
A Runtime Verification Based Trace-Oriented
Monitoring Framework for Cloud Systems

Jingwen Zhou∗†, Zhenbang Chen∗†, Ji Wang∗†, Zibin Zheng‡§, and Wei Dong†
∗Science and Technology on Parallel and Distributed Processing Laboratory,

National University of Defense Technology, Changsha, China
†College of Computer, National University of Defense Technology, Changsha, China

‡Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
§Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China

Email: {jwzhou, zbchen}@nudt.edu.cn

Abstract—Cloud computing provides a new paradigm for
resource utilization and sharing. However, the reliability pro-
blems, like system failures, often happen in cloud systems
and bring enormous loss. Trace-oriented monitoring is an
important runtime method to improve the reliability of cloud
systems. In this paper, we propose to bring runtime verification
into trace-oriented monitoring, to facilitate the specification
of monitoring requirements and to improve the efficiency of
monitoring cloud systems. Based on a data set collected from
a cloud storage system in a real environment, we validate
our approach by monitoring the critical properties of the
storage system. The preliminary experimental results indicate
the promise of our approach.

Keywords-Trace-Oriented Monitoring; Runtime Verification;
Failure Detection; Cloud Computing

I. INTRODUCTION

Cloud computing denotes an on-demand way of manag-
ing and sharing the system resources of different levels.
Nowadays, many cloud services are provided in public.
However, the reliability problem of cloud systems challenges
the success of cloud computing. For example, in August
2013, the systems of Amazon, Apple, Google and Microsoft
crashed successively, in which Google lost 550, 000 dollars
in 5 minutes, while Amazon lost 7 million dollars in 100
minutes [1]. Actually, cloud systems are usually large-scale
distributed systems, which naturally need runtime methods
to improve the reliability besides the methods in design
phases. User request trace-oriented monitoring [2] is an
important one of such runtime methods, in which traces log
the information of handling user requests crossing different
nodes of a cloud system, such as function invocations and
communications between nodes. Based on traces, many
activities can be carried out, including system understanding,
failure detection, fault diagnosis, system recovery, etc.

Currently, many trace-oriented monitoring frameworks,
such as Dapper [3] and Zipkin [4], are used to monitor real
world large-scale cloud systems. As we understand, there are
following two aspects that need to be further investigated.
1) The method for specifying monitoring requirements. The
developers and the administrators are pretty familiar with

the related cloud systems and can accurately describe the
system features. The computers have the ability of exploring
latent behaviors of cloud systems. Therefore, the monitoring
requirements, both from manual input and machine learning,
are very helpful for system monitoring. However, existing
specification methods are usually not sufficient to accurately
and flexibly express these monitoring requirements. For
example, Pip [5] describes the programmer expectations with
a declarative language, which is weak in expressing complex
features, e.g., temporal requirements. In IRONModel [6],
the knowledge about the queuing theory and entropy test
is required in specifying monitoring requirements, which
is a tough process for general users. 2) The efficiency of
monitoring. The public service of a cloud system usually
receives thousands of user requests in a very short time. A
request may be handled in a complex process. For example, a
simple Google search request will trigger more than 200 sub-
requests and cross hundreds of servers. Therefore, massive
trace data would be produced in cloud systems, which
is a real problem for real-time monitoring. Actually, the
efficiency of monitoring challenges all existing monitoring
methods.

To facilitate these issues, we propose a framework that
brings runtime verification (RV) into the field of trace-
oriented monitoring in cloud systems. The monitoring re-
quirements of cloud systems can be specified by formal
specification languages, such as Finite State Machine (FSM),
Linear Temporal Logic (LTL) [7], and the temporal logic
of Calls and Returns (CaRet) [8]. The monitors for these
critical requirement properties can be effectively generated,
and then the monitoring of traces can be efficiently carried
out. Based on a data set, called TraceBench [9], collected on
a real world cloud storage system, i.e., Hadoop Distributed
File System (HDFS) [10], we use our framework to moni-
tor different representative kinds of HDFS properties. The
preliminary experimental results are promising.

The rest of this paper is structured as follows. In Sec-
tion II, we introduce trace-oriented monitoring. Section III
describes our approach and some preliminary results, and



Figure 1. A trace sample [9]

Section IV concludes the paper and presents the future work.

