
Interface Theory based
Formalization and
Verification of Orchestration
in BPEL4WS

Zhenbang Chen, Ji Wang*, Wei Dong, Zhichang Qi
National Laboratory for Parallel and Distributed Processing, Changsha, China
E-mail: z.b.chen@mail.edu.cn
E-mail: jiwang@mail.edu.cn
E-mail: dong.wei@mail.edu.cn
E-mail: qzc@nudt.edu.cn
*Corresponding author

Abstract: BPEL4WS (BPEL) is a Web service composition language for service-
oriented computing. Service orchestration can be specified by executable processes in
BPEL. However, it lacks of a formal foundation for specification and verification of
service-oriented systems. This paper presents an improved protocol interface for Web
services. Compared to the existing interface theory, the presented interface can describe
some more advanced features of long running transaction such as nested transaction.
An interface theory based formalization is presented for service orchestration in BPEL.
The transformational approach is proposed for translating BPEL processes to protocol
interfaces. With the formalization, a formal technique is presented for model checking
of BPEL program with respect to the protocol properties. A set of case studies are
demonstrated to illustrate our approach.

Keywords: Service composition; Web services; Transaction; BPEL4WS; Interface
theory; Verification.

Reference to this paper should be made as follows: Chen, Z.B., Wang, J., Dong,
W. and Qi, Z.C. (2007) ‘Interface Theory based Formalization and Verification of
Orchestration in BPEL4WS’, Int. J. Business Process Integration and Management,
Vol. 1, Nos. 1/2/3, pp.64–74.

Biographical notes: Zhenbang Chen is a PhD candidate at National Laboratory for
Parallel and Distributed Processing of China. His research interests are in the areas
of service-oriented computing, formal methods and software engineering. Ji Wang is a
professor at National Laboratory for Parallel and Distributed Processing of China. His
research interests include high confidence software and systems, distributed computing
and software engineering. Wei Dong is an associate professor at National Laboratory for
Parallel and Distributed Processing of China. His research interest is high confidence
software engineering. Zhichang Qi is a professor at National Laboratory for Parallel
and Distributed Processing of China. His research topic is software engineering.

1 INTRODUCTION

Service composition is an important theme in service-
oriented computing. Many languages such as WSFL (Ley-
mann, 2001), WSCI (Arkin et al., 2002), XLANG (Thatte,
2001) and BPEL (Curbera et al., 2003) are emerging as
Web service composition languages. It is desirable to build
formal foundations for service composition in order to un-
derstand service-oriented software systems well.

In general, service composition can be categorized into

service orchestration and choreography. Orchestration
specifies service composition from the perspective of a sin-
gle Web service (Peltz, 2003). The orchestration descrip-
tion may be an executable process that interacts with some
outside Web services to achieve the composition and the
business logic. Choreography specifies the service com-
position from the perspective of the global system. It
describes the public message exchanges between a set of

Copyright c© 200x Inderscience Enterprises Ltd.

1

Web services (Peltz, 2003) and the global business logic
of the system. Though the different perspectives exist in
orchestration and choreography, there are some common
aspects of them, such as business logic and description
methods. Currently, some service composition languages
can describe orchestration as well as choreography such as
BPEL.

Recently, it is proposed to build a formal foundation
for Web services by interface theory. As a formal foun-
dation of the component-based design, the theory of in-
terface automata (de Alfaro and Henzinger, 2001) is pre-
sented for specification of component interfaces. Beyer
et al. (2005a,b) extend it and present a Web service in-
terface description language, which can describe the inter-
faces in three levels, i.e. signature, consistency and proto-
col. However, the transaction feature is not considered in
the existing interface theories, though it is one of the essen-
tial features in distributed computing such as Web service
systems. Web service-based transactions differ from tradi-
tional transactions in that they execute over long periods,
require commitments to the transaction to be “negotiated”
at runtime, and isolation levels must be relaxed (Little,
2003). For this reason, it is desirable to have the interface
theory for the Web services with long running transactions
to facilitate the orchestration.

Inspired by the ideas of Aspect-Oriented Programming
(AOP) (Kiczales et al., 1997), Chen et al. (2006a,b) ex-
tend the formalism of Web service interfaces proposed in
Beyer et al. (2005a) to describe transaction information
in all three levels, i.e. signature, conversation and proto-
col. In each level, the transaction behaviour is weaved into
the normal interface behaviour. The model presented in
Chen et al. (2006a,b) can capture some basic features of
long running transactions such as fault handling and com-
pensation. However, while being a formal foundation for
the flexible transaction description mechanisms that exist
in many Web service composition languages, it should be
enriched with capability for specifying more advance fea-
tures such as nested transactions and user-defined fault
handling.

Currently, most researches on the formal semantics of
BPEL mainly take into account the non-transactional be-
haviour of BPEL. Therefore, the analysis methods based
on those semantic models cannot deal with the transaction
behaviour in BPEL. Furthermore, the scope-based trans-
action description mechanism of BPEL can flexibly depict
the transaction behaviour through scope-based fault han-
dling and compensation mechanisms, but it lacks of an ef-
fective formalism to interpret these mechanisms as well as
the BPEL analysis method that can cover the transaction
behaviour.

The contributions of this paper contain three parts.
First, the protocol interface is improved to capture some
more advanced features of long running transaction to fa-
cilitate the transaction description in Web service orches-
tration. Second, the formalization for BPEL is proposed
based on the improved protocol interface, and the trans-
lation methods and algorithms for translating BPEL into

protocol interface are presented. Third, the verification
methodology is proposed for ensuring the correctness of
the orchestration description.

Through our approach, the transaction behaviour in
BPEL can be interpreted rigorously and nicely. The devel-
oper of the Web service orchestration can use our approach
to specify the transaction behaviour flexibly, find errors in
the development process and ensure the correctness.

The remainder of this paper is organized as follows.
Section 2 presents the protocol interface for Web ser-
vices with transactions. Section 3 proposes the translation
methods from BPEL to protocol interface and the transla-
tion algorithms. Section 4 presents a model checking based
verification methodology for BPEL description. Section 5
gives two examples to illustrate the formalization and ver-
ification. In Section 6, the related work is reviewed and
compared. Section 7 concludes the paper and discusses
some issues of future research.

2 Web Service Protocol Interface

Shop

Bank Transport

Store

Supplier

Post office

Client
SellItem

Recede

Compensate

ProcPay ShipItem WithDraw

Apologize ChkAvail

ChkStore

RStore

GetOffer

Order

SendLetter

Figure 1: Supply chain management system.

A classical Web service-based system, supply chain man-
agement system that is shown in Figure 1, is given for
the demonstration of the interface theory. The system is
composed of six Web services. Each labeled arrow from
one service to another indicates the Web method call from
the caller to the callee. Shop supports the Web method
SellItem that can be called by the Client to start the sell-
ing process. When the selling process starts, the Shop
will first check the availability of items to be sold by call-
ing the method ChkAvail, which requires the Web method
ChkStore implemented by Store to check whether the de-
sirable items are in stock and deduct the number of items
if the stock checking is successful. If the stock is inade-
quate, the selling process fails. If the stock is inadequate
or the stock after deducting is below a certain amount,
the Store department will make an order from the Sup-
plier and get some new items. If the availability checking
is successful, the Shop will parallelly process the payment
by calling the method ProcPay and the delivery by call-
ing the method ShipItem . ProcPay is implemented by the
Bank and its success can be compensated by calling the
method Compensate. ShipItem is implemented by Trans-
port and its success can be compensated by calling the

2

method Withdraw. If all the above steps are successful,
the selling process is successful, otherwise the successful
steps before failure should be compensated and the failed
steps should be handled. For instance, the Shop will call
the method Apologize implemented by itself to send an
apologetic letter to the Client because of the failure of the
selling process.

The basic activity in Web services is method call. A
Web service may support or invoke some methods, and
a method call may return different values. So a method
attached by a return value can suitably depict the basic
action in Web service interface. For instance, SellItem is
a method provided by the Web service Shop in Figure 1,
and 〈SellItem,FAIL〉 is one of its actions. Whether an
action is successful or exceptional will also be described
in interface description. If an exception action is invoked,
the fault handling for the action should be taken, and the
successful actions that have been invoked before should be
compensated. 〈SellItem,FAIL〉 is an exception action that
indicates the selling failure.

There are different detailed interface descriptions from
Web service providers. For this reason, the interface the-
ory for describing the transaction information is proposed
at three different abstract levels of signature, conversation
and protocol. Signature interface is the base for the other
two. Because we only use the protocol interface to formal-
ize BPEL, the conversation interface (Chen et al., 2006b)
will be omitted in this paper.

Inspired by the ideas of AOP, we separate the descrip-
tions of fault handling and compensation behaviour from
those of normal behaviour in the interface description. In
the interface semantics, the fault handling and compensa-
tion behaviour can be weaved into the normal behaviour
to describe the transaction information.

2.1 Brief Description of Syntax

Let M be a finite set of web methods, O be a finite set of
outputs, A ⊆ M×O denote the set of actions and dom(f)
denote the domain of the function f . Based on the sig-
nature interface in Beyer et al. (2005a), we extend it with
two partial functions SC and SF that specify the fault han-
dling and compensation behaviours. Signature interface is
defined as follows.

Definition 1 (Signature Interface, SI). A signature inter-
face P is a 4-tuple (A, S, SC, SF), where

• A ⊆ M × O is a set of actions that can appear in P;

• S : A → 2A is a partial function that assigns to an
action a a set of actions that can be invoked by a;

• SC : A → 2A is a partial function that assigns to an
action a a set of actions that can be invoked by the
compensation for a;

• SF : A → 2A is a partial function that assigns to an
action a a set of actions that can be invoked by the
fault handling for a;

• dom(SC) ∩ dom(SF) = ∅, dom(SC) ⊆ dom(S), and
dom(SF) ⊆ dom(S).

Signature interface describes the direct invocation rela-
tion of Web service interfaces. An action may have dif-
ferent types. An action a∈A is a supported action if S(a)
is defined. A web method m∈M is a supported method
if there exists a supported action a = 〈m, o〉. An action
a is a success action if SC(a) is defined. An action a is
an exception action if SF(a) is defined. An action a is a
required action if it can be invoked by a supported action
or compensation or fault handling, which can be expressed
by the formula defined as follows:

required(a′) = (∃a ∈ dom(S). a′ ∈ S(a))∨

(∃a ∈ dom(SC). a′ ∈ SC(a))∨

(∃a ∈ dom(SF). a′ ∈ SF (a)).

Service registries often require service providers to pub-
lish solid interface descriptions. Well-formedness is used to
describe the integrity. A signature interface is well-formed
if the following conditions hold: every required action
whose method is a supported method is a supported ac-
tion, and no exception action will be invoked in compen-
sation or fault handling. Following formulae can express
the well-formedness of signature interface.

∀a ∈ A, ∃b ∈ A. a = 〈m, o1〉 ∧ required(a) ∧ b ∈ dom(S)

∧b = 〈m, o2〉 ⇒ a ∈ dom(S),

∀a, b ∈ dom(SF), ∀c ∈ dom(SC). a /∈ SF(b) ∧ a /∈ SC(c).

Example 2.1 (Well-formed SI). The signature interface
Pshop=(Ashop, Sshop, SCshop, SF shop) of the Web service
Shop is defined as follows.

Ashop = {

〈SellItem,SOLD〉,〈SellItem,FAIL〉,〈ChkAvail,OK〉,〈ChkAvail,FAIL〉,

〈ProcPay,OK〉,〈ProcPay,FAIL〉,〈ShipItem,OK〉,〈ShipItem,FAIL〉,

〈ChkStore,OK〉,〈ChkStore,FAIL〉,〈Apologize,OK〉,〈SendLetter,OK〉,

〈Recede,OK〉,〈Compensate,OK〉,〈RStore,OK〉,〈WithDraw,OK〉 }

Sshop = { 〈SellItem,SOLD〉 → {〈ChkAvail,OK〉,〈ProcPay,OK〉,

〈ShipItem,OK〉},

〈SellItem, FAIL〉 → {〈ChkAvail,FAIL〉,〈ChkAvail,OK〉,

〈ProcPay,FAIL〉,〈ProcPay,OK〉,

〈ShipItem,FAIL〉},

〈ChkAvail, OK〉 → {〈ChkStore,OK〉},

〈ChkAvail, FAIL〉 → {〈ChkStore,FAIL〉},

〈Apologize, OK〉 → {〈SendLetter,OK〉},

〈Recede, OK〉 → {〈Compensate,OK〉,〈RStore,OK〉,

〈WithDraw,OK〉}}

SCshop = { 〈SellItem,SOLD〉 → {〈Recede,OK〉},

〈ChkAvail,OK〉 → ∅, 〈Apologize,OK〉 → ∅,

〈Recede, OK〉 → ∅}

SF shop = { 〈SellItem, FAIL〉 → {〈Apologize,OK〉},

〈ChkAvail,FAIL〉 → ∅}

The supported action 〈SellItem,SOLD〉 will directly
invoke three actions: 〈ChkAvail,OK 〉, 〈ProcPay,OK 〉 and
〈ShipItem,OK 〉. 〈ChkAvail,OK 〉 is a required action, whose
method is supported by Shop itself, and it is a supported
action too. 〈SellItem,SOLD〉 is a success action, and
〈SellItem,FAIL〉 is an exception action. Because Pshop

supports all the required actions whose methods are

3

supported methods and no exception action is invoked in
compensation or fault handling, Pshop is well-formed.

