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Abstract. Compensating CSP (cCSP) is an extension to CSP for mod-
eling long-running transactions. It can be used to specify programs of
service orchestration written in a programming language like WS-BPEL.
So far, only an operational semantics and a trace semantics are given to
cCSP. In this paper, we extend cCSP with more operators and define for
it a stable failures semantics in order to reason about non-determinism
and deadlock. We give some important algebraic laws for the new opera-
tors. These laws can be justified and understood from the stable failures
semantics. A case study is given to demonstrate the extended cCSP.

1 Introduction

Long-Running Transactions (LRT) are attracting increasing research attention
recently because of their importance in Service-Oriented Computing (SOC) [10].
A transaction in SOC usually lasts for a long period of time, and involves in-
teractions with different organizations. The notion of atomic transaction is too
strict for this scenario due to some requirements such as isolation [10]. LRT are
therefore introduced to cope with this problem by using compensation to recover
from a failure to ensure the required atomicity and consistency.

Industrial service composition languages, such as WS-BPEL [1] and XLANG
[14] are now designed and implemented for programming LRT in service orches-
tration. For specification and verification of LRT, formalisms have been being
proposed and they include StAC [4], Sagas [3], cCSP [6], etc. Formalisms can
provide formal semantics to an industrial language and serve as the foundation
for the understanding of LRT and the development of tool support to verification
and analysis.

Compensating CSP (cCSP) extends the process calculus of Communicating
Sequential Process (CSP) [13] with mechanisms of interruption and recovery
from exceptions for describing LRT. The recovery mechanism in cCSP is the
same as the backward recovery proposed in Sagas [9]. There are two types of
processes in cCSP, and they are called respectively standard processes and com-
pensable processes. A standard process is a subset of a CSP process extended
with exception handling and transaction block. A compensable process specifies
the behavior of the recovery when an exception occurs. A trace semantics is pre-
sented in [4] and an operational semantics is in [7], and the consistency between



them is studied in [12]. However, without non-deterministic (internal) choice
and hiding, cCSP is not expressive enough for relating specifications at differ-
ent levels of abstraction. It is important to note that abstraction (via hiding) is
the main source of non-determinism and non-determinism can causes deadlocks
when composing processes.

Internal choice and hiding are motivated in the definition of StAC [4, 5], a
formal notation for LRT that supports synchronized parallel composition, in-
ternal and external choices, hiding, and programmable compensation. A serious
drawback of StAC compared to cCSP is that StAC does not support compo-
sitional reasoning. A thorough comparative study between Sagas [3] and cCSP
is presented in [2] and shows two equivalent subsets of them. The paper also
compares the policies of the interruption and compensation in Sagas and cCSP,
and finds that the revised Sagas [3] is more expressive than cCSP [6]. There is an
attempt to extend cCSP [11], but only with synchronized parallel composition.

In this paper, we extend cCSP by bringing back the CSP operators of hiding,
internal choice for non-determinism, and synchronized parallel composition for
general composition. Accordingly to characterize non-determinism and deadlock,
we define a stable failures semantics for the extended language. We show most
algebraic laws in the trace semantics of the original cCSP still hold in the stable
failures semantics. Also, we show that a few laws that were claimed to hold for
the original trace semantics do not hold there, but they hold for the semantics
we define in this paper. We study the laws for the newly introduced operators.
Due to the page limit, the proofs of the laws are omitted, but they can be found
in a technical report [8].

The rest of this paper is organized as follows. Section 2 gives a brief intro-
duction to the syntax and semantics of the original cCSP. Section 3 presents the
extended cCSP including the syntax, semantics and laws. Section 4 gives a case
study to demonstrate the extended cCSP. Section 5 concludes the paper and
reviews the related work.

2 Compensating CSP

The syntax of cCSP [6] is as follows, where P and PP represent a standard
process and a compensable process, respectively.

P ::= A | P ; P | P�P | P ‖ P | SKIP | THROW | YIELD | P B P | [PP ]

PP ::= P ÷ P | PP ; PP | PP�PP | PP ‖ PP | SKIPP | THROWW | YIELDD

Process A denotes the process that terminates successfully after perform-
ing event A. There are three operators on both the standard processes and the
compensable processes: sequential composition (;), deterministic choice (�) and
parallel composition (‖). SKIP is the process that immediately terminates suc-
cessfully. THROW indicates the occurrence of an exception, and the process will
be interrupted. YIELD can terminate successfully or yield to an interrupt from
environment to result in an interruption. P B Q executes process Q after an ex-
ception is thrown from P , otherwise it behaves like P . [PP ] is a transaction block



specifying a long-running transaction, in which a compensable process is defined
to specify the transaction.

A compensable process is constructed from compensation pairs of the form
P ÷Q, where the execution of process Q can compensate the effects after ex-
ecuting P . SKIPP immediately terminates successfully without the need to be
compensated. THROWW throws an exception and YIELDD either terminates
successfully or yields to an interrupt. We use P and PP to denote the set of
standard processes and the set of compensable processes, respectively.

2.1 Basic notations

Let Σ be the set of all the normal events that all processes can perform, called
alphabet of processes, and Σ∗ be the set of the finite traces over Σ. In cCSP,
three more events X, ! and ? not in Σ are used. Event X, called the success ter-
minal event, represents that the process terminates successfully. Event !, called
the exception terminal event, represents that the trace terminates with an occur-
rence of an exception. Event ?, called the yield terminal event, represents that
the execution terminates by yielding to an interrupt from environment. We use
Ω = {X, !, ?} to denote the set of the terminal events, and define ΣΩ = Σ ∪Ω. In
addition, we use s t̂ to represent the concatenation of traces s and t, and define

– Σ∗O = {s 〈̂ω〉 | s ∈ Σ∗ ∧ ω ∈ O}: for an O ⊆ Ω.

