
An Extended cCSP with Stable Failures Semantics

Zhenbang Chen1 Zhiming Liu2

National Laboratory for Parallel and Distributed Processing
Changsha, China

International Institute for Software Technology, United Nations University
Macau, China

September 1, 2010

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Background - Long Running Transaction (LRT)

LRT is from the transaction processing in database area

Some database operations last for a long time, but also need
to ensure to be a transaction
Use compensation to handle failures

LRT models attract attention recently because of the progress
in Service-Oriented Computing (SOC)

Coordination between wide-spread communicating peers
Atomic transaction is too strict for this scenario
LRT can tackle this problem by using compensation

Some modeling and programming languages for LRT

Industrial: WS-BPEL, XLANG, BPMN
Formal: SAGAS, StAC, cCSP

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

A theoretical foundation for LRT modeling

What we need

Denotational model
Ensure the laws of LRT
Compositional reasoning

Problems
Most formal languages for LRT only have an operational
semantics

SAGAS, StAC

cCSP is an exception

A trace semantics is provided

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Modeling LRT with cCSP

cCSP is a variant of CSP

Standard process
Compensable process

Limitation

Only an operational semantics beside the trace semantics
The operators are limited

No parallel composition with synchronization
No non-deterministic choice

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Recovery in cCSP

Same as the backward recovery of SAGAS

F

B
B1 B2 Exception

occurring

C1 C2

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Syntax of cCSP

P ::= A PP ::= P ÷ P
| P ; P | PP ; PP

| P�P | PP�PP
| P ‖ P | PP ‖ PP
| SKIP | SKIPP

| THROW | THROWW

| Y IELD | Y IELDD

| P B P
| [PP]

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Trace Semantics of Standard Process

Terminating trace semantics

Terminal event set Ω = {X, !, ?}
The semantic model is a set of terminating traces

Atomic Action For all A ∈ Σ, T (A) = {〈A,X〉}

Basic Process T (Y IELD) = {〈?〉, 〈X〉}

Parallel Composition
p 〈̂ω1〉 ‖ q 〈̂ω2〉 = {r 〈̂ω1&ω2〉 | r ∈ (p 9 q)}
T (P ‖ Q) = {r | r ∈ (p ‖ q) ∧ p ∈ T (P) ∧ q ∈ T (Q)}

where
ω1 X X X ! ! ?
ω2 X ? ! ! ? ?

ω1&ω2 X ? ! ! ! ?

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Trace Semantics of Compensable Process

Terminating trace semantics

The semantic model is a set of terminating trace pairs

Compensation Pair

p÷ q =

{
(p, q) p = p1 〈̂X〉
(p,X) p = p1 〈̂ω〉 ∧ ω 6= X

Tc(P ÷Q) = {p÷ q | p ∈ T (P) ∧ q ∈ T (Q)} ∪ {(〈?〉, 〈X〉)}

Sequential Composition

(p, p′) ; (q, q′) =

{
(p1 q̂, q′ ; p′) p = p1 〈̂X〉
(p, p′) p = p1 〈̂ω〉 ∧ ω 6= X

Tc(PP ; QQ) = {(p, p′) ; (q, q′) | (p, p′) ∈ Tc(PP) ∧ (q, q′) ∈ Tc(QQ)}

Transaction Block
T ([PP]) = {p p̂′ | (p 〈̂!〉, p′) ∈ Tc(PP)} ∪ {p 〈̂X〉 | (p 〈̂X〉, p′) ∈ Tc(PP)}

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Problems and Discussion (1)

The following laws do not hold:

PP ; SKIPP = PP

Tc(A÷B ; SKIPP) = {(〈A,X〉, 〈B,X〉), (〈A, ?〉, 〈B,X〉), (〈?〉, 〈X〉)}
Tc(A÷B) = {(〈A,X〉, 〈B,X〉), (〈?〉, 〈X〉)}

[P ÷ P ′] = P if P is non-yielding

T ([THROW ÷A]) = {〈X〉} = T (SKIP) 6= T (THROW)

[P ÷ P ′ ; THROWW] = P ; P ′ if P is non-yielding

The reason is the same as that of the above one.