Given two Web service interfaces, we want to check
whether they can cooperate properly. First, two Web ser-
vices cannot support the same actions. Second, the new
Web service interface, which is composed of them, should
be well-formed. The compatibility of signature interface is
given as follows.

Definition 2 (SI Compatibility). Given two signature in-
terfaces P1 = (A1,S1,SC1,SF 1) and P2 = (A2,S2,SC2,SF 2),
P1 and P2 are compatible if the following conditions are
satisfied:

• dom(S1) ∩ dom(S2) = ∅;
• Pc = P1∪P2 = (A1∪A2,S1∪S2,SC1∪SC2,SF 1∪SF 2)

is well-formed.

If two signature interfaces P1 and P2 are compati-
ble(denoted by comp(P1,P2)), their composition (denoted
by P1 ‖ P2) is Pc. The composition operator is commuta-
tive and associative.

Example 2.2 (Compatibility of SI). The signature in-
terface Pstore=(Astore, Sstore, SCstore, SF store) of the Web
service Store is defined as follows. Pstore is well-formed
and compatible with Pshop in Example 2.1.

Astore = { 〈ChkStore,OK〉,〈ChkStore,FAIL〉,〈RStore,OK〉,

〈GetOffer,OK〉,〈Order,OK〉}

Sstore = { 〈ChkStore,OK〉→{〈GetOffer,OK〉,〈Order,OK〉},

〈ChkStore,FAIL〉 → ∅, 〈RStore,OK〉 → ∅}

SCstore = { 〈ChkStore,OK〉 → {〈RStore,OK〉},

〈RStore,OK〉 → ∅ }

SF store = { 〈ChkStore,FAIL〉 → {〈GetOffer,OK〉,〈Order,OK〉}}

To enable top-down design, it is desirable to replace a
Web service in a system (environment) with a new Web
service without affecting the running of the system. Af-
ter replacement, all parts of the system can still cooperate
properly as before. Intuitively, the supported, success and
exception actions are the guarantees of the Web service,
and the required actions are the assumptions of the en-
vironment. It is necessary to point out that the required
actions may be supported by Web service itself or other
Web services of its environment. The replacing Web ser-
vice should guarantee more and assume fewer than the
replaced Web service.

Definition 3 (SI Substitutivity). Given two signature in-
terfaces P1 = (A1,S1,SC1,SF 1) and P2 = (A2,S2,SC2,SF 2),
P2 refines P1 (P2 4 P1) if the following conditions are sat-
isfied:

• for every a ∈ A, if P1 supports a,then P2 supports a;

• for every a ∈ A, if a is a success action in P1, then a
is a success action in P2;

• for every a ∈ A, if a is an exception action in P1,
then a is an exception action in P2;

• for every a, a′ ∈ A, and a ∈ dom(S1), if a′ ∈ ζ2(a),
where ζ2 ∈ {S2,SC2,SF 2}, then a′ ∈ ζ1(a);

• for every unsupported web method m ∈ M in P2, if
〈m, o〉 is a required action in P2, then 〈m, o〉 is a re-
quired action in P1.

The first three conditions ensure that the replacing Web
service guarantees every action and its types that are guar-
anteed by the replaced one. The last two conditions ensure
that every required action in P2 is required by P1, they
describe that P2 does not assume more actions which are
supported by environment than P1. Given three signature
interfaces P1, P2, and P3, if comp(P1,P3), comp(P2,P3), and
P2 4 P1, then P2 ‖ P3 4 P1 ‖ P3.

Signature interface does not have any sequence informa-
tion. Beyer et al. (2005a) present protocol interface to in-
dicate the sequences of action invocations. We extend the
protocol interface in Beyer et al. (2005a) to enable trans-
action description (Chen et al., 2006a,b). In this paper,
we improve the elements of the protocol interface in Chen
et al. (2006b) to have a more flexible transaction descrip-
tion mechanism including nested transaction, user-defined
fault-handling, etc.

In Web services, the modes of action invocations in-
clude thread creation, choice, parallel executions, trans-
action block beginning, etc. We use terms to represent
these different modes.

Definition 4 (Term). The set of terms over an action
set A and a transaction block name set BT is given by the
following grammar (a ∈ A, B ⊆ A, and n, n1, n2 ∈ BT):

term :: τ | ℓ | a | ⊔B | ⊓B | ⊞B | Ln1, n2M | L̂nM

The set of all terms over A and BT is denoted by
Term(A,BT). The term τ represents no action is needed
to be invoked. The term ℓ represents a coordination action,
which can be used to control the invocation sequences of
some parallelly invoked actions. The term a=〈m,o〉 repre-
sents a call to the web method m with the expected output
o. The term ⊔B is a choice term, which represents a non-
deterministic choice in the action set B. The term ⊓B is a
fork term, which represents parallel invocations of all ac-
tions in B, and the term waits for all actions to return. If
any action fails or is an exception action, the term fails.
The term ⊞B is a fork-choice term, which represents par-
allel invocations of all actions in B, whereas the return of
any action will return the term. Only when all sides are ex-
ception actions, the term fails. a1�...�an = �{a1, ..., an},
where � ∈ {⊔,⊓,⊞}. The term Ln1, n2M represents the be-
ginning of transaction block whose name is n1 and its par-

ent transaction block name is n2. The term L̂nM represents
the invocation of default compensation for the transaction
block n.

The sequence of invocations between Web services can
be specified through automata. To indicate the place
where exceptions occur and the coordinations between in-
vocations, we propose coordination protocol automaton as
follows.

Definition 5 (Coordination Protocol Automata, CPA).

4

A coordination protocol automaton G is a 4-tuple
(A,BT ,L, δ), where

• A ⊆ M × O is a set of actions;

• BT is a set of transaction block names;

• L ⊆ N×{6, 7} is a set of locations, where N is a set of
location names, {6, 7} is the location type set, and the
default type of location is 6. 〈⊥, 6〉 ∈ L is the return
location, and 〈⊠,6〉 ∈ L is the exception location;

• δ ⊆ L\ {〈⊥, 6〉, 〈⊠, 6〉})× Term(A,BT)×L is the tran-
sition relation set.

We use in(l) = {t | t ∈ δ ∧ t = (ls, term, l)} to represent
all the transitions with the same target location l, and
out(l) = {t | t ∈ δ ∧ t = (l, term, lt)} to represent all the
transitions with the same source location l. The transition
of a location is determined by its type. If the type of
the location l is 6, then the transitions in out(l) can be
taken if there exists one transition in in(l) that has been
taken before. If the type of the location l is 7, then the
transitions in out(l) can be taken if all transitions in in(l)
have been taken before. A location is terminating in CPA if
there exists a trace starting from the location and ending
with 〈⊥, 6〉 or 〈⊠, 6〉. As a shorthand, we use location
name to denote the location whose type is 6. For example,
⊥ is used to denote 〈⊥, 6〉. Based on CPA, the protocol
interface can be defined as follows.

Definition 6 (Protocol Interface, PI). A protocol interface
T is a 5-tuple (G,D,R,RC ,RF), where

• G is a coordination protocol automaton to specify in-
terface behaviour;

• D ⊆ A is the provided action set, where A is the action
set in G;

• R : A → L is a partial function which assigns to a
action the start location in G;

• RC : A → L is a partial function which assigns to a
success action the start location in G for compensa-
tion;

• RF : A → L is a partial function which assigns to
an exception action the start location in G for fault
handling;

• dom(RC) ⊆ dom(R), dom(RF) ⊆ dom(R), D ⊆ dom(R),
and dom(RC) ∩ dom(RF) = ∅.

A location is terminating in PI if it is terminating in G

and the location of each invoked action in the terminating
trace is also terminating in PI. Given a protocol interface
T = (G,D,R,RC ,RF), the underlying signature interface
of T (denoted by psi(T)) is (As,S ,SC,SF), where As = A;
S(a) = sigl(R(a)) if R(a) is defined, otherwise S(a) is un-
defined; SC(a) = sigl(RC(a)) if RC(a) is defined, otherwise
SC(a) is undefined; RF (a) = sigl(RF (a)) if RF (a) is defined,
otherwise SF (a) is undefined. The function sigl : L → 2A

is defined as follows:

sigl(〈⊥,6〉) = ∅, sigl(〈⊠,6〉) = ∅,

sigl(q) =
S

∃(q,term,q′)∈δ∧term6=ℓ ϕ(term) ∪ sigl(q′),

ϕ(τ) = ∅, ϕ(a) = {a}, ϕ(�B) = B, where � ∈ {⊔,⊓,⊞},

ϕ(Ln1, n2M) = ∅, ϕ(cLnM) = ∅.

A protocol interface T is well-formed if the following
conditions hold: psi(T) is well-formed; if a ∈ dom(R), then
R(a) is terminating; if a ∈ dom(RC), then RC(a) is termi-
nating; if a ∈ dom(RF), then RF (a) is terminating. The
types of an action a in a protocol interface T are same as
those of a in psi(T). In addition, an action a ∈ D is a pro-
vided action, which can be invoked by the client, and the
other actions in dom(R) are private actions, which can not
be invoked by the client.

Example 2.3 (Well-formed Protocol Interface). The pro-
tocol interface Tshop = (Gshop,Dshop,Rshop,RCshop,RF shop)

of the Web service Shop is defined as follows. As a
shorthand, we use the set whose elements are formed in
(l, term, l′) to represent the transition relation set in CPA
Gshop, where l and l′ are the locations in Gshop. The par-
tial functions R,RC,RF are indicated by adding an action
before a transition, and the corresponding location of the
action is simply the source location of the transition at the
head position (Ashop is the same as that in Example 2.1).

{

〈SellItem,SOLD〉 →R (q0, LSellItem, CheckAvailM, q1),

(q1, 〈ChkAvail,OK〉, q2), (q2, LSellItem, ProcPayM, q3),

(q3, 〈ProcPay,OK〉, q4), (q4, LSellItem, ShipItemM, q5),

(q5, 〈ShipItem,OK〉,⊥),

〈SellItem,FAIL〉 →R (q6, LSellItem, CheckAvailM, q7),

(q7, 〈ChkAvail,FAIL〉, ⊠),(q6, LSellItem, CheckAvailM, q8),

(q8, 〈ChkAvail,OK〉, q9),(q9, LSellItem, ProcPayM, q10),

(q10, 〈ProcPay,FAIL〉, ⊠), (q9, LSellItem, ProcPayM, q11)

(q11, 〈ProcPay,OK〉, q12), (q12, LSellItem, ShipItemM, q13)

(q13, 〈ShipItem, FAIL〉, ⊠),

〈ChkAvail,OK〉 →R (q14, 〈ChkStore,OK〉,⊥),

〈ChkAvail,FAIL〉→R(q15, 〈ChkStore,FAIL〉, ⊠),

〈Apologize,OK〉 →R (q16, 〈SendLetter,OK〉, ⊥),

〈Recede, OK〉 →R (q17, 〈WithDraw,OK〉, q18),

(q18, 〈Compensate,OK〉, q19), (q19, 〈RStore,OK〉,⊥),

〈SellItem,SOLD〉 →RC
(q20, 〈Recede,OK〉,⊥),

〈ChkAvail,OK〉 →RC
(q21, ̂LChkAvailM,⊥),

〈Recede, OK〉 →RC
⊥,〈Apologize,OK〉→RC

⊥

〈ChkAvail,FAIL〉→RF
(q22, ̂LChkAvailM, ⊠),

〈SellItem,FAIL〉→RF
(q23, ̂LSellItemM, q24),(q24, 〈Apologize,OK〉, ⊠)

}

Tshop models the interface behaviour of Shop, and
psi(Tshop) is the signature interface Pshop in Example 2.1.
Because Pshop is well-formed and Tshop satisfies all
the other conditions, Tshop is well-formed. Action
〈SellItem,SOLD〉 can invoke three transaction blocks in
sequence. Action 〈SellItem,FAIL〉 can invoke different
sequences of actions, and each sequence needs compen-
sation and fault handling because of the exception. The
fault handling for 〈SellItem,FAIL〉 will first invoke the
default compensation for transaction block SellItem by

̂LSellItemM, after which action 〈Apologize,OK〉 will be
invoked to send the apologetic letter. The provided action
set Dshop is {〈SellItem,OK〉, 〈SellItem,FAIL〉}.