Let Σ∗O = Σ∗ ∪Σ∗O, and we call traces in Σ∗Ω terminating traces and traces in
Σ∗{X} successfully terminating traces.

2.2 Trace semantics

In contract to the CSP convention [13], the trace set of a standard process in
cCSP is not prefix closed. The trace semantic function T : P → P(Σ∗Ω) assigns

Atomic process For all A ∈ Σ, T (A) = {〈A,X〉}

Sequential composition

p ; q =

{
p1 q̂ p = p1 〈̂X〉
p p = p1 〈̂ω〉 ∧ ω 6= X

T (P ; Q) = {p ; q | p ∈ T (P ) ∧ q ∈ T (Q)}

Choice T (P�Q) = T (P ) ∪ T (Q)

Parallel composition
p1 〈̂ω1〉 ‖ q1 〈̂ω2〉 = {r 〈̂ω1&ω2〉 | r ∈ (p1 9 q1)} where ω1 X X X ! ! ?
T (P ‖ Q) = {r | r ∈ (p ‖ q) ∧ p ∈ T (P ) ∧ q ∈ T (Q)} ω1 X ? ! ! ? ?

ω1&ω2 X ? ! ! ! ?
Exception handling

p B q =

{
p1 q̂ p = p1 〈̂!〉
p p = p1 〈̂ω〉 ∧ ω 6=!

T (P B Q) = {p B q | p ∈ T (P ) ∧ q ∈ T (Q)}

Basic processes T (SKIP) = {〈X〉}, T (THROW) = {〈!〉}, T (YIELD) = {〈?〉, 〈X〉}

Fig. 1: The semantics of standard process



each process P a set T (P ) of terminating traces. Fig. 1 shows the definition
of T , where p and q are terminating traces, and p1 9 q1 represents the set of
interleavings of traces p1 and q1, whose formal definition can be refereed to
Section 2.3 in [13]. The processes in a parallel composition only synchronize
on the terminal events, performing other events in an interleaving manner. An
exception occurs in the composition if any sub-process throws an exception, and
the composition terminates successfully only if both sub-processes do.

A compensable process is defined by a set of pairs of traces, called the for-
ward trace and compensation trace, respectively. It is necessary to note that
the semantics of the sequential composition conforms to the semantics of the
classical Sagas [9], and compensation actions are executed in the reverse order
of their corresponding forward actions. For example, the forward behavior of
A1 ÷B1 ; A2 ÷B2 will perform A1 followed by A2, but the compensation behav-
ior will perform B1 after B2 in case of an exception occurred later. Fig. 2 defines
the trace semantic function Tc : PP → P(Σ∗Ω ×Σ∗Ω) of the compensable processes.

Compensation pair

p÷ q =

{
(p, q) p = p1 〈̂X〉
(p,X) p = p1 〈̂ω〉 ∧ ω 6= X

Tc(P ÷Q) = {p÷ q | p ∈ T (P ) ∧ q ∈ T (Q)} ∪ {(〈?〉, 〈X〉)}

Compensable sequential composition

(p, p′) ; (q, q′) =

{
(p1 q̂, q′ ; p′) p = p1 〈̂X〉
(p, p′) p = p1 〈̂ω〉 ∧ ω 6= X

Tc(PP ; QQ) = {(p, p′) ; (q, q′) | (p, p′) ∈ Tc(PP ) ∧ (q, q′) ∈ Tc(QQ)}

Compensable choice Tc(PP�QQ) = Tc(PP ) ∪ Tc(QQ)

Compensable parallel composition
(p, p′) ‖ (q, q′) = {(r, r′) | r ∈ (p ‖ q) ∧ r′ ∈ (q ‖ q′)}
Tc(PP ‖ QQ) = {rr | rr ∈ (pp ‖ qq) ∧ pp ∈ Tc(PP ) ∧ qq ∈ Tc(QQ)}

Compensable basic processes
SKIP = SKIP÷ SKIP, THROWW = THROW÷ SKIP, YIELDD = YIELD÷ SKIP

Fig. 2: The semantics of compensable process

To allow a compensable process PP to implicitly yield to an interrupt from the
environment at the beginning, in the definition of a compensation pair P ÷Q in
Fig. 2, the trace pair (〈?〉, 〈X〉) is included. On the other hand, YIELD can be
used in any place in a process if one would like to explicitly specify a yield to
an interrupt at that place. The semantics of a transaction block [PP ] is defined
below.

T ([PP ]) = {p p̂′ | (p 〈̂!〉, p′) ∈ Tc(PP )} ∪ {p 〈̂X〉 | (p 〈̂X〉, p′) ∈ Tc(PP )}

It says that after an exception occurs, the compensation trace will be executed
to recover from the failure. Otherwise, the compensation trace is not executed.