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Problems and Discussion (2)

Some useful operators are not provided

Non-deterministic choice
Parallel composition with synchronization
Hiding
Renaming

These operators are important

Deadlock behavior
Modeling systems at different levels

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Our Contribution

We extend and modify cCSP as follows

Distinguish choice operators

Internal (u) and External (�) Choice

Introduce new operators

Synchronized parallel composition, Hiding, Renaming

A stable failures semantics for both standard and compensable
processes

Deadlock, distinguish choices
No implicit interruption

Fix the problems pointed out before

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Syntax of the Extended cCSP

P ::= A PP ::= P ÷ P
| P ; P | PP ; PP

| P u P | PP u PP
| P�P | PP�PP
| P ‖

X

P | PP ‖
X

PP

| SKIP | SKIPP

| THROW | THROWW

| Y IELD | Y IELDD

| STOP | PP \X
| P \X | PP JRK
| P JRK
| P B P
| [PP]

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Basic Idea of Stable Failures Semantics

We use traces and the events that a process refuses to perform to
give the semantics of the process

For the process A ; B

At the beginning, the process refuses to execute any event
except A
After performing A, the process refuses to execute any event
except B
After executing the trace 〈A,B〉, the process needs to
terminate, so it will refuse any event except X
Finally, the process terminates, it refuses to perform any event

If a deadlock occurs, processes will refuse to perform any
event

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantic Domain of the Standard Process

Stable failures semantics (T, F)

Semantic functions

Trace set function: TS(P) : P → P(Σ∗Ω)
Failure set function: FS(P) : P → P(Σ∗Ω × P(ΣΩ))

Axioms of the semantic domain:

T is non-empty and prefix closed (1)

(s,X) ∈ F ⇒ s ∈ T (2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s, Y) ∈ F (3)

(s,X) ∈ F ∧ ∀a ∈ Y • s 〈̂a〉 /∈ T ⇒ (s,X ∪ Y) ∈ F (4)

s 〈̂ω〉 ∈ T ⇒ (s,ΣΩ \ {ω}) ∈ F, where ω ∈ Ω (5)

s 〈̂ω〉 ∈ T ⇒ (s 〈̂ω〉, X) ∈ F, where ω ∈ Ω ∧X ⊆ ΣΩ (6)

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (1)

Trace synchronization, where s1, t1 ∈ Σ∗ and ω, ω1, ω2 ∈ Ω

s1 ‖
X

t1 〈̂ω〉 = {} s1 〈̂ω1〉 ‖
X

t1 〈̂ω2〉 = {u 〈̂ω1&ω2〉 | u ∈ s1 ‖
X

t1}

Semantic definition

TS(P ‖
X

Q) = {u | ∃s ∈ TS(P), t ∈ TS(Q) • u ∈ (s ‖
X

t)}

FS(P ‖
X

Q) = {(u,E) | (u,E) ∈ (s, Y)⊕ (t, Z)∧

∃s, t • (s, Y) ∈ FS(P) ∧ (t, Z) ∈ FS(Q)}

Laws need to hold:

THROW ‖
X

SKIP = Y IELD THROW ‖
X

Y IELD = THROW

Y IELD ‖
X

SKIP = THROW

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (2)

Consider the parallel execution of P and Q

P ‖
X

Q can refuse an event in X ∪ Ω if either P or Q can

P ‖
X

Q can refuse an event outside X ∪ Ω only if both P and Q

can refuse it

However, we need to take into account the synchronization
between terminal events

P ‖
X

Q cannot terminate if either P or Q cannot terminate

P ‖
X

Q can terminate if both P and Q can terminate, and the

synchronized terminal event should be removed from the
refusal set of the synchronized failure

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (3)

First example, Σ = {A,B} and A ‖
{}

(B ; THROW)

A has the failure (〈〉, {B,X, !, ?})
B ; THROW has the failure (〈B〉, {B,X, ?})
The synchronized failure set is {(〈B〉, {B,X, !, ?})}

Second example, Σ = {A} and A ‖
{A}

(A ; THROW)

A has the failure (〈A〉, {A, !, ?})
A ; THROW has the failure (〈A〉, {A,X, ?})
Both processes can terminate after executing 〈A〉, and the
synchronized terminal event is !