5

Definition 7 (PI Compatibility). Given two proto-
col interfaces T1 = (G1,D1,R1,RC1,RF 1) and T2 =

(G2,D2,R2,RC2,RF 2), T1 and T2 are compatible if the fol-
lowing conditions are satisfied:

• psi(T1) and psi(T2) are compatible;

• L1 ∩ L2 = {〈⊥, 6〉, 〈⊠, 6〉};

• BT1
∩ BT2

= ∅;

• Tc = T1 ∪ T2 = (G1 ∪ G2,D1 ∪ D2,R1 ∪ R2,RC1 ∪
RC2,RF 1 ∪ RF2) is well-formed, where G1 ∪ G2=
(A1 ∪A2,BT1

∪ BT2
,L1 ∪ L2, δ1 ∪ δ2).

If T1 and T2 are compatible (denoted by comp(T1, T2)),
their composition (denoted by T1 ‖ T2) is Tc. The compo-
sition operator is commutative and associative. The sub-
stitutivity relation between protocol interfaces should be
defined based on the semantics to ensure the temporal cor-
rectness, which will be presented at Section 3.1.

Protocol interface describes temporal invocations in Web
service interfaces. It must ensure that not only the success-
ful transaction block invocations should be recorded, but
also the sequence of compensation invocations should agree
with the long-running transaction model.

2.2 Protocol Interface Semantics

The execution of protocol interface will be either success-
ful or exceptional. If an exception occurs, compensation
or fault handling will be taken. The process is a long-
running transaction model, whose invocation process can
be exemplified in Figure 2. Transaction block B contains
two sequential transaction blocks B1 and B2. After suc-
cessful executions of B1 and B2, an exception occurs. The
transaction block B is failed. Supposing the fault handling
for B is to compensate the successful transaction blocks in
it, the fault handling must first execute C2 that is the com-
pensation for B2, and execute C1 that is the compensation
for B1 after completing C2.

F

B
B1 B2 Exception

occurring

C1 C2

Figure 2: Long-running transaction example.

Intuitively, the invocation process is pushdown, and the
process can continue only after the completion of every
invoked action. The sequence of compensation should be
reverse of the sequence of the previous invocations, so the
recorded successful transaction block should be first in last
out. For precise definition of the semantics, we can use the
model which is a tree nested by a stack group to interpret
protocol interface execution.

Definition 8 (Tree). A tree over a finite set of labels L is
a partial function t : N∗ → L, where N∗ denotes the word
set over the natural number set.

We use ρ to denote empty word. p·j denotes the concate-
nation of the word p with j ∈ N. For the sake of simplicity,
we use pj to denote p · j. The set of leaf nodes of tree t is
leaf(t) = {p ∈ dom(t) | ∀j ∈ N, pj /∈ dom(t)}. For a node
p in dom(t), child(p) = {q | ∃j ∈ N, q = pj ∧ q ∈ dom(t)},
and parent(p) = {q | ∃j ∈ N, p = qj ∧ q ∈ dom(t)}. Let
T(L) denote all trees on a finite label set L.

Definition 9 (Stack). A stack over a finite set of labels L
is a partial function s(m) : N → L, where N is the natural
number set, and dom(s(m)) = {n | n < m ∧ n ∈ N}.

s(0) is the empty stack. s(m)(m−1) is the top element of
stack s(m). Let S(L) denote all stacks on a finite label set
L. We use Len(s(m)) to denote the number of the elements
in stack s(m), apparently Len(s(m)) = m, Push(s(m), l)
to denote pushing l into stack s(m) and Pop(s(m)) to de-
note returning and popping the top element in stack s(m).

Definition 10 (Stack Group). A stack group of a finite
set of names Ns over a finite set of labels L is a partial
function g(ns) : Ns → S(L), where S(L) is the set of all
stacks on L.

We use G(Ns,L) to denote all stack groups of a finite
set of names Ns over a finite label set L. Given a protocol
interface T = (G,D,R,RC ,RF), its semantics is defined
by a labeled transition system. The set of states is T(Qt)×
G(BT , T erm(A,BT))× 2δ, that is, the Cartesian products
of trees over Qt = Q×A∗ ×℘×BT , stack groups over BT

and Term(A,BT), and power set of transition set δ, where
Q is the location set of the coordination protocol automaton
G, A is the action set in G, ℘ = {◦,⊞,⊙} is the node type
set, BT is the transaction block name set in G, and δ is the
transition set in G. The underlying transition relation of
T is a transition relation (T(Qt)×G(BT , T erm(A,BT))×
2δ)×2A∪{ret,exp,cpb}×(T(Qt)×G(BT , T erm(A,BT))×2δ).
The label of state transition is the set of elements from A∪
{ret, exp, cpb}. We write ν

B
−→ ν′ for (ν,B, ν′) ∈→T , where

ν = (t, g, s) and B ⊆ A ∪ {ret, exp, cpb}. The transition
can be given by a set of transition rules.

The beginning is the invocation of a provided action.
Supposing we start from invoking a provided action a =
〈m, o〉, the initial state is νinital = (tinital, ginital, sintial) =
({(ρ, (R(a), a, ◦, m))}, {(m, sm(0))}, ∅). The definition of
transition rules are given as follows, where

• for a transition, the source state is defined as ν =
(t, g, s), and the target state as ν′ = (t′, g′, s′);

• we use q(w)βn to represent (q, w, β, n) in Qt, and if
w = ρ, qβn is used to represent it. For example, q⊞n
represents (q, ρ,⊞, n);

• δ(q) = (term, q′) denotes that there exists a transition
(q, term, q′) in the coordination protocol automaton ,
and the transition can be taken now, which means
that if the type of q is 7, then in(q) ⊆ s;

6

• if action c is supported by R, qc = R(c), otherwise
qc = ⊥;

• if a is supported by RC , µ(a) = RC(a), otherwise if a is
supported by RF , µ(a) = RF (a), otherwise µ(a) = ⊥;

• when applying all rules, if the transition (q, term, q′)
is taken and the type of q is 7, then s′ = (s′ \ in(q))
after applying.

(Empty)

If there exists a node p such that p ∈ leaf(t), t(p) = q ◦ n,
and δ(q) = (τ, q′), then t′ = (t \ {(p, q ◦ n)}) ∪ {(p, q′ ◦ n)},
g′ = g, and s′ = s ∪ {(q, τ, q′)}.

(Coordination)
If there exists a node p such that p ∈ leaf(t), t(p) = q ◦ n,

and δ(q) = (ℓ, q′), then t′ = (t \ {(p, q ◦ n)}) ∪ {(p,⊥ ◦ n)},
g′ = g, and s′ = s ∪ {(q, ℓ, q′)}.

(Pushdown) ν
M
−−→ ν′

If there exists a node p such that p ∈ leaf(t), t(p) = q ◦ n,
and δ(q) = (r, q′):

• r = a, then t′ = (t \ {(p, q ◦n)})∪ {(p, q′ ◦n), (p0, qa ◦n)},
and M = {a};

• r = ⊔B, then t′ = (t\{(p, q◦n)})∪{(p, q′ ◦n), (p0, qc ◦n)},
where c ∈ B, and M = {c};

• r = ⊓B, and B = {a0, ..., an}, then t′ = (t \ {(p, q◦)}) ∪
{(p, q′◦), (p0, qa0

◦), ..., (pn, qan◦)}, and M = B;

• r = ⊞B, and B = {a0, ..., an}, then t′ = (t \ {(p, q◦)}) ∪
{(p, q′⊞), (p0, qa0

◦), ..., (pn, qan◦)}, and M = B.

In all conditions, g′ = g, and s′ = s ∪ {(q, r, q′)}.

(TB-Begin) ν
M
−−→ ν′

If there exists a node p such that p ∈ leaf(t),
t(p) = q ◦ n, δ(q) = (Ln1, nM, q1), and δ(q1) = (term, q′), then
t′ = (t\{(p, q◦n)})∪{(p, q′◦n), (p0, qc(c)◦n1)}, M = {c}, g′ =
g ∪ {(n1, sn1

(0))}, and s′ = s ∪ {(q, Ln1, nM, q1), (q1, term, q′)},
where c = a if term = a, and c ∈ B if term = ⊔B.

(CP-Begin) ν
{cpb}
−−−→ ν′

If there exists a node p such that p ∈ leaf(t), t(p) = q ◦ n,

δ(q) = (dLn1M, q
′), and g(n1) is defined:

• if Len(g(n1)) = 0, then t′ = (t \ {(p, q ◦n)})∪{(p, q′ ◦n)},
and g′ = g;

• if Len(g(n1)) > 0, then a = Pop(g(n1)), and t′ =
(t\{(p, q ◦n)})∪{(p, q′ ◦n), (p0,⊥⊙n1), (p00, µ(a)◦n1)}.

In all conditions, s′ = s ∪ {(q, dLn1M, q
′)}.

(Return) ν
{ret}
−−−→ ν′

If there exists a node pθ such that pθ ∈ leaf(t), t(pθ) =
⊥(w) ◦ n1, t(p) = qαn2, where θ ∈ N:

• α = ◦, then t′ = t \ {(pθ,⊥(w) ◦ n1)};

• α = ⊞, then t′ = (t\{(pp′, res) | p′ ∈ N
∗∧res = t(pp′)})∪

{(p, q ◦ n2)};

• α = ⊙, and Len(g(n2)) > 0, then a = Pop(g(n2)), t′ =
(t \ {(pθ,⊥(w) ◦ n1)}) ∪ {(pθ, µ(a) ◦ n1)};

• α = ⊙, and Len(g(n2)) = 0, then t′ = t \ {(pθ,⊥(w) ◦
n1), (p, qαn2)}, and g = g \ {(n2, g(n2))}.

In all conditions, if n1 6= n2 and w 6= ρ, then Push(g(n2), w),
else g′ = g.

(Exception) ν
{exp}
−−−−→ ν′

If there exists a node pθ such that pθ ∈ leaf(t), t(pθ) =
⊠(w) ◦ n1, t(p) = q(w1)αn2, where θ ∈ N:

• α = ◦ and w = ρ, then t′ = (t\{(pp′, res) | p′ ∈ N
∗∧res =

t(pp′)}) ∪ {(p,⊠(w1) ◦ n2)}; if p = ρ and w = ρ, then t′ =
(t\{(pp′, res) | p′ ∈ N

∗∧res = t(pp′)})∪{(p, µ(w1)◦n2)};

• n1 6= n2 and w 6= ρ, then t′ = (t \ {(pθ,⊠(w) ◦ n1)}) ∪
{(pθ, µ(w) ◦ n1)};

• α = ⊞ and w = ρ, then if all nodes in {p′ | p′ ∈ child(p) ∧
p′ 6= pθ} have no child, and the locations of all nodes are
same to ⊠, then t′ = (t \ {(pp′, res) | p′ ∈ N

∗ ∧ res =
t(pp′)}) ∪ {(p,⊠(w1) ◦ n2)}.

In all conditions, g′ = g.

qa

 a

qa

�

B

qa1 qan

�

B

qa1 qan

 a �

�

B

Child Trees

�

 qa

�

B

Child Trees

�

 a �

qa

�

B

Child Trees

�

qa

�

B

Child Trees

�

�

�

B

�

P
ushdow

n
R

e
turn

E
xce

ption

 �B

qc

… …

… … …

�

 n

qc(c)n1

… …

�

n1, n
�

T
rsna

ction blcok

 n

µ(a)

�

n1
�

� �

n1

D
e

fa
ult C

om
pe

nsa
tion

Add stack n1 to
the stack group

Pop a from stack
n1 if n1 exists and
is not empty

 �

� n1

µ(a)

� n1

Pop a from stack n1
if n1 is not empty

 �

� n1 �

� n1

Remove stack n1

if n1 is empty

 n2 �
 n1

 n2

µ(w)

Figure 3: Operation diagrams of transition rules .

Figure 3 shows the operation diagrams of the transition
rules, and the main ideas can be explained as follows.

• The operations in transition rules can be divided into
two parts: tree operations and stack operations. The
tree operations depict a pushdown system. Only leaf
nodes of the tree can be operated. The coordination
protocol automaton G decides on the invoked terms.

• The terms a and ⊔B lead to pushing down the leaf
node. The terms ⊓B and ⊞B lead to branching the
leaf node. These are reflected in rule (Pushdown).

• The rule (TB-Begin) depicts the beginning of a
transaction block. It needs a new stack for record-
ing the execution of the transaction block.