Discussion In paper [6] some laws are given for the trace semantics. However,
our careful investigation finds that some of them do not actually hold there.
The first is PP ; SKIPP = PP . For example, according to the semantic definition



in Fig. 2, the semantics of the process A÷B is {(〈A,X〉, 〈B,X〉), (〈?〉, 〈X〉)}, but
the semantics of A÷B ; SKIPP is {(〈A,X〉, 〈B,X〉), (〈?〉, 〈X〉), (〈A, ?〉, 〈B,X〉)}. The
law is not valid because of the extra trace pair (〈?〉, 〈X〉) added to a compensation
pair in the semantic definition.The laws [P ÷Q]=P and [P ÷Q;THROWW]=P ;Q

do not hold either when P does not terminate with the yield terminal event ?.
It is because the transaction block will remove the exception terminal event ! of
the forward trace. Intuitively, we expect these laws to hold. Indeed, we will see
later they become valid in the stable failures semantics in this paper.

3 Extended cCSP and its stable failures semantics

We extend cCSP with operators of internal and external choices, hiding, renam-
ing and generalized parallel composition for both the standard and compensable
processes. The syntax of the extended cCSP is defined as follows, where A ∈ Σ,
X ⊆ Σ, and R ⊆ Σ ×Σ.

P ::= A | P ; P | P u P | P�P | P ‖
X

P | SKIP | THROW | YIELD |
STOP | P \X | P JRK | P B P | [PP ]

PP ::= P ÷ P | PP ; PP | PP u PP | PP�PP | PP ‖
X

PP | SKIPP |
THROWW | YIELDD | PP \X | PP JRK

P uQ and P�Q represent internal and external choices, respectively. In the gen-
eralized parallel composition P ‖

X

Q, processes P and Q synchronize on the events

in X, as well as on the terminal events in Ω. P \X is the process with the events
in X being restricted from happening during the execution of P , and P JRK the
process obtained from P by renaming its events according to the renaming rela-
tion R.

We extend the compensable processes similarly by introducing the same op-
erators. The internal and external choices in the compensable processes are made
during the execution of the forward behaviors of the sub-processes. PP and QQ

in PP ‖
X

QQ synchronize on the events in X between both the forward behaviors

and the compensation behaviors of the two sub-processes.

3.1 Semantics of standard process

The semantics of a standard process is slightly different from the stable failures
semantics of a CSP process in [13], due to the two new terminal events ! and ?.
The stable failures model of a standard process P is a pair (T, F ), where T ⊆ Σ∗Ω

is the trace set and F ⊆ Σ∗Ω × P(ΣΩ) is the stable failure set. The domain of the
pairs of traces and failues should satisfy the following axioms.

T is non-empty and prefix closed (1)

(s,X) ∈ F ⇒ s ∈ T (2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y ) ∈ F (3)

(s,X) ∈ F ∧ ∀a ∈ Y • s 〈̂a〉 /∈ T ⇒ (s,X ∪ Y ) ∈ F (4)

s 〈̂ω〉 ∈ T ⇒ (s,ΣΩ \ {ω}) ∈ F, where ω ∈ Ω (5)

s 〈̂ω〉 ∈ T ⇒ (s 〈̂ω〉, X) ∈ F, where ω ∈ Ω ∧X ⊆ ΣΩ (6)



In what follows we define the trace set function TS : P → P(Σ∗Ω) and the stable
failure set function FS : P → P(Σ∗Ω × P(ΣΩ)) for the standard processes in the
extended cCSP.

Atomic and basic processes Process A can perform event A and terminate
successfully. The semantic functions are as follows.

TS(A) = {〈〉, 〈A〉, 〈A,X〉}
FS(A) = {(〈〉, X) | X ⊆ ΣΩ ∧A /∈ X} ∪ {(〈A〉, X) | X ⊆ ΣΩ ∧X /∈ X}∪

{(〈A,X〉, X) | X ⊆ ΣΩ}
The trace and failure sets of processes SKIP, THROW, YIELD and STOP are
defined below.

TS(SKIP) = {〈〉, 〈X〉} TS(THROW) = {〈〉, 〈!〉}
TS(YIELD) = {〈〉, 〈X〉, 〈?〉} TS(STOP) = {〈〉}
FS(SKIP) = {(〈〉, X) | X ⊆ ΣΩ ∧X /∈ X} ∪ {(〈X〉, X) | X ⊆ ΣΩ}

FS(THROW) = {(〈〉, X) | X ⊆ ΣΩ∧ ! /∈ X} ∪ {(〈!〉, X) | X ⊆ ΣΩ}

FS(YIELD) = {(〈〉, X) | X ⊆ ΣΩ∧ ? /∈ X} ∪ {(〈?〉, X) | X ⊆ ΣΩ}∪
{(〈〉, X) | X ⊆ ΣΩ ∧X /∈ X} ∪ {(〈X〉, X) | X ⊆ ΣΩ}

FS(STOP) = {(〈〉, X) | X ⊆ ΣΩ}

Internal choice P uQ can refuse an event set after performing a trace s if P
or Q can refuse the event set after s. The semantic of internal choice is same as
that in [13], i.e. the traces and failures of an internal choice are the unions of
the traces and failures of its sub-processes, respectively.

TS(P uQ) = TS(P ) ∪ TS(Q) FS(P uQ) = FS(P ) ∪ FS(Q)

It is straightforward to see that YIELD u SKIP = YIELD.

External choice External choice is different from internal choice on the empty
trace (〈〉), at which P�Q can refuse an event set only if both P and Q refuse it.
The failure set of external choice needs to take the terminal events ? and ! into
account to make axiom (1) on page 5 hold.