The synchronized failure set is {(〈A〉, {A,X, ?})}

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (3)

First example, Σ = {A,B} and A ‖
{}

(B ; THROW)

A has the failure (〈〉, {B,X, !, ?})
B ; THROW has the failure (〈B〉, {B,X, ?})
The synchronized failure set is {(〈B〉, {B,X, !, ?})}

Second example, Σ = {A} and A ‖
{A}

(A ; THROW)

A has the failure (〈A〉, {A, !, ?})
A ; THROW has the failure (〈A〉, {A,X, ?})
Both processes can terminate after executing 〈A〉, and the
synchronized terminal event is !

The synchronized failure set is {(〈A〉, {A,X, ?})}

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (4)

Failure synchronization, where (s, Y) ∈ FS(P) and (t, Z) ∈ FS(Q)

(s, Y)⊕ (t, Z) =



{(u, Y ∪ Z) | Y \ (X ∪ Ω) = Z \ (X ∪ Ω) ∧ u ∈ s ‖
X

t}

if (s, Y ∪ Ω) ∈ FS(P) ∨ (t, Z ∪ Ω) ∈ FS(Q)

{(u, (Y ∪ Z) \Θ) | Y \ (X ∪ Ω) = Z \ (X ∪ Ω)∧
u ∈ s ‖

X

t ∧Θ = rf(ω1, ω2)}

otherwise

ω1 is the terminal event P can perform to terminate
∀(s, Y1) ∈ FS(P) • Y ⊆ Y1 ⇒ (ω1 ∈ Ω ∧ ω1 /∈ Y1)

ω2 is the terminal event Q can perform to terminate
∀(t, Z1) ∈ FS(Q) • Z ⊆ Z1 ⇒ (ω2 ∈ Ω ∧ ω2 /∈ Z1)

rf is the function for synchronizing ω1 and ω2

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Parallel Composition - (5)

In some cases, ω1 or ω2 may not exist, such as (〈〉, {?}) of the
process SKIP u THROW .

If ω1 or ω2 does not exist, we use ε to represent it.

rf(ω1, ω2) =


{ω1&ω2} ω1 ∈ Ω ∧ ω2 ∈ Ω
{ω1} ω1 ∈ Ω ∧ ω2 = ε
{ω2} ω1 = ε ∧ ω2 ∈ Ω
{} ω1 = ε ∧ ω2 = ε

More laws for parallel composition

THROW ‖ P = P ; THROW

THROW ‖ (Y IELD ; P) = THROW u (P ; THROW)

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantic Model of Compensable Process

The behavior of a compensable process

Forward behavior and compensation behavior

The compensation behavior needs to be recorded during the
execution of the forward behavior

Maintain the relation between forward behavior and its
compensation
Record the compensation behavior in right sequence

The semantic model of a compensable process PP is a triple
(T, F,C)

T is the trace set of the forward behavior of PP
F is the failure set of the forward behavior of PP
C is the compensation behavior set, and each element is a
(s, T c, F c)

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantic Functions

The semantics of PP can be calculated by the sematnics
functions as (T c(PP),Fc(PP), C(PP))

The forward trace set function
T c(PP) : PP → P(Σ∗Ω),
The forward failure set function
Fc(PP) : PP → P(Σ∗Ω × P(ΣΩ))
The compensation behavior set function
C(PP) : PP → P(Σ∗Ω × P(Σ∗Ω)× P(Σ∗Ω × P(ΣΩ)))

For a compensable process PP whose semantics is (T, F,C),
we use PP f to denote (T, F)

For an element (s, T c, F c) in C, we use PP c to denote (T c, F c)

We will use the operators of standard processes for PP f and
PP c as if there are standard processes.

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Compensation Pair

If P terminates successfully, process Q will be recorded for
compensating the effects caused by P to recover from the
failure that may happen in the future

Semantic definition

T c(P ÷Q) = TS(P)

Fc(P ÷Q) = FS(P)

C(P ÷Q) = {(s, F c, Dc) | ∃s ∈ (TS(P) ∩ Σ∗Ω)•
(s = t 〈̂X〉 ∧ T c = TS(Q) ∧ F c = FS(Q))∨
(s ∈ Σ∗{!,?} ∧ T

c = TS(SKIP) ∧ F c = FS(SKIP))}

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Transaction Block

If an exception occurs in the forward behavior of PP , the
compensation behavior will executed.