• The rule (CP-Begin) depicts the beginning of com-
pensation for a transaction block. If the compensation
stack exists and the block has some successful com-
pleted child blocks, the tree will be pushed down with
a compensation node whose type is ⊙.

• The reaching of ⊥ or ⊠ leads to cutting nodes; The
return of a fork-choice child action will cut all the
other child branches. The return of transaction block

7

compensation will invoke the next compensation pro-
cess if there exist other successful blocks that needs
compensations. If no successful block that need com-
pensation exists, the compensation stack should be re-
moved from the stack group. If the return of transac-
tion block is successful, then the corresponding trans-
action block action should be recorded.

• When an exception location is reached, some coor-
dination should be taken. There are two complicate
cases. The first case is that the exception location is
reached from a fork term, and it will cause the global
exception and the other branches should be termi-
nated. The second case is that the exception location
is reached from a fork-choice term, and whether it can
cause the global exception is determined by the other
branches. If one of the other branches returns suc-
cessfully, the parent will be successful. If one of the
other branches does not return, this branch should
wait until the returns of all the other branches. If ex-
ception also occurs in each of the other branches, the
global exception occurs. If the return of a transaction
block is an exception location, the corresponding fault
handling process should be taken.

An execution of a protocol interface is an alternat-
ing sequence of states and the sets of actions, which is

ν0,A0, ν1,A1, ..., where νi
Ai−−→ νi+1 for all i ∈ {0, 1, ..., n, ...}.

A trace of a protocol interface is the projection of an exe-
cution to its action sets.

Based on the transition rules, we can use the LTS simu-
lation relation to define the substitutivity relation of pro-
tocol interfaces.

Definition 11 (Labeled Transition System, LTS). A la-
beled transition system is a 4-tuple (S, I, L, ∆), where S is
the set of states, I ⊆ S is the set of initial states, L is the
set of labels, and ∆ ⊆ S × L × S is the transition relation
set.

Given a protocol interface T and a provided action
a = 〈m, o〉 ∈ D, the interface behaviour invoked by a can
be transformed into a labeled transition system, which is
denoted by LTS(T , a). The transformation procedure of
LTS(T , a) = (Sa, Ia, La, ∆a) can be given as follows:

• Sa = T(Qt) × G(BT , T erm(A,BT)) × 2δ;

• Ia = ({(ρ, (R(a), ρ, ◦, m))}, {(m, sm(0))}, ∅);

• La = 2A∪{ret,exp,cpb};

• ∆a contains the underlying transition relations using
the protocol interface transition rules staring from the
invocation of a.

Because ret, exp, cpb are not external Web service ac-
tions, the transitions labeled by them do not assume to
the environment. The simulation relation of the under-
lying labeled transition systems can be extended to relax
the conditions that substitutivity should satisfy. We de-
note (s1, a, s′1) ∈ ∆ as s1 →a s′1. If t = a1a2...an ∈ L∗,
s1 →a1

→a2
... →an

s′1 is denoted as s1 →t s′1.

Definition 12 (LTS Weak Simulation). Given two LTSs
M1 = (S1, I1, L1, ∆1) and M2 = (S2, I2, L2, ∆2) and a label
set W , M2 is weakly simulated by M1 over the label set W

if there exists a relation 4W⊆ S1 × S2 such that:

• for every s1 ∈ M1, s2 ∈ M2, if s2 4W s1, then for every
(s2, a, s′2) ∈ ∆2, there exists s1 a s′1 in ∆1, such that
s′2 4W s′1, where s1 a s′1 represents s1 →t s′1, in which
t = a1a2...an, and there exists only one ai that ai = a,
and all the other labels are all in W ;

• for every s2 ∈ M2, there exists s1 ∈ M1 such that
s2 4W s1.

The substitutivity relation between protocol interfaces
can be given as follows.

Definition 13 (PI Substitutivity). Given two proto-
col interfaces T1 = (G1,D1,R1,RC1,RF 1) and T2 =

(G2,D2,R2,RC2,RF 2), T2 refines T1 (T2 4 T1) if the fol-
lowing conditions are satisfied:

• psi(T2) 4 psi(T1);

• for every a ∈ D1, LTS(T2, a) is weakly simulated by
LTS(T1, a) over 2{ret,exp,cpb}.

Given three protocol interfaces T1, T2, and T3,
if comp(T1, T3), comp(T2, T3), and T2 4 T1, then
T2 ‖ T3 4 T1 ‖ T3.

3 Translation from BPEL to PI

BPEL can describe orchestration and choreography infor-
mation of Web service compositions. A BPEL orchestra-
tion description for a Web service contains two parts: the
description of the provided methods and the connection
types with other services, and this part is contained in a
wsdl file; the description of the invocation process for the
provided methods, and this part is contained in a bpel file.
Orchestration information can be deployed to some BPEL
engines such as BPWS4J (IBM, 2004). Many orchestrated
Web services can be composed into a composite Web ser-
vice or system.

In BPEL specification document, there exist many
reasons for exception such as network blocking and calling
throw activity. For the sake of simplicity, we only take into
account throw activity and assume that no exception can
be thrown from faultHandlers and compensationHandler.
Because we are only concerned with the control flow in
BPEL description, data handling is omitted in this paper.
Due to the these assumptions, we give the BPEL syntax
paradigm as follows, where n is the activity name.

Process ::= process(n,Activity, Fault, Comp)
Activity ::= receive(n)

| invoke(n)
| reply(n)
| assign(n)
| throw(n)
| compensate(n)

8

| empty
| sequence(n, Activity1, ..., Activitym)
| switch(n, Activity1, ..., Activitym)
| flow(n, Activity1, ..., Activitym)
| link(n, Activity1, Activity2)
| while(n, Activity)
| scope(n, Activity, Fault,Comp)

Comp ::= compensationHandler(Activity)

Fault ::= faultHandlers(catch1(n1, Activity1), ...,

catchm(nm, Activitym))

| faultHandlers(catch1(n1, Activity1), ...,

catchm(nm, Activitym),

catchAll(Activitya))

According to different types of the syntax elements
in BPEL, we can construct the corresponding Web ser-
vice protocol interface. For each activity, the trans-
lation will be given by a specific procedure whose in-
put parameters will be the translated activity, the start
location for the translation, the enclosing scope name
of the activity and the activity result to the enclos-
ing scope. We use translate(Activity, q, s, r) to denote
the procedure whose return is the reached new location.
The meanings of the sub translating procedures used in
translate(Activity, q, s, r) are given in Section 3.4.

3.1 Basic BPEL activities

The translation procedures of the basic BPEL activities
are listed in Table 1. The basic activities of BPEL in-
clude receive, invoke, reply and assign. These activities are
atomic units of BPEL description. They can be mapped
to the transitions whose terms are single actions. It is nec-
essary to point out that receive, invoke and reply activities
need environment support and assign is internal activity.
Because data handing is omitted in this paper, assign is
simply mapped the action whose target location of R is
⊥. throw activity indicates that there is an exception oc-
curred in the process, and it is mapped to a transition
whose target location is ⊠. compensate activity indicates
that the compensation for scope n is needed. According
to the specification of BPEL, if n is the current enclosing
scope, the compensate activity will invoke the default com-
pensation behaviour of the current transaction block; if n
is the enclosed scope, the corresponding action is mapped
to the compensation start location for the successful scope
action. empty activity is mapped to the transition whose
term is τ .

3.2 Structured BPEL activities

BPEL structured activities, such as sequence, switch, flow
and while, are different invocation modes of interface be-
haviour. Table 2 lists the translations for sequence, switch,
flow, and while. sequence represents the sequential calls of
activities, and it can be mapped to the sequential transi-
tions in CPA. The activities in the sequence can be trans-
lated recursively. It is necessary to point out that the
number of the translated child activities in sequence may

BPEL Translation Procedure

receive(n) δ = δ ∪ {(q, 〈receiven, OK〉, q′)}

invoke(n) δ = δ ∪ {(q, 〈invoken, OK〉, q′)}

reply(n) δ = δ ∪ {(q, 〈replyn, OK〉, q′)}

assign(n) δ = δ ∪ {(q, 〈assignn, OK〉, q′)}
R = R∪ {(〈assignn, OK〉,⊥)}

throw(n) δ = δ ∪ {(q, τ,⊠)}

compensate(n) if n 6= s then
δ = δ ∪ {(q, 〈compensaten, OK〉, q′}
R = R ∪ {(〈compensaten, OK〉,

RC(〈scopen, OK〉))}
end
if n = s then

δ = δ ∪ {(q, cLnM, q′}

empty δ = δ ∪ {(q, τ, q′)}

Table 1: Translating the basic BPEL activities.

be different from m because of the exception, which may
also exist in the translation for switch activity. switch can
be mapped to the transition whose term is a nondetermin-
istic choice term. flow represents that the included activi-
ties will be processed in parallel and fork term can suitably
describe it. while can be mapped to a self loop in CPA at
the moment. However, the translation gives a conservative
representation. The child activities of structured activity
can be translated recursively. The translation operation
diagram is shown in Figure 4.

links in flow activities are used for coordination between
parallel activities. The joinCondition describes different
join policies. According to the link semantics in BPEL,
we can use the coordination action and the location type
of protocol interface to specify it as follows. Because the
target of link can be taken only after the source activity
of link has been taken, we can map the target activity
to a transition whose start location type is 7. When the
source activity ends, it should invoke a fork term specifying
the start links, which will invoke a coordination action ℓ
and reach the the target location. The parent used in the
Table 2 denotes the parent activity of the current BPEL
activity. Because we are only concerned with the control
flow, the joinCondition of the target activity and the DPE
mechanism are omitted. The translation procedure will
check whether the translated activity has link information,
and when link is translated is determined by its parent
type.

3.3 Scope activity

Both of fault handling and compensation in BPEL appear
within a scope. Table 3 lists the translations for the scope,
faultHandles and compensationHandles. The translation
for the scope can be divided into the following three con-
ditions: (1) the scope result is OK and the activity in
the scope will not result in any exception; (2) the scope
result is OK and the activity in the scope will result in
some exceptions. Some of these exceptions may be han-

9

BPEL Translation Procedure

sequence r′ = GetResult(sequence, r)
δ = δ ∪ {(q, 〈sequencen, r′〉, q′)}
R = R∪ {(〈sequencen, r′〉, q0)}
q1 = translate(Activity1 , q0, s, r′)
q2 = translate(Activity2 , q1, s, r′)
...

qk = translate(Activityk , qk−1, s, r′)

switch r′ = GetResult(switch, r)
δ = δ ∪ {(q, 〈switchn, r′〉, q′)}
R = R∪ {(〈switchn, r′〉, q0)}
a1 = 〈branch1, GetResult(Activity1, r′)〉
translate(Activity1, q1, s, r′)
...

ak = 〈branchk, GetResult(Activityk , r′)〉
translate(Activityk , qk, s, r′)
δ = δ ∪ {(q0,⊔{a1, ..., ak}, q

′
0)}

flow r′ = GetResult(flow, r)
δ = δ ∪ {(q, 〈flown, r′〉, q′)}
R = R∪ {(〈flown, r′〉, q0)}
a1 = 〈branch1, GetResult(Activity1, r′)〉
translate(Activity1, q1, s, r′)
...

am = 〈branchm, GetResult(Activitym, r′)〉
translate(Activitym , qm, s, r′)
δ = δ ∪ {(q0,⊓{a1, ..., am}, q′0)}

while r′ = GetResult(while, r)
δ = δ ∪ {(q, 〈whilen, r′〉, q′)}
R = R∪ {(〈whilen, r′〉, q0)}
translate(Activity, q0, s, r′)
δ = δ ∪ {(q′, τ, q)}

link if q′ 6= ⊥∧ q′ 6= ⊠ then
(source) δ = δ ∪ {(q′,⊓{..., 〈linki, OK〉, ...},⊥)}

∧ else
paernt δ = (δ \ {(q, a, q′)}) ∪ {(q, a, qt1)}

6= δ = δ ∪ {(qt1 ,⊓{..., 〈linki, OK〉, ...}, q′)}
sequence end

R = R∪ {(〈linki, OK〉, qli
)}

δ = δ ∪ {(qli
, ℓ, qt)}

L = L ∪ {〈Activityi
1, (qli

, ℓ, qt)〉} ...

link r′ = GetResult(Activity, r)
(source) δ = δ ∪ (q, 〈nlink , r′〉, q′)

∧ R = R∪ {〈nlink , r′〉, ql}
paernt q′

l
= translate(Activityw , ql, s, r)