TS(P�Q) = TS(P ) ∪ TS(Q)

FS(P�Q) = {(〈〉, X) | (〈〉, X) ∈ FS(P ) ∩ FS(Q)}∪
{(s,X) | (s,X) ∈ FS(P ) ∪ FS(Q) ∧ s 6= 〈〉}∪
{(〈〉, X) | X ⊆ ΣΩ \ {ω} ∧ 〈ω〉 ∈ TS(P ) ∪ TS(Q) ∧ ω ∈ Ω}

The internal and external choices are indistinguishable on the basic processes.
SKIP�YIELD = YIELD SKIP�THROW = SKIP u THROW

YIELD�THROW = YIELD u THROW

Sequential composition The definition of sequential composition is different
from the classic CSP [13] due to the terminal events ! and ?.

TS(P ; Q) = {s | s ∈ TS(P ) ∩Σ∗{!,?}} ∪ {s t̂ | s 〈̂X〉 ∈ TS(P ) ∧ t ∈ TS(Q)}
FS(P ; Q) = {(s,X) | s ∈ Σ∗{!,?} ∧ (s,X ∪ {X}) ∈ FS(P )}∪

{(s t̂,X) | s 〈̂X〉 ∈ TS(P ) ∧ (t,X) ∈ FS(Q)}
However, the following two laws in [6] still hold here.

THROW ; P = THROW YIELD ; YIELD = YIELD

The first law ensures the exception-stop semantics that is adopted in many mod-
ern languages.



Parallel composition The parallel composition has to take care of the syn-
chronization of the terminal events. We use s ‖

X

t to represent the trace set of

the synchronization between two traces s and t on X. As well as on the terminal
events, s and t need to synchronize on the events in X. The definition of s ‖

X

t

can be referred to that in classical CSP [13] except the synchronization between
terminal events, which uses the definition in cCSP (cf. ω1&ω2 in Fig. 1).

To define the semantics of P ‖
X

Q, we first define its trace set, and then its

failure set. The trace set of P ‖
X

Q is as follows based on the cases defined above.

TS(P ‖
X

Q) = {u | ∃s ∈ TS(P ), t ∈ TS(Q) • u ∈ s ‖
X

t} (7)

P ‖
X

Q can refuse an event in X ∪Ω if either P or Q can. However, because both

P and Q can perform the events outside X ∪Ω independently, P ‖
X

Q refuses an

event outside X ∪Ω only if both P and Q refuse it. For a failure (s, Y ) in P and
(t, Z) in Q, the following set is their synchronized failure set under the classical
CSP definition.

(s, Y )⊕ (t, Z) = {(u, Y ∪ Z) | Y \ (X ∪Ω) = Z \ (X ∪Ω) ∧ u ∈ s ‖
X

t} (8)

However, this definition has to be modified for the extended cCSP, to take into
account the different cases of synchronization on the terminal events in Ω.
– If P or Q cannot perform a terminal event after executing s or t, then P ‖

X

Q

cannot terminate because P and Q need to synchronize on the terminal
events. We can use the definition (8) for this case. For example, if Σ is {A,B},
consider processes A and B ; THROW. We have the failure (〈〉, {B,X, !, ?})
of A and the failure (〈B〉, {B,X, ?}) of B ; THROW, and thus the failure
(〈B〉, {B,X, !, ?}) of A ‖

{}
(B ; THROW).

– If both P and Q can terminate, the synchronized terminal event should
be removed from the refusal set of the synchronized failure. For exam-
ple, if Σ is {A}, consider processes A and A;THROW. A has the failure
(〈A〉, {A, !, ?}), and A ; THROW has the failure (〈A〉, {A,X, ?}). We can see
that X is the terminal event A can perform, and ! is the terminal event
A ; THROW can perform. The synchronization of these two terminal events
is !, which should not be contained in the refusal set of the synchronized
failure in A ‖

{A}
(A;THROW), i.e. (〈A〉, {A,X, ?}). If we use the definition (8),

the synchronized failure set will contain (〈A〉, {A,X, ?, !}), which indicates
A ‖
{A}

(A;THROW) will deadlock after executing 〈A〉.

The synchronized failure set of two failures is defined as follows.

(s, Y )⊕ (t, Z) =



{(u, Y ∪ Z) | Y \ (X ∪Ω) = Z \ (X ∪Ω) ∧ u ∈ s ‖
X

t}

if (s, Y ∪Ω) ∈ FS(P ) ∨ (t, Z ∪Ω) ∈ FS(Q)

{(u, (Y ∪ Z) \Θ) | Y \ (X ∪Ω) = Z \ (X ∪Ω) ∧ u ∈ s ‖
X

t∧

Θ = rf(ω1, ω2)}
otherwise

(9)



where ω1 is the terminal event that P can engage in after performing s, i.e.
∀(s, Y1) ∈ FS(P ) • Y ⊆ Y1 ⇒ (ω1 ∈ Ω ∧ ω1 /∈ Y1), ω2 is the terminal event that Q

can engage in after performing t, and the function rf synchronizing the terminal
events is defined as follows, in which ω1&ω2 is defined in Fig. 1.

rf(ω1, ω2) =


{ω1&ω2} ω1 ∈ Ω ∧ ω2 ∈ Ω
{ω1} ω1 ∈ Ω ∧ ω2 = ε
{ω2} ω2 ∈ Ω ∧ ω1 = ε
{} ω1 = ε ∧ ω2 = ε

(10)

If P or Q can terminate with different terminal events after executing a trace,
ω1 or ω2 may not exist for some failures, e.g. (〈〉, {?}) in the failure set of the
process SKIP u THROW. If ω1 or ω2 does not exist, we use ε to represent it. Now
the failure set of P ‖

X

Q is defined below.

