
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Poster: MC/DC Coverage-Oriented Compiler Optimization
for Symbolic Execution

Yijun Liu, Zhenbang Chen, Wei Dong, Chendong Feng
College of Computer, National University of Defense Technology

Changsha, China
{zbchen,wdong}@nudt.edu.cn

ABSTRACT
Complier optimizations influence the effectiveness and efficiency of
symbolic execution. In this extended abstract, we report our recent
results of recommending compiler optimizations for symbolic exe-
cutionw.r.t.MC/DC coverage.We carried out extensive experiments
to study the influence of compiler optimizations on MC/DC cover-
age. Then, an SVM-based optimization recommendation method is
designed and implemented. The preliminary experimental results
are promising.

1 INTRODUCTION
Symbolic execution [4, 6] provides a general way for systematically
exploring the path space of a program. Due to its precision and path-
sensitivity, symbolic execution has been be successfully applied to
test case generation [2]. Usually, when using symbolic execution to
analyze a program, the program will be compiled into a binary or
an intermediate representation (IR) first. Then, symbolic execution
is carried out on the binary or IR. During this process, compiler
optimizations may influence the effectiveness and efficiency of
symbolic execution [1, 3].

Existing work [1] discusses the impact of compiler optimization
on symbolic execution. The influence of compile optimization is
empirically studies w.r.t. statement coverage and decision coverage
in [3]. However, as far as we know, there is no existing work on
compiler optimization recommendation for symbolic execution.
The feature extraction of a program w.r.t. the influence of com-
pile optimization on symbolic execution is challenging. Besides,
no existing work studies the impact of compiler optimization on
symbolic execution w.r.t. MC/DC coverage [5], i.e., an important
industrial coverage criterion for safety-critical software systems.

In this extended abstract, we report our preliminary result of
studying and recommending compiler optimizations for symbolic
execution w.r.t.MC/DC coverage. The basic idea is to use empirical
study to identify the key optimizations w.r.t. MC/DC coverage first.
Then, based on the feature extraction w.r.t. key optimizations, we
use machine learning techniques to train a recommendation model
of compiler optimization for symbolic execution. The model can
be used before symbolic execution to determine whether to apply
the key optimizations, aiming to improve the MC/DC coverage
achieved by the test cases produced by symbolic execution.

2 MOTIVATION EXAMPLE
Figure 1 displays an example program to demonstrate the problem.
The program is from the example programs provided by KLEE [2],
i.e., a state-of-art symbolic executor for C programs.

The function get_sign has an input variable x, and there are
three cases depending on the value of x. Clearly, three test cases are
enough to test the program. However, if we analyze the program
by KLEE using the default configuration in which compiler opti-
mization is turned on, KLEE only generates two inputs (e.g., 0 and
10), which result in 50% MC/DC coverage. If we turn off the com-
piler optimization, KLEE generates three inputs, whose execution
achieves 100% MC/DC coverages.

1 int get_sign(int x) {
2 if (x == 0)
3 return 0;
4 if (x < 0)
5 return -1;
6 else
7 return 1;
8 }

Figure 1: An example program.

The reason is KLEE optmizes the LLVM IR of the program before
symbolic execution. The second branch statement (Lines 4∼7) is
optimized into non-branched instructions, i.e., an arithmetic shift
right and a bitwise or. When the symbolic execution is carried out
on the optimized IR, the path condition of the program is only
produced by the condition of the first branch, i.e., x == 0. Hence,
only two inputs will be generated.

3 EMPIRICAL STUDY
We have the following three research questions to study:
• Dose increasing symbolic execution’s time improve MC/DC
coverage?

• Do compiler optimizations influence MC/DC coverage?
• Whether exist dominant compiler optimizations w.r.t.MC/DC
coverage?
Experimental Framework & Benchmark. Figure 2 give the frame-

work of experiments. The inputs of the framework are the programs
under testing and the configuration (e.g., which compiler optimiza-
tions are applied) of KLEE, and the framework’s output is the test
report containing MC/DC results. The main process of the frame-
work can be divided into two stages: test case generation and test
execution. In the first stage, KLEE is configured and used to auto-
matically generate the test cases. Test driver generator extracts the
input values and generates the driver code according to the test
driver templates of C++Test [7]. At the second stage, the test driver
code and the program under testing are fed into C++Test to execute
the test cases and generate the test report. Inside the framework,
the test driver generator is implemented by us. KLEE’s version is

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Yijun Liu, Zhenbang Chen, Wei Dong, Chendong Feng

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

C	Programs
KLEE

Configuration

Test	cases
(Ktest files)

Test	Driver	
Generator

C	Programs

Test	Drivers Parasoft
C++Test

Test	Report

Stage	1 Stage	2

Figure 2: Experimental Framework

1.2, and C++Test’s version is 9.6. We use the programs in Coreutils
[2] as the studied benchmark. There are 89 Coreutils programs used
in [2], and we filter 6 programs (i.e., kill, hostname, who, chmod,
ln, and du) because C++Test cannot produce the test report for
them or the experiments failed. The numbers of MC/DC conditions
insides these programs are well distributed from 3 to 927.