= Activityw is the Activity without source links
sequence if q′

l
6= ⊥∧ q′

l
6= ⊠ then

δ = δ ∪ {(q′
l
,⊓{..., 〈linki, OK〉, ...},⊥)}

else
δ = (δ \ {(ql, a, q′

l
)}) ∪ {(ql, a, qt1)}

δ = δ ∪ {(qt1 ,⊓{..., 〈linki, OK〉, ...}, q′
l
)}

end
R = R∪ {(〈linki, OK〉, qli

)}
δ = δ ∪ {(qli

, ℓ, qt)}
L = L ∪ {〈Activityi

1, (qli
, ℓ, qt)〉} ...

link a = 〈name, GetResult(Activity2 , r′)〉
(target) M = {t′ | t′ ∈ δ ∧ ∃q ∈ L (q.t = t′∧

q.target = Activity)}
L = (L \ {〈R(a), 6〉}) ∪ {〈R(a), 7〉}
δ = (δ \ M) ∪ {(t.q, ℓ, 〈R(a), 7〉)|t ∈ M}

Table 2: Translating the structured BPEL activities.

dled by the scope faultHandles and the scope will not dif-
fuse the exception to the outside scope. So the transla-
tion should incorporate some executions that will result
in exceptions, which will be surely handled by the fault-
Handles of the scope; (3) the scope result is not OK, and
this condition reflects that the scope must result in ex-

BPEL Translation Diagram

sequence

switch

flow

while

link

q0′

q1

q0′

R(a)

qm′

q1′

…

q
	
sequencen, r′

…

q′

q0

qk-1 qk

Activity1

Activityk

q0

…

Activity1

Activityk

�
{ a1 , … , ak}

�

a

source1

sourcem

q
	
switchn, r′
 q′

q0

…

Activity1

Activitym

�
{ a1 , … , am}

q
	
flown, r′
 q′

	
whilen, r′
 q q′

q0 Activity

Figure 4: Translation diagrams of the structured BPEL
activities.

ception. According to the BPEL specification, if there is
no explicit faultHandlers for the scope, the default fault-
Handlers will run all available compensation handlers for
immediately enclosed scopes in the reverse order of comple-
tion of the corresponding scopes and rethrowing the fault
to the next enclosing scope (Curbera et al., 2003), which

can be mapped to the translation δ = δ ∪ {(qf , L̂nM,⊠)}
suitably. If there is no explicit compensationHandler for
the scope, the default compensationHandler is same as that
of default faultHandlers without rethrowing the exception.

The translation procedure for faultHandles is
translatef(Fault, q, s, r1, r2). The meanings of q and s
are same as those of translatef(Activity, q, s, r), r1 is the
result of the activity in the scope, and r2 is the actual
result of the scope. r1 ∈ N represents that the exception
can be handled by a catch handle. r1 /∈ N ∧ r2 = OK

represents that the exception will be handled by the
catchAll handle. r1 /∈ N ∧ r2 6= OK represents that the
exception will be diffused to the outside scope.

Table 4 lists the translation procedure for the BPEL pro-
cess that can be seen as the global scope, and translation
procedure translatep(Process) is similar to that of scope.
The generated action of the process should be added not
only to the domain of R, but also to the provided action
set D.

10

BPEL Translation Procedure

scope r′ = GetResult(scope, r)
R = GetResult(Activity)
Rr = GetResult(scope)
E = GetException(scope)
r′ = OK ∧ #E = 0
δ = δ ∪ {(q, Ln, sM, qt), (qt, 〈scopen, r′〉, q′)}
R = R∪ {(〈scopen, r′〉, q0)}
translate(Activity, q0, n, r′)
RC = RC ∪ {(〈scopen, r′〉, qc)}
if Comp exists then

translate(Comp, qc, n, r′)
else

δ = δ ∪ {(qc, cLnM,⊥)}
r′ = OK ∧ #E > 0, E = E \ (Rr \ {OK})
for each ri ∈ E
R = R∪ {(〈scopen, ri〉, qi)}
translate(Activity, qi, n, ri)
RF = RF ∪ {(〈scopen, ri〉, qfi

)}
translatef (Fault, qfi

, n, ri, OK)
end

B =
S
{〈scopen, ri〉}, where ri ∈ E

if OK ∈ R then

R = R∪ {(〈scopen, r′〉, q0)}
translate(Activity, q0, n, r′)
RC = RC ∪ {(〈scopen, r′〉, qc)}
if Comp exists then

translate(Comp, qc, n, r′)
else

δ = δ ∪ {(qc, cLnM,⊥)}
end

B = B ∪ {〈scopen, r′〉}
end

δ = δ ∪ {(q, Ln, sM, qt), (qt,⊔B, q′)}
r′ 6= OK
δ = δ ∪ {(q, Ln, sM, qt), (qt, 〈scopen, r′〉, q′)}
R = R∪ {(〈scopen, r′〉, q0)}
translate(Activity, q0, n, r′)
RF = RF ∪ {(〈scopen, r′〉, qf)}
if Fault exists then

translatef (Fault, qf , n, r′, r′)
else

δ = δ ∪ {(qf , cLnM, ⊠)}

Fault N = {n1, ..., nm}
if r1 ∈ N then

translate(Activityr1
, q, s, OK)

if r1 /∈ N ∧ r2 = OK then

translate(Activitya , q, s, OK)
if r1 /∈ N ∧ r2 6= OK then

δ = δ ∪ {(q, τ, ⊠)}

Comp translate(Activity, q, s, r)

Table 3: Translating the scope activity.

3.4 Translation Algorithm

Based on the translating procedures for different types of
BPEL activities, we present the translation algorithms as
follows. The requirements and explanations of algorithms
are given as follows.

• BPEL description is formed in EXtensible Markup
Language (XML), parsing the input BPEL XML is
omitted in this paper. We suppose that the BPEL in-
puts of the algorithms are formed in the syntax format
at the beginning of this Section. It needs a preprocess-
ing procedure to parse the input BPEL XML. For a

BPEL Translation Procedure

Process Rp = GetProcessResult(process)
Rpt = GetResult(Activity)
E = GetException(Activity)
For each ri ∈ Rp

ri = OK ∧ #E = 0
R = R∪ {(〈n, ri〉, q0)},D = D ∪ {〈n, ri〉}
translate(Activity, q0, n, ri)
RC = RC ∪ {(〈n, ri〉, qc)}
if Comp exists then

translate(Comp, qc, n, ri)
else

δ = δ ∪ {(qc, cLnM,⊥)}
ri = OK ∧ #E > 0, E = E \ (Rp \ {OK})
for each rj ∈ E
R = R∪ {(〈n, rj〉, qj)},D = D ∪ {〈n, rj〉}
translate(Activity, qj , n, rj)
RF = RF ∪ {(〈n, rj〉, qfj

)}

translatef (Fault, qfj
, n, rj , OK)

end

if OK ∈ Rpt then

R = R∪ {(〈n, OK〉, q0)}
D = D ∪ {〈n, OK〉}
translate(Activity, q0, n, OK)
RC = RC ∪ {(〈n, OK〉, qc)}
if Comp exists then

translate(Comp, qc, n, OK)
else

δ = δ ∪ {(qc, cLnM,⊥)}
end

end

ri 6= OK
R = R∪ {(〈n, ri〉, q0)},D = D ∪ {〈n, ri〉}
translate(Activity, q0, n, ri)
RF = RF ∪ {(〈n, ri〉, qf)}
if Fault exists then

translatef (Fault, qf , n, ri, ri)
else

δ = δ ∪ {(qf , cLnM, ⊠)}

Table 4: Translating the process.

short hand, this procedure will not be given.

• The Condition in BPEL is specified in XPath lan-
guage. Because data handling is omitted in this paper,
so this feature is not discussed in this paper.

• The details of the translation procedures translate,
translatef and translatep have been presented in the
preceding subsections. Only procedure skeletons will
be presented in algorithms 1, 2 and 3.

• L and T used in the preceding translation procedures
are global variables. L is a set and T is a protocol
interface.

11

Algorithm 1 translate(Activity, q, s, r)

Input : The input Activity, start location q,
the inclosing scope s, and the supposed result r;

Output : The reached new location after translation;
Variables : Set R,Rr, E, Result r′, ri, boolean bs,

location q′, qt, q0, qc, qf , qi, qfi
, ql, qli , q

′
l, qt1 ;

1: if Activity is the source of some links and

Activity parent is sequence then

2: do the translation procedures in Table 2;
3: return q′;
4: end

5: bs = false;
6: if Activity is basic then

7: do the translation procedures in Table 1;
8: if Activity is structured then

9: do the translation procedures in Table 2;
10: if Activity is scope then

11: do the translation procedures in Table 3;
12: if Activity is the source of a link then

13: do the translation procedures in Table 2;
14: bs = true;
15: end

16: if Activity is the target of a link then

17: generate middle location qn for the q;
18: do the translation procedures in Table 2;
19: end

20: if the Activity parent is not sequence and

bs = false and q′ 6= ⊠ then

21: δ = δ ∪ {(q′, τ,⊥)};
22: return q′;

Algorithm 2 translatef (Fault, q, s, r1, r2)

Input : The input Fault, start location q,
the inclosing scope s, the result r1,
the actual result r2;

Output : none;
Variables : Set N ;
1: N = {n1, ..., nm};
2: if r1 ∈ N then

3: translate(Activityr1
, q, s, OK);

4: if r1 /∈ N and r2 = OK then

5: translate(Activitya, q, s, OK);
6: if r1 /∈ N and r2 6= OK then

7: δ = δ ∪ {(q, τ,⊠)};

Algorithm 3 translatep(Process)

Input : The input Process;
Output : none;
Variables : Set E,Rp, Rpt, Output ri, rj ,

location q0, qc, qj , qf , qfj
;

1: do the translation procedures in Table 4;

Algorithm 4 GetResult(Activity)

Input : The input Activity;
Output : The set of possible results of Activity;
Variables : Set R, Ri, F ;boolean rf ;
1: R = ∅;
2: if Activity is the basic activity and

Activity 6= throw then

3: R = {OK};
4: if Activity = throw(n) then

5: R = {n};
6: if Activity is the structured activity and

Activity 6= while then

7: rf = false;
8: for each i = 1 to m do

9: Ri = GetResult(Activityi);
10: R = R ∪ Ri;
11: if OK /∈ Ri ∧ Activity = sequence then

12: R = R \ {OK};
13: break;
14: end

15: if OK /∈ Ri ∧ Activity = flow then

16: rf = true;
17: end

18: if rf = true ∧ Activity = flow then

19: R = R \ {OK};
20: end

21: if Activity = while(n, Activity1) then

22: R = GetResult(Activity1);
23: if Activity = scope(n, Activity1, ...) then

24: if Fault has catchAll then

25: R = {OK};
26: else

27: Ri = GetResult(Activity1);
28: F = {n1, ..., nm};
29: R = Ri \ F ;
30: if #R < #Ri then

31: R = R ∪ {OK}
32: end

33: end

34: return R;

• Supposing that the set operation can be done in
O(1) time, the maximum complexity of algorithm 1 is
O(k ∗ n ∗ n), where n is the number of XML elements
in the corresponding XML of the input Activity, and
k is the maximum number of results from Activity,
and this maximum complexity also exists in the algo-
rithms 2 and 3.

• Algorithm 4 is used for getting the result set of the
input Activity. We suppose that the successful result
is OK and all the others are exception names. For
the sequence activity, if one of its child activities only
results in exceptions, the sequence activity will result
in exceptions only, and the rest sequential child activ-
ities need not to be translated. If one child activity
of the flow activity only results exceptions, the flow
activity will not result in OK. For the scope activ-
ity, if the faultHandles has catchAll handle, the result
will be OK; if no catchAll handle exists, then the
result set will contain the exceptions that cannot be
handled, and if some exceptions can be handled, the

12

result set will contain OK. The maximum complexity
of algorithm 4 is O(n) time, where n is the number of
XML elements of the corresponding XML of the input
Activity.

• Algorithm 5 is used for getting the set of actual excep-
tions that can be caused by the input Activity. For
the sequence activity, if one of its child activities only
results in exceptions, the exceptions caused by the rest
sequential child activities will not be considered. The
maximum complexity of algorithm 5 is same as that
of algorithm 4.

Algorithm 5 GetException(Activity)

Input : The input Activity;
Output : The set of exceptions that can be resulted

from the Activity;
Variables : Set E,Ri;
1: E = ∅;
2: if Activity is the basic activity and

3: Activity 6= throw then

4: E = ∅;
5: if Activity = throw(n) then

6: E = {n};
7: if Activity is the structured activity and

Activity 6= while then

8: for each i = 1 to m do

9: Ri = GetResult(Activityi);
10: E = E ∪ (Ri \ {OK});
11: if OK /∈ Ri ∧ Activity = sequence then

12: break;
13: end

14: end

15: if Activity = while(n, Activity1) then

16: E = GetException(Activity1);
17: if Activity = scope(n,Activity1, ...) then

18: E = GetException(Activity1);
19: return E;

• Algorithm 6 is used for getting the result set of
the input Process. The maximum complexity of
algorithm 6 is O(n), where n is the number of XML
elements in the corresponding XML of the input
Process.