FS(P ‖
X

Q) = {(u,E) | (u,E) ∈ (s, Y )⊕ (t, Z)∧

∃s, t • (s, Y ) ∈ FS(P ) ∧ (t, Z) ∈ FS(Q)}
For example, the trace and failure sets of the process A ‖

{A}
(A;THROW ) in the

last example are {〈〉, 〈A〉, 〈A, !〉} and {(〈〉, X) | X ⊆ Ω} ∪ {(〈A〉, X) | X ⊆ {A,X, ?}}
∪{(〈A, !〉, X) | X ⊆ ΣΩ}, respectively.

The following laws for parallel composition reflect the termination policies in
a parallel composition.

YIELD ‖
X

SKIP = YIELD THROW ‖
X

SKIP = THROW

THROW ‖
X

YIELD = THROW THROW ‖
X

THROW = THROW

If P does not terminate with an yield terminal event, i.e. ∀s ∈ TS(P ) • s /∈ Σ∗{?},
the parallel composition ‖ without synchronization agrees with the composition
‖
{}

and it enjoys the following laws.

THROW ‖ P = P ; THROW

THROW ‖ (YIELD ; P ) = THROW u (P ; THROW)

The last law says that a process can be interrupted by an interrupt from the
environment, but the interruption does not have priority over other events.

Exception handling P B Q behaves similarly to P ;Q, but Q starts to execute
only after an exception is thrown in P .

TS(P B Q) = {s | s ∈ TS(P ) ∩Σ∗{X,?}} ∪ {s t̂ | s 〈̂!〉 ∈ TS(P ) ∧ t ∈ TS(Q)}
FS(P ; Q) = {(s,X) | s ∈ Σ∗{X,?} ∧ (s,X ∪ {!}) ∈ FS(P )}∪

{(s t̂,X) | s 〈̂!〉 ∈ TS(P ) ∧ (t,X) ∈ FS(Q)}
Laws for exception handling:

P B THROW = P P B (Q uR) = (P B Q) u (P B R)

THROW B P = P (P uQ) B R = (P B R) u (Q B R)

SKIP B P = SKIP P B (Q�R) = (P B Q)�(P B R)

YIELD B P = YIELD P B (Q B R) = (P B Q) B R
STOP B P = STOP

The terminal events do not affect hiding and renaming operators. Thus, their
definitions remain the same as those given in the classical CSP.



3.2 Semantics of compensable process

The semantics of a compensable process PP is to be defined as a triple (T, F,C),
where T and F are the trace and failure sets of the forward behavior, and
C ⊆ Σ∗Ω × P(Σ∗Ω)× P(Σ∗Ω × P(ΣΩ)) defines the compensation behavior. The rea-
son for the separation of forward and compensation behaviors is the compensa-
tion behavior needs to be recorded during the execution of the forward behavior.
An element in C is (s, T c, F c), which shows that the behavior defined by the trace
set T c and the failure set F c can compensate the effects caused by executing the
terminating trace s from the forward behavior. Therefore, both the forward be-
havior (T, F ), denoted by PP f , and the compensation behavior (T c, F c) of each
element in C, denoted by PP c, satisfy the axioms of the semantics of the stan-
dard processes given in Section 3.1. We can thus overload the semantic functions
TS and FS and the operators on standard processes and apply them to PP f and
PP c. For examples, FS(PP f ) = F and FS(PP c) = F c, and later when we de-
fine the semantics of PP ; QQ, we will use the notations TS(PP f ; QQf ) and
FS(PP f ; QQf ) as if PP f and QQf are standard processes. In addition, (T, F,C)

is required to satisfy the following axiom.

∀(s, T c, F c) ∈ C • s ∈ Σ∗Ω ∩ {s | (s,X) ∈ F} (11)

It means the trace s of each element in C is a stable terminating trace in the
forward behavior.

We define the triple (T, F,C) for a PP by three semantic functions: the
forward trace set function T c : PP → P(Σ∗Ω), the forward failure set function
Fc : PP → P(Σ∗Ω × P(ΣΩ)), and the compensation behavior set function C : PP→
P(Σ∗Ω × P(Σ∗Ω)× P(Σ∗Ω × P(ΣΩ))).

Compensation pair If the forward behavior terminates successfully, the be-
havior of Q is recorded such that it can be executed to compensate the effect of
P when triggered by an exception later. Otherwise, Q will not be executed. The
semantics of a compensation pair P ÷Q attaches the successfully terminating
trace in the forward behavior, i.e. s ∈ T ∩Σ∗{X}, with the trace and failure sets
of Q, and the others terminating traces (the traces in Σ∗{!,?}) with those of SKIP.

T c(P ÷Q) = TS(P ) Fc(P ÷Q) = FS(P )

C(P ÷Q) = {(s, T c, F c) | ∃s ∈ T ∩Σ∗Ω•
(s = t 〈̂X〉 ∧ T c = TS(Q) ∧ F c = FS(Q))∨
(s ∈ Σ∗{!,?} ∧ T c = TS(SKIP) ∧ F c = FS(SKIP))}

The compensation behavior set of the compensable processes STOP÷ P is empty.
In the following, we use STOPP to denote the compensable processes whose for-
ward behaviors are STOP. The following two laws hold for compensation pairs.