Experimental Results. To study the analysis time’s influence on
MC/DC coverage, we automatically tested all the 83 coreutils pro-
grams in 5, 10, 30 and 60 minutes. Out of 83 programs, there are 56
programs (67.4%) on which MC/DC coverages do not change when
increasing the time of symbolic execution, i.e., same coverage in 5,
10, 30, and 60 minutes. The MC/DC coverages of only 13 programs
(15.3%) increase after 10 minutes. These results indicate increasing
the time of symbolic execution does not always increase the MC/DC
coverage effectively.

To study compiler optimization’s influence on MC/DC coverage,
we test each program in 5 minutes. We use the MC/DC coverage
of not using any compiler optimization (denoted by No) as the
baseline. The experimental results indicate compiler optimization
may increase or decrease the MC/DC coverage of a program. Almost
every optimization method used by KLEE influences (increase or
decrease) at least one program’s MC/DC coverage, except FA. There
are 30 optimization methods that can increase the MC/DC coverage;
whereas, only 14 methods can decrease the MC/DC coverage. Many
optimization methods only influence a small number of programs,
i.e., less than 4 programs. Only six optimization methods (i.e., IC, FI,
PMTR, SRA, Internalize and LR) influence more than 10 programs.

Inside six optimizations, we use a two-stage procedure to find
dominant ones. First, we identify the ones that are equivalent with
or coincident with applying all optimizations (denoted by ALL)
more. Then, we inspect the difference between ALL and ALL after
disabling a single optimization method. If an optimization method
is identified to be more equivalent or coincident with ALL at the
first stage, and also very different from ALL after disabled at the
second stage, then the method is considered to be a dominant or key
optimization. Finally, IC is identified as the dominant optimization
method. At the first stage, IC is the one that is equivalent (50.6%)
and coincident (75.9%) with ALL most. At the second stage, the
equivalence rate of disabling IC is 43.37%.

4 OPTIMIZATION RECOMMENDATION
To decide whether to adopt a compiler optimization, recommenda-
tion needs the program feature w.r.t. the optimization. The feature
extraction and synthesis of a program w.r.t. compiler optimization
methods is challenging. The results in Section 3 indicate IC is the
dominant compiler optimization method. Based on this result, we
propose a program feature extraction method w.r.t. IC. Then, a
recommendation method for IC is designed and implemented.

IC is an intra-procedural optimization process. Each function
in the program is optimized individually. For a function f , the in-
structions inside f are optimized using different rules if possible
until no rule can be applied. Precise feature extraction w.r.t. IC is
theoretically undecidable and not practical. Hence, we propose a
lightweight method for feature extraction. The basic idea is to run
IC optimization on the program, and records the times of successful
optimizations on each LLVM instruction type. In total, IC handles
43 types of LLVM instructions. Hence, given a program P, its fea-
ture w.r.t. IC, denoted by F (P), is a vector of 43 dimensions, i.e.,
⟨c1, ..., c43⟩, where ci ≥ 0 and 1 ≤ i ≤ 43, and ci is the times of
successful optimizations on ith instruction type.

We applied the feature extraction method to the 83 Coreutils
programs, and used support vector machine (SVM) to train a clas-
sifier using the extracted features and the experimental results
in Section 3. The trained classifier is then used before symbolic
execution to decide whether to apply IC.

Experimental results. We implemented and integrated the rec-
ommendation method to the framework in Figure 2, and reran the
experiments on the 83 Coreutils programs. On 83.13% programs,
recommendation method can achieve the maximum MC/DC cov-
erage. The recommendation method increases and decreases the
MC/DC coverage on 18 and 13 programs, respectively; the numbers
of ALL are 18 and 37; the numbers of disable-IC are 13 and 16.
Hence, the recommendation method outperforms both of them,
which indicates the effectiveness of the recommendation method.

5 CONCLUSION AND FUTUREWORK
This abstract reports our recent progress on recommending com-
piler optimizations for symbolic execution w.r.t. MC/DC coverage.
Our empirical study indicates that compiler optimizations influ-
ence MC/DC coverage, and IC is the dominate optimization. Then, a
lightweight recommendation method is designed and implemented
w.r.t. IC towards improving MC/DC coverage. The experimental re-
sults indicate the method is effective. The next step has two aspects:
(1) more extensive experiments on other benchmarks; (2) inspect
whether the results are still valid w.r.t. other coverage criteria.

REFERENCES
[1] C. Cadar. Targeted program transformations for symbolic execution. In ESEC/FSE,

pages 906–909, 2015.
[2] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs. In OSDI, pages 209–224, 2008.
[3] S. Dong, O. Olivo, L. Zhang, and S. Khurshid. Studying the influence of standard

compiler optimizations on symbolic execution. In ISSRE, pages 205–215, 2015.
[4] P. Godefroid, N. Klarlund, and K. Sen. DART: directed automated random testing.

In PLDI, pages 213–223, 2005.
[5] H. Kelly J., V. Dan S., C. John J., and R. Leanna K. A practical tutorial on modified

condition/decision coverage. Technical report, 2001.
[6] J. King. Symbolic execution and program testing. Communications of the ACM, 19

(7):385–394, 1976.
[7] Parasoft. Parasoft C/C++test 9.6. https://www.parasoft.com/products/ctest.

2

https://www.parasoft.com/products/ctest

	Abstract
	1 Introduction
	2 Motivation Example
	3 Empirical Study
	4 Optimization Recommendation
	5 Conclusion and Future Work
	References