Algorithm 6 GetProcessResult(Process)

Input : The input Process;
Output : The set of possible results of Process;;
Variables : Set R,Ri;
1: if Fault has catchAll then

2: R = {OK};
3: else

4: Ri = GetResult(Activity);
5: F = {n1, ..., nm};
6: R = Ri \ F ;
7: if #R < #Ri then

8: R = R ∪ {OK}
9: end

10: return R;

• Algorithm 7 is used for getting the result of the in-
put Activity according to the outside result. The
maximum complexity of algorithm 7 is O(k), where

k = max{1, n ∗ j}, n is the number of XML elements
in the corresponding XML of the input Activity, and
if r is OK, then j = 0, else j = 1.

Algorithm 7 GetResult(Activity, r)

Input : The input Activity and the outside result r;
Output : The actual result of Activity;
Variables : Set R, ri;
1: if r = OK then

2: ri = OK
3: else

4: R = GetResult(Activity);
5: if r ∈ R then

6: ri = r;
7: else

8: ri = OK;
9: end

10: return ri;

4 Verification

For ensuring the high confidence of a Web service system,
we want to verify its BPEL description with respect to
some critical properties. The presented Web service inter-
face theory provides the foundation for verification. Af-
ter translating from BPEL to protocol interface, the LTS
interface behaviour model can be generated. Some veri-
fication operations can be taken on the LTS model. Be-
sides that, the substitutivity of BPEL processes can also
be checked.

4.1 Verification Method

Based on the transformation, some temporal properties
can be verified on protocol interface. The protocol property
must be formed in a → ϕ, where ϕ is the formula in Action
Set Computation Tree Logic (ASCTL) and a is a provided
action.

Definition 14 (Action Set Computation Tree Logic,
ASCTL). The ASCTL formula ϕ over an action set A

must meet the following syntactic rules, where D ⊆ A.

χ ::= true | false | D | ¬χ | χ ∧ χ′

ϕ ::= true | false | ¬ϕ | ϕ ∧ ϕ′ | Eγ | Aγ

γ ::= [ϕ{χ} U {χ′}ϕ′] | [ϕ{χ} U {χ′}ϕ′]

Compared to Action Computation Tree Logic (ACTL) in
Meolic et al. (2000), the syntax and semantics of ASCTL
are same except the following differences:

• for the semantics of ASCTL, the labels of transitions
in LTS model are action sets;

• A |= D iff A ∩ D 6= ∅, where A is the transition label
and D is the finite action set in the ASCTL formula.

In this section, we only give some key points of ASCTL
semantics. The detailed semantics definitions can be re-
ferred to appendix.

• The semantics model is the LTS that does not contain
any transition whose labeled action is internal action.

13

• The γ in ASCTL formula ϕ is the path formula.
Given a LTS model M = 〈S, I, L, δ〉 and a path
p = s1A1s2A2s3... of M , where si ∈ S, Ai ∈ L, i is
the natural number and i ≥ 1, the semantics of path
formula can be given as follows.

p |= [ϕ{χ} U {χ′}ϕ′] iff ∃i ≥ 1, ∀j ∈ [1, i)•

(Ai |= χ′∧si+1 |= ϕ′∧si |= ϕ∧sj |= ϕ∧Aj |= χ)

p |= [ϕ{χ} U {χ′}ϕ′] iff p |= [ϕ{χ} U {χ′}ϕ′]∨

(∀i ≥ 1 • (Ai |= χ ∧ si |= ϕ))

• The until connective U in ASCTL is strict until
(Reynolds, 2003), from which the next operator X can
be derived.

Many other ASCTL operators can be derived from the
basic ones, e.g. EF, AF, EG and AG, and the derivations
are same as Meolic et al. (2000).

Model Checking for (M �ϕϕϕϕ ?)

Transformation

Protocol

Interfaces

LTS M of action a invocation

Property a � ϕϕϕϕ

ASCTL formula ϕϕϕϕ

Result

Figure 5: The verification process of protocol property.

The complete verification process of protocol property
is shown in Figure 5. First, the corresponding LTS of the
property should be generated, and the LTS only contains
the transitions whose labels are external action sets. Next,
Model checking technique is used for protocol property ver-
ification. The method for model checking is same as Meolic
et al. (2000), which use symbolic model checking method
based on fixed point calculation for ACTL verification. It
is necessary to point out that the computation complexity
of ASCTL verification is same as that of ACTL verification
in Meolic et al. (2000) with the assumption that the time
for judging A |= D is the unit time. Currently, we use the
first version of Efficient Symbolic Tools (EST) (EST, 2006)
as our underlying experimental tool for verifying proper-
ties and LTS models whose containing action sets are single
action sets.

4.2 Methodology

The verification methodology is shown in Figure 6. The
Web service development process can be divided into many
steps, in some of which verification can be taken to ensure
the correctness of the system under development.

After getting requirements, the designer can begin to
design the service model according to the requirements.
During these steps, the designer can specify some protocol
properties that the implementation must satisfy. When

Requirements

Detailed Design

Implementation

Publish

Protocol Properties

BPEL

Descriptions

Protocol

Interfaces

LTS Models Verifying ASCTL

Formulae through

Model Checking

Specifying

Input
Translating

Transformation

Verified BPEL

Development Process

Development Process

Development

Process

ASCTL Formulae

Figure 6: The verification methodology.

finishing the design, the designer can give it to the im-
plementor, who can implement the actual Web services
by BPEL. After finishing implementation, the implemen-
tor can input the BPEL description from which the cor-
responding protocol interfaces can be translated. After
generating protocol interfaces, the LTS behaviour models
can be generated from the protocol properties specified by
the designer and the generated protocol interfaces. Using
the model checking technique, the protocol properties can
be verified on the implementation model to ensure the cor-
rectness and consistency. If some requirement properties
are not satisfied, the designer or implementor should mod-
ify its design or implementation to ensure the satisfaction.
After the preceding all steps, the verified BPEL description
can be deployed to some BPEL engines such as BPWS4J.
The actual Web services can be established and provide
services to the clients.

5 Case Study

This section demonstrates the formalization and verifica-
tion by two examples. The first example is used to ex-
emplify the multi-scope, default compensation and default
fault handling translation. The second example is a travel
agency Web service implemented in BPEL, and it can pro-
vide airline reservation, car rental and weather forecast
according to the country and city chosen by the client.

5.1 Example 1

The BPEL script skeleton is shown in Figure 7. The pro-
cess p1 has a scope activity s1 in which sequence activity
se contains five sequential activities. There is no explicit
faultHandlers for s1, and the process has a faultHandler
that contains catchAll handler only.

After translation, the protocol interface for the BPEL
in Figure 7 is given as follows.
{

〈p1, e〉 −→R (q0, Ls1, p1M, q1),(q1, 〈s1,e〉, ⊠),

〈s1, e〉 −→R (q3, 〈se,e〉, ⊠),

〈se, e〉 −→R (q5, 〈recevier ,OK〉, q6)

(q6, Ls11, s1M, q7),(q7, 〈scopes11,OK〉, q8),

(q8, Ls12, s1M, q13),(q13, 〈scopes12,OK〉, q14),

(q14, τ, ⊠),

〈scopes11, OK〉 −→R (q9, 〈invokea,OK〉, q10),(q10, τ,⊥),

14

<process name="p1">

<faultHandlers>
<catchAll>
<compensate scope="p1"/>

</catchAll>
</faultHandlers>
<scope name="s1">
<sequence name="se">
 <receive name="r"/>

 <scope name="s11">
 <compensationHandler>

<empty/>
</compensationHandler>

<invoke name="a"/>
</scope>
<scope name="s12">

 <compensationHandler>
<empty/>

</compensationHandler>
<invoke name="b"/>

</scope>
<throw faultName="e"/>
<reply name="c"/>

</sequence>
</scope>

</process>

Figure 7: BPEL script skeleton of Example 1.

〈scopes12,OK〉 −→R (q15, 〈invokeb,OK〉, q16),(q16, τ,⊥),

〈scopes11,OK〉 −→RC
(q11, τ, q12), (q12, τ,⊥),

〈scopes12,OK〉 −→RC
(q17, τ, q18), (q18, τ,⊥),

〈s1, e〉 −→RF
(q19, dLs1M, ⊠),

〈p1, e〉 −→RF
(q20, dLp1M,⊥)

}

The provided action set is {〈p1,e〉}. From the above
protocol interface, we can get the BPEL executions. After
inspecting the protocol interface behaviour, we find that
the fault handling behaviour of the catchAll handle in pro-
cess is equal to an empty activity. The reason is that
the scope s1 results in exception e and no successful com-
pleted scope is installed in the stack of process p1. In
addition, the default faultHandler for the scope s1 will call
the compensationHandlers for s12 and s11 in sequence.

5.2 Example 2

The interaction architecture of the travel agency Web ser-
vice is shown in Figure 9. In wsdl description, the provided
port of the travel agency is travelPT , which contains a
method bookTravel. Client can call the method to reserve
a travel. When a client requests for a travel reservation,
the BPEL process behind the travel agency Web service
begins to proceed the request. The travel agent will in-
voke the services of different airline companies according
to the client destination, car rental company and weather
forecast department to finish the reservation.

Call

Call

Call

Call

Client Call

Call

Travel Agency

BPEL4WS

Process

British Airline

BPEL4WS

Process

Canada Airline

BPEL4WS

Process

Car Rental

BPEL4WS

Process

Weather

BPEL4WS

Process

US Airline

BPEL4WS

Process

Figure 9: Orchestration architecture of the travel agency
Web service.

According to the preceding description, the BPEL pro-
cess is an executable process. As a shorthand, the BPEL
specification is shown in Figure 8. The execution struc-
ture of the process is shown in Figure 10. The solid arrow
lines represent the sequential invocations. The middle big
rectangle represents flow activity. The first activity in the
flow is a switch activity. The dotted arrow lines represent
links in the flow.

Switch

britishAirlines

canadaAirlines

usAirlines

Activity2

carRental

Activity3

weatherforecast

Activity4

assign1

receive

assign2

reply

Figure 10: The structure of the travel agency BPEL pro-
cess.

The meaning of the executable process is given as fol-
lows. After receiving the reservation request from a client,
the travel agency will invoke the airline, car rental, weather
forecast service and do the assign activities in parallel. Ac-
cording to the destination the client wants to go, the travel
agent invokes different airline services. If client wants to
travel to US, then usAirlines Web service will be invoked.
If client wants to travel to Canada, then canadaAirlines
Web service will be invoked, otherwise only britishAirlines
Web service will be invoked. At the same time as the reser-
vation takes place, the weather Web service is contacted,
and it provides the weather forecast of the client destina-
tion. After the reservation has been completed, the car
rental Web service might be invoked, and it happens only
if the destination city is in Canada or US and is not New
York city. After the flow activity completes, the reserva-
tion result will be assigned and replied to the client.

Based on the translation methods in Section 4, we
can translate the BPEL description which has no com-
pensation or fault handler into the following protocol
interface. Because there is no compensation or fault
handler, and there is no information about exceptions, no
action is exception action. The provided action set D is
{〈BookTravel,OK 〉}.
{

〈BookTravel,OK〉 −→R (q0, 〈travelSeq,OK〉, q1),(q1, τ,⊥),

〈TravelSeq,OK〉 −→R (q2, 〈bookReceive,OK〉, q3),

(q3, 〈flow1,OK〉, q4),

(q22, 〈assign2,OK〉, q23),

(q23, 〈BookReply,OK〉,⊥),

〈flow1, OK〉 −→R (q5,⊓{〈branch1, OK〉, 〈branch2, OK〉,

〈branch3, OK〉, 〈branch4, OK〉},⊥),

〈branch1, OK〉 −→R (q6, 〈switch1, OK〉, q7), (q7, τ,⊥),

〈switch1,OK〉 −→R (q8,⊔{〈branch5, OK〉, 〈branch6, OK〉,

〈branch7, OK〉},⊥),

〈branch5, OK〉 −→R (q9, 〈invokeca, OK〉, q10),

15

<process name="BookTravel"> …

<sequence name="travelSeq">

<receive operation="bookTravel" name="bookReceive"/>

<flow>

<links>

<link name="travel-canada"/>

<link name="travel-us"/>

<link name="rent-to-assign"/>

</links>

<switch>

<case condition = "…">

<invoke name="invokeca" operation="makeReservation" …>

<source linkName="travel-canada" />

</invoke>

</case>

<case condition = "…">

<invoke name="invokeam" operation="makeReservation" …>

<source linkName="travel-us" transitionCondition="…"/>

</invoke>

</case>

<otherwise>

<invoke name="invokebr" operation="makeReservation" />

</otherwise>

</switch>

<invoke name="invokeweather" operation="queryWeather"/>

<invoke name="invokerental" operation="makeCarRental">

<target linkName="travel-canada"/>

<target linkName="travel-us"/>

<source linkName="rent-to-assign"/>

</invoke>

<assign>

<target linkName="rent-to-assign" />

<copy>...</copy>

</assign>

</flow>

<assign> … </assign>

<reply operation="bookTravel" name="BookReply"/>

</sequence>

</process>

Figure 8: BPEL specification of the travel agency service.