Q1 = Q2 ⇒ P ÷Q1 = P ÷Q2 P1 = P2 ⇒ P1 ÷Q = P2 ÷Q
The definitions of the basic compensable processes are the same as those in
Section 2.2.

Transaction block The semantics of a transaction block [PP ] can be defined
in terms of the semantics of the compensable process PP in the block.



TS([PP ]) = (T c(PP ) \Σ∗{!})∪
{s1 | ∃(s, T c, Dc) ∈ C(PP ) • s = t 〈̂!〉 ∧ s2 ∈ T c ∧ s1 = t ŝ2}

FS([PP ]) = {(s,X) | s ∈ Σ∗ ∧ (s,X ∪ {!}) ∈ Fc(PP )}∪
{(s1, X1) | ∃(s, T c, F c) ∈ C(PP ) • (s ∈ Σ∗{X,?} ∧ s1 = s ∧X1 ⊆ ΣΩ)∨

(s = t 〈̂!〉 ∧ (s2, X2) ∈ F c ∧ s1 = t ŝ2 ∧X1 = X2)}
The compensation behavior of PP will be executed to recover from a failure
occurred in the forward behavior. The trace set of [PP ] contains the traces
of the forward behavior of PP and the traces of compensation behavior. The
failure set FS([PP ]) contains the failures of the forward behavior that do not
terminate with an exception terminal event. It also includes the failures that
extend the exception terminating traces of the forward behavior with the failures
of the compensation behavior. Different from the original cCSP, we keep the yield
interruption behavior in the semantics of transaction block. The following laws
hold.

[SKIP÷ P ] = SKIP [STOPP] = STOP

[THROW÷ P ] = SKIP [P ÷Q] = P B SKIP

[YIELD÷ P ] = YIELD PP1 = PP2 ⇒ [PP1] = [PP2]

The law [P ÷Q] = P B SKIP fixes the problem of the original cCSP pointed out
in Section 2.2, i.e. [P ÷Q] = P under the assumption that P does not terminate
with the yield terminal event.

Sequential composition In a sequential composition PP ;QQ, the forward
behavior PPf and the forward behavior QQf are composed first, and the com-
pensation behavior PPc and the compensation behavior QQc are composed in
the reverse direction, just like the model of Sagas [9].

T c(PP ; QQ) = TS(PP f ; QQf ) Fc(PP ; QQ) = FS(PP f ; QQf )

C(PP ; QQ) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ), (s2, QQc) ∈ C(QQ)•
(s1 = t 〈̂X〉 ∧ s = t ŝ2 ∧ T c = TS(QQc;PP c) ∧ F c = FS(QQc;PP c))∨
(s1 6= t 〈̂X〉 ∧ s = s1 ∧ T c = TS(PP c) ∧ F c = FS(PP c)) }

For example, the compensation behavior of A1 ÷B1;A2 ÷B2 is {(〈A1, A2,X〉,
TS(B2;B1),FS(B2;B1))}, and that of A1 ÷B1;YIELDD contains two elements:
(〈A1,X〉, TS(B1),FS(B1)) and (〈A1, ?〉, TS(B1),FS(B1)).

Sequential composition satisfies the following laws. In the last two laws, we
assume the standard processes P , P1 and P2 do not terminate with an exception
terminal event.

SKIPP ; PP = PP YIELDD ; YIELDD = YIELDD

PP ; SKIPP = PP [P ÷Q;THROWW] = P ;Q

THROWW ; PP = THROWW [P1 ÷Q1;P2 ÷Q2;THROWW] = P1;P2;Q2;Q1

The second law fixes the right unit problem of the original trace model pointed
out in Section 2.2. The fifth law fixes another problem pointed out there and
ensures that [P ÷Q;THROWW] = P ;Q provided that P does not terminate with
?. The last two laws are also valid in the case that the standard processes ter-
minate with ?, and they relax the assumption in the original cCSP that requires
all the standard processes terminate successfully.



Internal choice The semantics of internal choice PP uQQ is as follows.
T c(PP uQQ) = TS(PP f uQQf ) Fc(PP uQQ) = FS(PP f uQQf )

C(PP uQQ) = C(PP ) ∪ C(QQ)

For example, the compensation behavior set of A÷B1 uA÷B2 is {(〈A,X〉,TS(B1)

,FS(B1)), (〈A,X〉, TS(B2),FS(B2))}. We have the following laws hold for internal
choice.

PP u PP = PP PP u (QQ uRR) = (PP uQQ) uRR
PP uQQ = QQ u PP PP ; (QQ uRR) = (PP ; QQ) u (PP ; RR)

[PP uQQ] = [PP ] u [QQ] (QQ uRR) ; PP = (QQ ; PP ) u (RR ; PP )

External choice As in the case of the internal choice, the external choice is
made during the forward behavior, but it is the environment to make the choice.

T c(PP�QQ) = TS(PP f�QQf ) Fc(PP�QQ) = FS(PP f�QQf )

C(PP�QQ) = C(PP ) ∪ C(QQ)

For example, C(STOPP�A÷B) equals to C(STOPP uA÷B), and they are equal
to {(〈A,X〉, TS(B),FS(B))}. But their forward failures sets are different:
Fc(STOPP�A÷B) is FS(A), and Fc(STOPP uA÷B) is FS(A) ∪ FS(STOP). The
following laws hold for external choice.

