
problem in software engineering.

The existing work of verifying regular properties can be
divided to two categories: static verification and dynamic
verification. Static verification, such as [?], [?] and [?], ab-
stracts the program soundly for verification, which usually
enjoys high coverage, but bothered by the problem of false
alarms. On the other hand, the methods of dynamic verification
[?][?][?] run the program and verify the program execution
online. Hence, dynamic verification ensures the completeness
of the analysis, i.e., every reported violation is real. However,
dynamic approaches can only verify the program behaviour
under specific inputs, which may result in the missing of bugs.

Symbolic execution [?][?] achieves a tradeoff between static
and dynamic approaches by using symbolic values to execute
a program. The key step in symbolic execution is it explores
all the possible cases when encountering a branch statement
by state forking or reruning the program. The path space of
a program can be systematically explored by symbolic execu-
tion. Compared with static and dynamic approaches, symbolic
execution has a better precision and coverage, respectively.

To verify a program M with respect to a regular property
P , we can use symbolic execution to explore the path spaces
of M . If there exists a path p that does not satisfy P , i.e., p
can drive the FSM of ¬P to an accept state, a violation is
found, and we call p a counterexample path; otherwise, M

satisfies P . However, symbolic execution is challenged by the
path explosion problem, due to the exponential increase of
the path space with respect to the number of branches in the
program. Hence, the verification procedure may not produce
any result. How to steer symbolic execution to complete the
exploration of path space or find a counterexample as soon as
possible is a critical problem.

This paper address the scalability problem of verifying reg-
ular property via dynamic symbolic execution (DSE) [?], [?].
We propose a method, called symbolic verification, to boost the
procedure of verification. There are two observations behind
our method: 1) usually, there exists large portion of irrelevant
paths with respect to the regular property in the program
under verification; 2) the portion of the counterexample paths
is often very small. Hence, during the procedure of DSE,
it is desirable to prune the irrelevant paths and explore the
counterexample paths in priority. In this way, the verification
procedure can be boosted to have an earlier completion, i.e.,
finding a counterexample or verifying the satisfaction of the
program with respect to the regular property.

The main novelty of our approach is the design of the
algorithm that makes a synergy of slicing [?] and property
guiding [?] techniques. For the verification of a regular prop-
erty P , we slice a path with respect to the statements related
to P . The paths of sliced branches can be soundly pruned.
Besides, we use ¬P to guide the selection the branch to be
explored, aiming to find a counterexample path in advance.
In our synergy algorithm, the two combined techniques can
complement with each other. In addition, slicing can boost
the efficiency of guiding by only exploring one of equivalent
relevant paths.

We have implemented symbolic verification for Java pro-
grams based on our tool in [?] and Javaslicer [?]. An extensive
experiments have been carried out on XXX real-word Java
programs and the regular properties involving single or multi-
ple objects. The experimental results demonstrate that (To Be
written).

The main contributions of this paper are as follows:

• A DSE based synergy algorithm for verifying regular
properties. The algorithm integrates path slicing and reg-
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successfully verify the most tasks within 24 hours, compared with
DFS, pure property guiding and path slicing, the improvements
are 70%, 40%, and 25% respectively. Since dynamic symbolic
execution run programs both symbolically and concretely, all the
reported violations are real. The results of extensive experiment
show the effectiveness and efficiency of our method.

I. INTRODUCTION

A regular property is a property that can be specified by a
finite state machine (FSM) [?]. Regular properties are widely
used for property specification in many software analysis and
verification techniques, e.g., model-based testing [?], typestate
analysis [?] and model checking [1]. Verifying the satisfaction
of a program with respect to a regular property is a challenging
problem in software engineering.

The existing work of verifying regular properties can be
divided to two categories: static verification and dynamic
verification. Static verification, such as [?], [?] and [?], ab-
stracts the program soundly for verification, which usually
enjoys high coverage, but bothered by the problem of false
alarms. On the other hand, the methods of dynamic verification
[?][?][?] run the program and verify the program execution
online. Hence, dynamic verification ensures the completeness
of the analysis, i.e., every reported violation is real. However,
dynamic approaches can only verify the program behaviour
under specific inputs, which may result in the missing of bugs.

Symbolic execution [?][?] achieves a tradeoff between static
and dynamic approaches by using symbolic values to execute
a program. The key step in symbolic execution is it explores
all the possible cases when encountering a branch statement
by state forking or reruning the program. The path space of
a program can be systematically explored by symbolic execu-
tion. Compared with static and dynamic approaches, symbolic
execution has a better precision and coverage, respectively.

To verify a program M with respect to a regular property
P , we can use symbolic execution to explore the path spaces
of M . If there exists a path p that does not satisfy P , i.e., p
can drive the FSM of ¬P to an accept state, a violation is
found, and we call p a counterexample path; otherwise, M

satisfies P . However, symbolic execution is challenged by the
path explosion problem, due to the exponential increase of
the path space with respect to the number of branches in the
program. Hence, the verification procedure may not produce
any result. How to steer symbolic execution to complete the
exploration of path space or find a counterexample as soon as
possible is a critical problem.

This paper address the scalability problem of verifying reg-
ular property via dynamic symbolic execution (DSE) [?], [?].
We propose a method, called symbolic verification, to boost the
procedure of verification. There are two observations behind
our method: 1) usually, there exists large portion of irrelevant
paths with respect to the regular property in the program
under verification; 2) the portion of the counterexample paths
is often very small. Hence, during the procedure of DSE,
it is desirable to prune the irrelevant paths and explore the
counterexample paths in priority. In this way, the verification
procedure can be boosted to have an earlier completion, i.e.,
finding a counterexample or verifying the satisfaction of the
program with respect to the regular property.

The main novelty of our approach is the design of the
algorithm that makes a synergy of slicing [?] and property
guiding [?] techniques. For the verification of a regular prop-
erty P , we slice a path with respect to the statements related
to P . The paths of sliced branches can be soundly pruned.
Besides, we use ¬P to guide the selection the branch to be
explored, aiming to find a counterexample path in advance.
In our synergy algorithm, the two combined techniques can
complement with each other. In addition, slicing can boost
the efficiency of guiding by only exploring one of equivalent
relevant paths.

We have implemented symbolic verification for Java pro-
grams based on our tool in [?] and Javaslicer [?]. An extensive
experiments have been carried out on XXX real-word Java
programs and the regular properties involving single or multi-
ple objects. The experimental results demonstrate that (To Be
written).

The main contributions of this paper are as follows:

• A DSE based synergy algorithm for verifying regular
properties. The algorithm integrates path slicing and reg-
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Sneak Preview of Results

• For 39 verification tasks (1 hour for each)

• 30 are completed by our method

• DFS (22), pure guiding (22) and slicing (23)

• For the completed verification tasks

• >8.4X, >8.6X, and >7X time speedups over 
DFS, pure guiding and path slicing
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