<process name="BookTravel"> …

<faultHandlers>

 <catch name="NOCAR">

 <invoke name="apologize" …/>

 </catch>

</faultHandlers>

<sequence name="travelSeq">

<receive operation="bookTravel" name="bookReceive"/>

<scope name="s1">

<flow>

<links>

<link name="travel-canada"/>

<link name="travel-us"/>

<link name="rent-to-assign"/>

</links>

<switch>

<case condition = "…">

<invoke name="invokeca" operation="makeReservation" …>

<source linkName="travel-canada" />

<compensationHandler>

<invoke name="returnca" />

</compensationHandler>

</invoke>

</case>

<case condition = "…">

<invoke name="invokeam" operation="makeReservation" …>

<source linkName="travel-us" transitionCondition="…"/>

<compensationHandler>

<invoke name="returnam" />

</compensationHandler>

</invoke>

</case>

<otherwise>

<invoke name="invokebr" operation="makeReservation">

<compensationHandler>

<invoke name="returnam" />

</compensationHandler>

</invoke>

</otherwise>

</switch>

<invoke name="invokeweather" operation="queryWeather"/>

<scope name="s2">

 <sequence>

<invoke name="invokerental" operation="makeCarRental">

<target linkName="travel-canada"/>

<target linkName="travel-us"/>

<source linkName="rent-to-assign"/>

</invoke>

<switch>

<case …><throw faultName="NOCAR"/></case>

<otherwise><empty /></otherwise>

 </switch>

 </sequence>

</scope>

<assign>

<target linkName="rent-to-assign" />

<copy>...</copy>

</assign>

</flow>

</scope>

<assign> … </assign>

<reply operation="bookTravel" name="BookReply"/>

</sequence> …

</process>

Figure 11: BPEL specification of the travel agency service with transaction.

16

(q10,⊓{〈link1, OK〉},⊥),

〈link1,OK〉 −→R (q25, ℓ, 〈q17, 7〉),

〈branch6,OK〉 −→R (q11, 〈invokeam, OK〉, q12),

(q12,⊓{〈link2, OK〉},⊥),

〈link2,OK〉 −→R (q26, ℓ, 〈q17, 7〉),

〈branch7,OK〉 −→R (q13, 〈invokebr, OK〉, q14), (q14, τ,⊥),

〈branch2,OK〉 −→R (q15, 〈invokeweather, OK〉, q16), (q16, τ,⊥),

〈branch3,OK〉 −→R (〈q17, 7〉, 〈invokerental, OK〉, q18),

(q18,⊓{〈link3, OK〉},⊥),

〈link3,OK〉 −→R (q27, ℓ, 〈q19, 7〉),

〈branch4,OK〉 −→R (〈q19, 7〉, 〈assign1, OK〉, q20), (q20, τ,⊥),

〈assign1,OK〉 −→R ⊥,

〈assign2,OK〉 −→R ⊥,

〈BookTravel,OK〉 −→RC
(q24, ̂LBookTravelM,⊥)

}

To consider the case further, we make the modifications
to illustrate the multi-scope compensation and fault han-
dling. Supposing that the car rental company may report
that there is no car for renting, the reservation process
will fail in this situation. The new BPEL description
is shown in Figure 11. The global fault handler for the
reservation exception will send an apologetic letter to the
client. The compensation in child scope for airline switch
activity is to recede the airline ticket. The new protocol
interface is given as follows, and the provided action set D
is {〈BookTravel,OK 〉, 〈BookTravel,NOCAR〉}. It is necessary
to point out that the translated orchestration process
needs a new Web service for sending letters.
{

〈BookTravel,OK〉 −→R (q0, 〈travelSeq,OK〉, q1),(q1, τ,⊥),

〈TravelSeq,OK〉 −→R (q2, 〈bookReceive,OK〉, q3),

(q3, Ls1, BookTravelM, q4),

(q4, 〈scopes1,OK〉, q5),

(q5, 〈assign2,OK〉, q53),

(q53, 〈BookReply,OK〉,⊥),

〈scopes1, OK〉 −→R (q6, 〈flow1, OK〉, q7), (q7, τ,⊥),

〈flow1,OK〉 −→R (q8,⊓{〈branch1, OK〉, 〈branch2, OK〉,

〈branch3, OK〉, 〈branch4, OK〉},⊥),

〈branch1,OK〉 −→R (q9, 〈switch1, OK〉, q10), (q10, τ,⊥),

〈switch1,OK〉 −→R (q11,⊔{〈branch5, OK〉, 〈branch6, OK〉,

〈branch7, OK〉},⊥),

〈branch5,OK〉 −→R (q12, Ls11, s1M, q13), (q13, 〈s11, OK〉, q14),

(q14, τ,⊥),

〈s11,OK〉 −→R (q15, 〈invokeca, OK〉, q16),

(q16,⊓{〈link1, OK〉},⊥),

〈link1,OK〉 −→R (q45, ℓ, 〈q43, 7〉),

〈branch6,OK〉 −→R (q19, Ls12, s1M, q20), (q20, 〈s12, OK〉, q21),

(q21, τ,⊥),

〈s12,OK〉 −→R (q22, 〈invokeam, OK〉, q23),

(q23,⊓{〈link2, OK〉},⊥),

〈link2,OK〉 −→R (q52, ℓ, 〈q43, 7〉),

〈branch7,OK〉 −→R (q27, Ls13, s1M, q28), (q28, 〈s13, OK〉, q29),

(q29, τ,⊥),

〈s13,OK〉 −→R (q30, 〈invokebr, OK〉, q31), (q31, τ, q19),

〈branch2,OK〉 −→R (q34, 〈invokeweather, OK〉, q35), (q35, τ,⊥),

〈branch3,OK〉 −→R (q36, Ls2, s1M, q37), (q37, 〈scopes2, OK〉, q38),

(q38, τ,⊥),

〈scopes2, OK〉 −→R (q39, 〈sequence1, OK〉, q40), (q40, τ,⊥),

〈sequence1, OK〉 −→R (q41, 〈invokelink , OK〉, q42),

(q42, 〈switch2, OK〉,⊥),

〈invokelink,OK〉 −→R (〈q43, 7〉, 〈invokerental, OK〉, q44),

(q44,⊓{〈link3, OK〉},⊥),

〈link3, OK〉 −→R (q60, ℓ, 〈q50, 7〉),

〈switch2,OK〉 −→R (q46,⊔{〈branch8, OK〉},⊥),

〈branch8, OK〉 −→R (q47, τ, q48), (q48, τ,⊥),

〈branch4, OK〉 −→R (〈q50, 7〉, 〈assign1, OK〉, q51), (q51, τ,⊥),

〈assign1,OK〉 −→R ⊥,

〈assign2,OK〉 −→R ⊥,

〈BookTravel,NOCAR〉 −→R (q54, 〈travelSeq,NOCAR〉, q55),

(q55, τ,⊥),

〈TravelSeq,NOCAR〉 −→R (q56, 〈bookReceive,OK〉, q57),

(q57, Ls1, BookTravelM, q58),

(q58, 〈scopes1,NOCAR〉, ⊠),

〈scopes1,NOCAR〉 −→R (q59, 〈flow1, NOCAR〉, ⊠),

〈flow1, NOCAR〉 −→R (q61,⊓{〈branch1, OK〉, 〈branch2, OK〉,

〈branch3, NOCAR〉, 〈branch4, OK〉},⊠),

〈branch3, NOCAR〉 −→R (q62, Ls2, s1M, q63),

(q63, 〈scopes2, NOCAR〉, ⊠),

〈scopes2,NOCAR〉 −→R (q65, 〈sequence1, NOCAR〉, ⊠),

〈sequence1, NOCAR〉 −→R (q67, 〈invokelink , OK〉, q68),

(q68, 〈switch2, NOCAR〉, ⊠),

〈switch2,NOCAR〉 −→R (q69,⊔{〈branch8, NOCAR〉}, ⊠),

〈branch8, NOCAR〉 −→R (q70, τ, ⊠),

〈s11,OK〉 −→RC
(q17, 〈returnca, OK〉, q18), (q18, τ,⊥),

〈s12,OK〉 −→RC
(q24, 〈returnam, OK〉, q25), (q26, τ,⊥),

〈s13,OK〉 −→RC
(q32, 〈returnbr, OK〉, q33), (q33, τ,⊥),

〈scopes2,OK〉 −→RC
(q49, dLs2M,⊥),

〈scopes1,OK〉 −→RC
(q71, dLs1M,⊥),

〈BookTravel,OK〉 −→RC
(q72, ̂LBookTravelM,⊥),

〈scopes1,NOCAR〉 −→RF
(q73, dLs1M, ⊠),

〈scopes2,NOCAR〉 −→RF
(q74, dLs2M, ⊠),

〈BookTravel,NOCAR〉 −→RF
(q75, 〈apologize, OK〉,⊥)

}

After translation, some protocol properties can be ver-
ified on the travel agency Web service system. The pro-
tocol properties and the corresponding verification results
are shown in Table 5. The meanings of the properties can
be given as follows: 1) the success of travel reservation
will always lead to the success of ticket reservation; 2) the
success of travel reservation will always lead to the ticket
reservation to the United States, and the reason of the
property unsatisfying is that the travel to the city outside
of the United States will not reserve the United States
traveling tickets; 3) the travel agency will always apolo-
gize to the client for the booking failure resulted from the
car rental failure; 4) the ticket return must not occur be-
fore the ticket reservation; 5) the apology must not occur
before the ticket return to US airline company, and the
reason of the property unsatisfying is same as that of the
second property; 6) if the ticket will return to US airline
company, the apology must not occur before it.

17

Protocol Property Result

〈BookTravel,OK〉 → AF{{〈switch,OK〉}} True

〈BookTravel,OK〉 → AF{{〈invokeam,OK〉}} False

〈BookTravel,NOCAR〉 → AF{{〈apologize,OK〉}} True

〈BookTravel,NOCAR〉 → True
¬ E [{¬{〈invokeam,OK〉}} U {{〈returnam,OK〉}}]

〈BookTravel,NOCAR〉 → False
¬ E [{¬{〈returnam,OK〉}} U {{〈apologize,OK〉}}]

〈BookTravel,NOCAR〉 → ¬ E [{¬ {〈returnam,OK〉}} True
U {{〈apologize,OK〉}} EF {{〈returnam,OK〉}}]

Table 5: The protocol properties and the corresponding
verification results.

6 Related Work

There are several work on formalizing business transac-
tions (Bocchi et al., 2003; Butler et al., 2005; Butler and
Ripon, 2005; Bruni et al., 2005). Bocchi et al. (2003)
propose πt-calculus that extends asynchronous π-calculus
with some transaction calculi. Butler et al. (2005) propose
StAC languages to specify compensating business trans-
actions. Butler and Ripon (2005) extend communicat-
ing sequential process (CSP) to enable the description of
long-running transactions. Bruni et al. (2005) propose an
enhanced Sagas language for specifying compensations in
flow composition languages. All of these work use pro-
cess algebra as fundamental theory. We share the ideas
of the parallel exception synchronization policy in their
work. Compared with these approaches, protocol interface
is more flexible in its fault handling and compensation def-
inition method, through which one can define not only the
user-defined fault handling behaviour but also the invoca-
tion of the default fault handling behaviour.

There are many research on formalization and verifica-
tion of BPEL, which can be divided by the underlying
semantic theory as follows.