PP�PP = PP [PP�QQ] = [PP ]�[QQ]

PP�QQ = QQ�PP PP�(QQ�RR) = (PP�QQ)�RR
STOPP�PP = PP PP�(QQ uRR) = (PP�QQ) u (PP�RR)

Notice that external choice distributes over internal choice. From the laws for
internal and external choices, we can see that a transaction block process of a
choice between compensable processes equals to a choice between the transaction
block processes of the compensable processes.

Parallel composition In a generalized parallel composition PP ‖
X

QQ, the for-

ward behaviors of PP and QQ synchronize on X, so do their compensation
behaviors:

T c(PP ‖
X

QQ) = TS(PP f ‖
X

QQf ) Fc(PP ‖
X

QQ) = FS(PP f ‖
X

QQf )

C(PP ‖
X

QQ) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ), (s2, QQc) ∈ C(QQ)•

s ∈ (s1 ‖
X

s2) ∧ T c = TS(PP c ‖
X

QQc) ∧ F c = FS(PP c ‖
X

QQc)}

Here are two examples. First, [(A÷B1 ‖ A÷B2
{A}

);THROWW] = A;B1 ‖ B2 shows

the synchronization between the forward behaviors, and then A1 ÷B1 ‖ A2 ÷B2
{A1,A2}

= STOPP demonstrates the case of a deadlock in the forward behavior. The fol-
lowing laws for parallel composition hold.

PP ‖
X

QQ = QQ ‖
X

PP

PP ‖
X

(QQ ‖
X

RR) = (PP ‖
X

QQ) ‖
X

RR

PP ‖
X

(QQ uRR) = (PP ‖
X

QQ) u (PP ‖
X

RR)

Furthermore, parallel composition and sequential composition are related by the
following laws, where all the standard processes are assumed to terminate suc-
cessfully.



[(P1 ÷Q1 ‖
X

P2 ÷Q2) ; THROWW] = (P1 ‖
X

P2); (Q1 ‖
X

Q2)

[(P1 ÷Q1 ; P2 ÷Q2) ‖ THROWW] = P1 ; P2 ; Q2 ; Q1

[(P1 ÷Q1 ; YIELDD ; P2 ÷Q2) ‖ THROWW] =

(P1 ; Q1) u (P1 ; P2 ; Q2 ; Q1)

[(YIELDD ; P1 ÷Q1 ; YIELDD ; P2 ÷Q2) ‖ THROWW] =

SKIP u (P1 ; Q1) u (P1 ; P2 ; Q2 ; Q1)

[P1 ÷Q1 ‖ P2 ÷Q2 ‖ THROWW] = (P1 ‖ P2) ; (Q1 ‖ Q2)

[(YIELDD ; P1 ÷Q1) ‖ (YIELDD ; P2 ÷Q2) ‖ THROWW] =

SKIP u (P1 ; Q1) u (P2 ; Q2) u ((P1 ‖ P2) ; (Q1 ‖ Q2))

The 3rd and 4th laws say that a compensable process in a parallel composition
can be interrupted by YIELDD, meaning that the process yields to an inter-
rupt from the environment. A compensable process will not be interrupted if no
YIELDD is used (the 2nd and 5th laws). This is one of the differences from the
original cCSP, where a compensable process can implicitly yield to an interrupt
from the environment (cf. Section 2.2). We believe that it is more reasonable to
let the designer to specify where a compensable process can yield to an inter-
ruption from the environment.

Hiding and renaming Hiding and renaming are defined by the standard hid-
ing and renaming on the forward behavior and the compensation behavior.

T c(PP \X) = TS(PP f \X) Fc(PP \X) = FS(PP f \X)

C(PP \X) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ) • s = s1 \X ∧ T c = TS(PP c \X)∧
F c = FS(PP c \X)}

The renaming semantics is as follows.

T c(PP JRK) = TS(PP f JRK) Fc(PP JRK) = FS(PP f JRK)
C(PP JRK) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP ) • s1 R s ∧ T c = TS(PP cJRK)∧

F c = FS(PP cJRK)}
Hiding and renaming satisfy the following laws. In particular, both are distribu-
tive among internal choice, but the hiding operator is not distributive among
external choice, e.g. ((A;A1)÷B�(A;A2)÷B) \ {A} is equal to A1 ÷B uA2 ÷B.

(PP \X) \ Y = (PP \ Y ) \X (PP uQQ)JRK = PP JRK uQQJRK
(PP \X) \ Y = PP \ (X ∪ Y ) (PP�QQ)JRK = PP JRK�QQJRK

(PP uQQ) \X = (PP \X) u (QQ \X) (PP JRK)JR′K = PP JR ◦R′K
PP \ {} = PP

4 Case study

This section will give a case study to demonstrate the extended cCSP. It is a
business process of an online shop. The system is composed by four parties: a
shop, a supplier, a shipper and a bank. The business behavior of each party is
compensable, and will be specified by a compensable process.

After receiving a client request (ReceiveRequest), the shop contacts its sup-
plier to ask (SupplierRequest) whether there exist enough goods. If the stor-
age is not enough (NotEnough), the whole process will result in an exception.



Otherwise, the shop will make an order (Order) of the goods. The shop then
contacts the bank for authorizing the credit card of client (CreditCheck). If
the credit card is valid, the shop processes payment for the client (Payment)
and informs the supplier (NotifySupplier) that the payment is made. For the
sake of efficiency, after receiving the notification, the supplier contacts the bank
for checking the payment (PaymentCheck) and requests the shipper to ship the
goods (ShipRequest) to client concurrently. If the credit card authorization or
payment checking fails (NotValid, NotPValid), the whole process will result in
an exception. After receiving the shipping request, the shipper schedules a ship-
ping plan (Schedule), delivers the goods (Deliver) to the client of the shop,
and notifies the supplier (ShipResult) about the shipping result. The alphabet
Σ of the system is given as follows.