TS([PP]) = (T c(PP) ∩ Σ∗{X,?})∪
{s1 | ∃(s, T c, F c) ∈ C(PP) • s = t 〈̂!〉 ∧ s2 ∈ T c ∧ s1 = t ŝ2}

FS([PP]) = {(s,X) | s ∈ Σ∗ ∧ (s,X ∪ {!}) ∈ Fc(PP)}∪
{(s1, X1) | ∃(s, T c, F c) ∈ C(PP)•

(s ∈ Σ∗{X,?} ∧ s1 = s ∧X1 ⊆ ΣΩ)∨
(s = t 〈̂!〉 ∧ (s2, X2) ∈ F c ∧ s1 = t ŝ2 ∧X1 = X2)}

Law

[P ÷Q] = P B SKIP

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Semantics of Sequential Composition

F

B
B1 B2 Exception

occurring

C1 C2

The forward parts will be composed sequentially

TS(PP ; QQ) = TS(PP f ; QQf) Fc(PP ; QQ) = FS(PP f ; QQf)

The compensation parts will be composed in the reversed order

C(PP ; QQ) = {(s, T c, F c) | ∃(s1, PP c) ∈ C(PP), (s2, QQc) ∈ C(QQ)•
(s1 = t 〈̂X〉 ∧ s = t ŝ2 ∧ T c = TS(QQc ; PP c) ∧ F c = FS(QQc ; PP c))∨
(s1 6= t 〈̂X〉 ∧ s = s1 ∧ T c = TS(PP c) ∧ F c = FS(PP c))}

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Some Laws of Compensable Process

Sequential Composition:

PP ; SKIPP = PP

If Pi and Qi (i ∈ {1, 2}) will not terminate with an exception
[P1 ÷Q1 ; THROWW] = P1 ; Q1

[P1 ÷Q1 ; P2 ÷Q2 ; THROWW] = P1 ; P2 ; Q2 ; Q1

Parallel Composition:

If Pi and Qi (i ∈ {1, 2}) will terminate successfully
[(P1 ÷Q1 ‖

X

P2 ÷Q2);THROWW] = (P1 ‖
X

P2) ; (Q1 ‖
X

Q2)

[(P1 ÷Q1 ; P2 ÷Q2) ‖ THROWW] = P1 ; P2 ; Q2 ; Q1

[(Y IELDD ; P1 ÷Q1 ; Y IELDD ; P2 ÷Q2) ‖ THROWW] =

SKIP u (P1 ;Q1) u (P1 ; P2 ; Q2 ; Q1)

[(Y IELDD ; P1 ÷Q1) ‖ (Y IELDD ; P2 ÷Q2) ‖ THROWW] =

SKIP u (P1 ; Q1) u (P2 ; Q2) u (P1 ‖ P2) ; (Q1 ‖ Q2)

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Comparision with Original cCSP

New and often used operators are introduced both in standard
and compensable processes

The semantic mode incorporates refusal information

Unlike cCSP, we do not allow implicit interruption in
compensable process

The designer of a LRT should specify the place where the LRT
can be interrupted

Yield interrupting behavior is kept in the semantics of the
transaction block

Relax the assumptions of some laws

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Outline

Background and Motivation

Introduction to cCSP

Extended cCSP and Stable Failures Semantics

Standard Process
Compensable Process

Conclusion

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Conclusion

We extend the cCSP

Distinguish the internal and external choices
Introduce new operators: synchronized parallel composition,
hiding, and renaming

A new semantics model for the extended cCSP

New laws for the extended cCSP

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

Future Work

Stable failures semantics for recursive compensable process

Failure divergence semantics for extended cCSP

Refinement theory for LRT

Axiomatic system and theorem proving tool for extended cCSP

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

END

Thank you very much!

Questions?

Zhenbang Chen, Zhiming Liu An Extended cCSP with Stable Failures Semantics