• Petri nets: Verbeek and van der Aalst (2005) use
WF-nets (workflow nets) to formalize the BPEL de-
scription, and a mapping from BPEL process model to
WF-net was proposed. Ouyang et al. (2005) present a
mapping from BPEL constructs into Petri nets struc-
tures, and the mapping covers almost all the con-
structs in BPEL such as fault handling, compensation,
link, etc.;

• Process Algebra: Foster et al. (2004) use Finite
State Process (FSP) to formalize BPEL, and the spec-
ifications are verified on LTSA WS-Engineer, which
can perform safety and liveness analysis, and in-
terface compatibility checking. In Koshkina (2003),
BPEL-Calculus is proposed to formalize BPEL, and
the description can be verified on Concurrency Work-
Bench (CWB) by a syntax compiler plug-in for
BPEL-Calculus;

• Automata: Fu et al. (2004) use guarded finite state
automata (GFSA) to describe service composition and
formalize BPEL, and the GFSA description can be

translated to Promela which can be verified on SPIN.
In Pistore et al. (2005), State Transition System (STS)
is used to formalize the BPEL abstract process, and
some requirement formulae formed in EaGLe can be
verified on the STS model using the model checker
NuSMV. In Yan et al. (2005), Discrete-Event Systems
(DES) is used to formalize BPEL description for mon-
itoring;

• Abstract State Machine (ASM): Fahland (2005)
gives a complete abstract operational semantics for
BPEL using ASM. The work in Fahland (2005) incor-
porates most elements of BPEL such as data handling,
fault handling and compensation based on the work
in Farahbod (2004).

Except for the work in Ouyang et al. (2005) and (Fahland,
2005; Farahbod, 2004), the above work is deficient in mod-
eling transaction behaviour of orchestration. The mul-
tiple scope, fault handling and compensation features in
BPEL are not well supported. These analysis or monitor-
ing methods cannot deal with the transaction behaviour in
BPEL. In this paper, we propose a generic underlying for-
malism that can deal with those BPEL constructs nicely
as well as a corresponding verification method, and bridge
the gap between BPEL and our formalism. The verifi-
cation method is automatic and can effectively verify the
transaction behaviour of BPEL description. Ouyang et al.
(2005) do not taken into account the default fault handling
behaviour that can be nicely formalized by our formalism.
Compared with the work in Fahland (2005), only the con-
trol flow in BPEL is considered in our work at the moment,
and our approach provides the transaction support in the
underlying formalism directly.

In addition, there are several work on the formalism cus-
tomizing for BPEL (Butler et al., 2005; Pu et al., 2006; Qiu
et al., 2005). Butler et al. (2005) extend StAC with indexed
compensation task (StACi) to formalize the named com-
pensation behaviour. Qiu et al. (2005) propose a formal
operational semantics for a subset of constructs in BPEL
by a intermediate language. The work in Pu et al. (2006)
extends the language in Qiu et al. (2005) to enable the se-
mantic interpretation for the link activity in BPEL. Com-
pared with these approaches, our approach is based on the
Web service interface theory.

7 Conclusion and Future Work

This paper presents an improved formal foundation and a
formalization and verification method for service orches-
tration in BPEL. Through the protocol interface, one can
specify the nested transaction block, which can be weaved
with the user-defined fault handling behaviour based on
the ideas of AOP. Especially, the user-defined fault han-
dling behaviour can also invoke the default compensation
behaviour of the transaction block. With the protocol in-
terface, a formalization of orchestration in BPEL is pre-
sented in a transformational way. For a Web service imple-

18

mented in BPEL, the description of invocation process can
be translated into the Web service protocol interface au-
tomatically. Based on the formalism and transformation,
protocol properties specified in ASCTL can be verified and
a verification methodology is proposed to ensure the high
confidence in development.

With the help of the Web service protocol interface
and the translation algorithms, scope-based fault handling
and compensations mechanism in BPEL can be formalized
nicely and rigorously, and the confidence of BPEL descrip-
tion can be improved through the automatic verification
process.

The ongoing and future work are to investigate an inte-
grated formalism for both of the service orchestration and
choreography, and to improve our formalism for specifying
more elements of BPEL such as data handling.

ACKNOWLEDGMENT

Supported by the National Natural Science Foundation
of China under Grant No.60233020, 60673118, 90612009;
the National High-Tech Research and Development Plan
of China under Grant No.2005AA113130, 2006AA01Z429;
the National Grand Fundamental Research 973 Program
of China under Grant No.2005CB321802; Program for
New Century Excellent Talents in University under Grant
No.NCET-04-0996.

REFERENCES

Arkin, A. et al. (2002) ‘Web Service Choreography Inter-
face Version 1.0’, http://www.w3.org/TR/wsci/.

Beyer, D., Chakrabarti, A. and Henzinger, T.A. (2005a)
‘Web Service Interfaces’, 14th International World
Wide Web Conference (WWW’05), pp.148–159, Chiba,
Japan.

Beyer, D., Chakrabarti, A. and Henzinger, T.A. (2005b)
‘An Interface Formalism for Web Services’, 1st Interna-
tional Workshop on Foundations of Interface Technolo-
gies, San Francisco, CA.

Bocchi, L., Laneve, C. and Zavattaro, G. (2003) ‘A Cal-
culus for Long Running Transactions’, 6th IFIP WG
6.1 International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOODS’03),
LNCS 2884, pp.124–138, Paris, France.

Bruni, R., Melgratti, H. and Montanari, U. (2005) ‘The-
oretical Foundations for Compensations in Flow Com-
position Languages’, 32th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages
(POPL’05), pp.209–220, California, USA.

Butler, M., Ferreira, C. and Ng, M.Y. (2005) ‘Precise Mod-
elling of Compensating Business Transactions and its

Application to BPEL’, Journal of Universal Computer
Science, Vol. 11, No. 5, pp.712–743.

Butler, M. and Ripon S. (2005) ‘Executable Semantics
for Compensating CSP’, 2nd International Workshop
on Web Services and Formal Methods (WS-FM’05),
LNCS 3670, pp.243–256, Versailles, France.

Chen, Z.B., Wang, J., Dong, W. and Qi, Z.C. (2006a)
‘An interface model for service-oriented software archi-
tecture’, Journal of Software, Vol. 17, No. 7, pp. 1459-
1469.

Chen, Z.B., Wang, J., Dong, W. and Qi, Z.C. (2006b)
‘Towards Formal Interfaces for Web Services with
Transactions’, 2nd International Conference On Signal-
Image Technology & Internet-based Systems (SITIS’06),
pp.218-229, Hammamet, Tunisia.

Curbera, F. et al. (2003) ‘Business Process Exe-
cution Language For Web Services Version 1.1’,
ftp://www6.software.ibm.com/software/developer/
library/ws-bpel.pdf.

de Alfaro, L. and Henzinger, T.A. (2001) ‘Interface au-
tomata’, 8th European Software Engineering Confer-
ence held jointly with 9th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing (ESEC/FSE’01), pp.109–120, Vienna, Austria.

EST (2006) ‘Homepage of EST’, http://lms.uni-mb.si/EST/.

Farahbod, R. (2004) ‘Extending and Refining an Ab-
stract Operational Semantics of the Web Services Archi-
tecture for the Business Process Execution Language’,
[MS. Thesis], Simon Fraser University, Burnaby B.C.,
Canada.

Fahland, D. (2005) ‘Complete Abstract Operational Se-
mantics for the Web Service Business Process Execu-
tion Language’, Technical Report, Humboldt University
at Berlin.

Foster, H., Uchitel, S., Magee, J. and Kramer, J.
(2004) ‘Compatibility for Web Service Choreography’,
3rd IEEE International Conference on Web Services
(ICWS’04), pp.738–741, San Diego, CA.

Fu, X., Bultan, T. and Su, J. (2004) ‘Analysis of Inter-
acting BPEL Web Services’, 13th International World
Wide Web Conference (WWW’04), pp.621–630, New
York, NY, USA.

IBM (2004) ‘Homepage of BPWS4J’,
http://www.alphaworks.ibm.com/tech/bpws4j.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C.V., Loingtier, J.M. and Irwin, J. (1997)
‘Aspect-Oriented Programming’, 11th European Con-
ference on Object-Oriented Programming (ECOOP’97),
LNCS 1241, pp.220–242, Finland.

19

Koshkina, M. (2003) ‘Verification of Business Processes for
Web Services’, [MS. Thesis], York University.

Leymann, F. (2001) ‘Web Services Flow Language Version
1.0’, http://www-306.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf.

Little, M. (2003) ‘Transactions and Web Services’, Com-
munication of the ACM, Vol. 46, No. 10, pp.49–54.

Meolic, R., Kapus, T. and Brezocnik, Z. (2000) ‘Ver-
ification of Concurrent Systems using ACTL’, The
IASTED International Conference of Artificial Intelli-
gence (AI’2000), pp.663–669, Innsbruck, Austria.

Ouyang, C., van der Aalst, W.M.P., Breutel, S., Du-
mas, M., ter Hofstede, A.H.M. and Verbeek, H.M.W.
(2005) ‘Formal Semantics and Analysis of Control Flow
in WS-BPEL’, BPM Center Report BPM-05-15, BPM-
center.org.

Peltz, C. (2003) ‘Web Service orchestration and choreog-
raphy: a look at WSCI and BPEL4WS - Feature’, Web
Services Journal, Vol. 03, No. 7.

Pistore, M., Traverso, P., Bertoli, P. and Marconi, A.
(2005) ‘Automated Synthesis of Composite BPEL4WS
Web Services’, 4rd IEEE International Conference on
Web Services (ICWS’05), pp.293–301, Orlando, FL,
USA.

Pu, G.G., Zhu, H.B., Qiu, Z.Y., Wang, S.L, Zhao, X.P.
and He, J.F. (2006) ‘Theoretical Foundations of Scope-
based Compensable flow Languange for Web Service’,
8th IFIP WG 6.1 International Conference on For-
mal Methods for Open Object-Based Distributed Systems
(FMOODS’06), LNCS 4037, pp.251–266, Bologna, Italy.

Qiu, Z.Y., Wang, S.L, Pu, G.G. and Zhao, X.P. (2005)
‘Semantics of BPEL4WS-Like Fault and Compensation
Handling’, International Symposium of Formal Methods
Europe, LNCS 3528, pp.350–365, Newcastle, UK.

Reynolds, M. (2003) ‘The complexity of the temporal logic
with ”until” over general linear time’, Journal of Com-
puter and System Sciences , Vol. 66, No. 2, pp. 393-426.

Thatte, S. (2001) ‘XLANG Web Ser-
vices for Business Process Design’,
http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/.

Verbeek, H.M.W. and van der Aalst, W.M.P. (2005) ‘An-
alyzing BPEL Processes using Petri Nets’, 2nd Interna-
tional Workshop on Applications of Petri Nets to Coor-
dination, Workflow and Business Process Management
at the Petri Nets’05, pp.59-78.

Yan, Y.H., Cordier, M.O., Pencolé, Y. and Grastien, A.
(2005) ‘Monitoring Web Service Networks in a Model-
based Approach’, 3rd European Conference on Web Ser-
vices (ECOWS’05), pp.192–203, Växjö, Sweden.

Appendix: ASCTL Semantics

The ASCTL formula set over an action set A can be
given by the following grammar, where D ⊆ A.

χ ::= true | false | D | ¬χ | χ ∧ χ′

ϕ ::= true | false | ¬ϕ | ϕ ∧ ϕ′ | Eγ | Aγ

γ ::= [ϕ{χ} U {χ′}ϕ′] | [ϕ{χ} U {χ′}ϕ′]

The formula χ is action set formula, ϕ is state formula
and γ is path formula. Given an LTS M = 〈S, I, L, δ〉,
an action set A ∈ L, a state s ∈ S and a path p =
s1A1s2A2s3..., the satisfaction of action formula χ by A
(denoted by A |= χ), state formula ϕ by s (denoted by
s |= ϕ) and path formula γ by p (denoted by p |= γ) is
defined by the following semantic rules.

A |= true always
A |= false never
A |= D iff A ∩ D 6= ∅
A |= ¬χ iff A 2 χ
A |= χ ∧ χ′ iff A |= χ ∧ A |= χ′

s |= true always
s |= false never
s |= ¬ϕ iff s 2 ϕ
s |= ϕ ∧ ϕ′ iff s |= ϕ ∧ s |= ϕ′

s |= Eγ iff there exists a path
p = s1A1s2A2s3... where
s1 = s ∧ p |= γ

s |= Aγ iff for each path
p = s1A1s2A2s3... where
s1 = s, p |= γ

p |= [ϕ{χ} U {χ′}ϕ′] iff ∃i ≥ 1, ∀j ∈ [1, i)•
(Ai |= χ′ ∧ si+1 |= ϕ′∧
si |= ϕ ∧ sj |= ϕ ∧ Aj |= χ)

p |= [ϕ{χ} U {χ′}ϕ′] iff p |= [ϕ{χ} U {χ′}ϕ′]∨
(∀i ≥ 1 • (Ai |= χ ∧ si |= ϕ))

As mentioned in Section 5.1, the syntax and semantics
of ASCTL are same as ACTL in Meolic et al. (2000) except
few differences, the ASCTL derivations from the above op-
erators and connectives can be referred to Meolic et al.
(2000) too.

20