Σ = {ReceiveRequest, ApologyMail, SupplierRequest, Enough, NotEnough,

Order, UndoOrder, CreditCheck, Valid, NotValid, Payment, Refund,

NotifySupplier, PaymentCheck, PValid, NotPValid, ShipRequest,

NotifyShopShip, ShipResult, Schedule, Deliver, ShipBack}

The processes Shop, Supplier, Shipper and Bank are specified as follows.

Shop = ReceiveRequest÷ ApologyMail ;

(SupplierRequest ; (Enough � (NotEnough ; THROW)))÷ SKIP ;

Order÷ SKIP ; (CreditCheck ; (Valid � (NotValid ; THROW)))÷ SKIP ;

Payment÷ Refund ; NotifySupplier÷ SKIP ; NotifyShopShip÷ SKIP

Supplier = (SupplierRequest ; (Enough u (NotEnough ; THROW)))÷ SKIP ;

Order÷ UndoOrder ; NotifySupplier÷ SKIP ;

((PaymentCheck ; (PValid � (NotPValid ; THROW)))÷ SKIP ‖
(ShipRequest÷ SKIP ; NotifyShopShip÷ SKIP)) ; ShipResult÷ SKIP

Shipper = ShipRequst÷ SKIP ; YIELDD ; Schedule÷ SKIP ;

YIELDD ; Deliver÷ ShipBack ; ShipResult÷ SKIP

Bank = ((CreditCheck ; (Valid u (NotValid; THROW)))÷ SKIP ; Payment÷ Refund) ‖
(PaymentCheck ; (PValid u (NotPValid ; THROW)))÷ SKIP

The global process (DetailGlobalProcess) is a transaction block of the synchro-
nized parallel composition of the four compensable processes. If the compensable
parallel process in the global process results in an exception, a recovery should
be taken, e.g. the credit card will be refunded and the shipper will ship back the
delivered goods. We can get a more abstract process (AbstractGlobalProcess)
by hiding some synchronized events.

DetailGlobalProcess = [ Shop ‖
X

Supplier ‖
X

Shipper ‖
X

Bank ]

X = {SupplierRequest, Enough, NotEnough, Order, CreditCheck, Valid,

NotValid, Payment, Refund, NotifySupplier, PaymentCheck, PValid,

NotPValid, ShipRequest, NotifyShopShip, ShipResult}

AbstractGlobalProcess = [ DetailGloablProcess \X1 ]



X1 = (X ∪ {Schedule}) \ {Payment, Refund, Order}

Based on the preceding semantic definitions and laws, the abstract process can
be reduced to the following process.

[ ReceiveRequest÷ ApologyMail ; SKIPP u THROWW ; Order÷ UndoOrder ;

SKIPP u THROWW ; Payment÷ Refund ;

(SKIPP u THROWW) ‖ (YIELDD ; Deliver÷ ShipBack) ]

It provides an abstract choreography view of the system. According to the se-
mantics, we can get the following results. The proofs of results are omitted due
to the space limit and are reported in [8].

– The global process will not deadlock. If we add the event ReceiveRequest to
the synchronization set X, a deadlock will happen at the beginning. The rea-
son is: besides Shop, no other process can execute the event ReceiveRequest
at the beginning.

– If an exception occurs, ApologyMail is the last event performed in the re-
covery. From the abstract process, we can see that there are four different
cases of recovery: 1) if the storage is not enough, then only ApologyMail

will be preformed; 2) if the credit card authorization fails, then the trace
〈UndoOrder, ApologyMail〉 will be performed; 3) if the shipper yields to
the exception from the supplier, and the goods delivery will be canceled,
then 〈Refund, UndoOrder, ApologyMail〉 will be performed; 4) if the pay-
ment checking fails after the goods delivery, then the execution sequence of
the recovery is 〈ShipBack, Refund, UndoOrder, ApologyMail〉.

5 Conclusions and future work

LRT are important in SOC. It is important that LRT can be formally specified
and verified with tool support. The extension of CSP into cCSP is one of the
useful attempts in this direction. However, cCSP does not provide the facilities
for defining internal choice, hiding and synchronization. This together with the
only available trace semantics (and the operational semantics) severely limits the
expressive power of the language that it does not specify and reason about non-
determinism and dead-lock. In this paper, we have extended cCSP with internal
choice, hiding and synchronization in order to be able to specify behavior of LRT
at different levels of abstractions. Accordingly, we have provided a stable failures
semantics for the extended notation for reasoning about non-determinism and
deadlock.

Along with the semantic definitions of the operators, we present the impor-
tant algebraic laws of the operators. As a by-product of the investigation of the
algebraic laws, we have discovered some laws which were claimed to hold but ac-
tually do not hold for the trace semantics of cCSP (cf. Section 2.2). In addition,
we have proved those laws do hold for our stable failures semantics.

The separation of the forward behavior and compensation behavior in the
semantic definition of the compensable processes allows us to understand and



analysis the two kinds of computations individually. We can refine and reason
about the two parts separately, but the price we are paying is it makes the fixed
point theory not clear when recursion is introduced.

From the perspective of theory, future work includes the study of recursion
and divergence of LRT, and thus to develop of a full theory of failure-divergence
of LRT and their refinements.
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