II. TRACE-ORIENTED MONITORING

Trace-oriented monitoring takes user request traces, or
simply called traces, as data source. A trace, tracking the
execution path of a user request, consists of events and
the relationships [11], where an event records the details
of one execution step in handling the user request, such
as function name, execution latency and result, and a re-
lationship records the causal relation between two events,
like local and remote function calls. With the events and
the relationships, a trace can be constructed into a trace
tree. Fig. 1 is a trace sample in the form of a trace tree,
recording the execution process of a move request in HDFS,
i.e., fs -mv. The process involves two machines: the client,
who sends the move request to HDFS, and the namenode,
which is the master server for managing the files in HDFS.
The client first gets the information of the target file from
the namenode using a Remote Procedure Call (RPC), i.e.,
RPC: getFileInfo, to check if the file exists, and then rename
the file. Five events, corresponding to the five nodes in the
tree, record the execution details of five functions. The edges
represent the relationships between events. For example, the
edge a expresses a local function call, since the father node
and the child node are produced on a same machine, and
the edge c represents a remote function call, since node 2
and node 4 belong to different machines. Naturally, a trace
can be transferred to a linear event sequence using different
methods, such as the Depth First Search (DFS) or using
Call (c) and Return (r) to describe an event. For example,
the trace in Figure 1 can be expressed as “1,2,4,3,5” using
DFS, or “c1c2c4r4r2c3c5r5r3r1” using the call and return
method.

The traditional resource-oriented monitoring methods
record the resource consumption information of systems,
such as memory usage and CPU speed. In contrast, traces
record some more find-grained information about system
executions, such as remote function calls and execution
time. Basing on traces, some more fine-grained monitoring

Cloud System

Tracing System

properties

traces

results
Preprocess

Monitor Generator

Monitors

PDB

Figure 2. Basic approach

activities can be carried out, including stateful requirement
monitoring, performance problem detection and diagnosis,
complex feature understanding, etc.

III. USING RV IN TRACE-ORIENTED MONITORING

In this section, we first introduce our basic approach, and
then describe the trace data set supporting this research and
some critical properties we found in this data set, which
validate our idea. Lastly, we give some experimental results
that indicate the promise of our work.

A. Basic Approach

Figure 2 shows the basic approach of our framework.
The monitoring requirements of target cloud systems are
firstly expressed as properties, using the various specification
languages in RV. And the properties are then stored in the
property database (PDB). Using the method of generating
monitors in RV [12], efficient monitors can be generated
for the properties in PDB. On the other hand, when the
cloud system runs, traces of system running are collected
by certain tracing systems, e.g., X-Trace [13]. Before de-
livered to the monitors, some preprocess are needed, such
as linearizing using DFS and removing irrelevant events.
After that, the traces are verified by related monitors to
check whether the corresponding properties are violated
or satisfied. The monitoring results can then be induced
by the checking results, such as system running normally,
happening system failures or appearing performance faults.
To improve the efficiency and correctness, it also need some
specific optimizations, such as sampling, voting and multi-
thread, which we leave to our future work.

With a data set of traces collected from HDFS, we
conclude some representative critical temporal properties
of HDFS, and check the traces in the data set with these
properties. The preliminary results indicate that the monitors
can efficiently and correctly identify the failed traces.

B. Data Set and Properties

HDFS [10] is a widely used cloud system of file storage.
In HDFS, a file is divided into many data blocks that



are repetitively stored in different nodes (called datanodes).
And there also exists a master node, called namenode,
for managing the name space of files. The user requests
of HDFS can mainly be classified into three kinds: the
write request for uploading files to HDFS, the read request
for downloading files, and the rpc request, which only
contains the RPC operations (like Figure 1 shows) for file
managements, including querying, removing, renaming, etc.

In [9], a fine-grained trace data set, called TraceBench, is
collected in an HDFS system deployed on a real environ-
ment considering different scales, such as cluster size, user
request type and speed. To simulate real scenarios, various
kinds of faults are also injected during collection, including
both function faults and performance faults, such as data
block loss and network slowdown. Therefore, the traces in
this data set contain the system behaviors of both normally
running and abnormally running. TraceBench consists of
three classes: the Normal class, in which traces are collected
when HDFS runs normally; the Abnormal class, in which a
certain permanent fault is injected during collecting; and the
Combination class, with some faults being randomly injected
and later removed.

Based on our understanding of HDFS, there are many
temporal properties for monitoring. Based on TraceBench,
we extract tens of such properties. Following are repre-
sentative samples related to different kinds of requests for
detecting system failures or faults.

Property 1. A rpc request of HDFS starts with a RPC:
getFileInfo to get the information of the target file from
the namenode, which is followed by some other RPCs for
related operations on the file, like rename in Figure 1.
Therefore, the trace of a file moving request should obey
the following LTL property, and a failure occurs when a
violation happens.

getF ileInfo ∧ 2( getF ileInfo → ⃝(3 rename))

Where 2, ⃝ and 3 respectively represent for Always, Next
and Exist in LTL. In addition, many other rpc requests
contain similar properties.

Property 2. A read request always contains many data
block reading operations, each of which starts with calling
blockSeekTo (denoted by B for short). Once a reading
operation fails after several retries, the whole request fails.
So, for a correctly handled read request, the last block
should be correctly read, which is indicated by checksumOK
(K). Hence, the following LTL property can express this
requirement.

3B ∧ (2((B → ⃝(2¬B)) → ⃝(3K)))

Where 3B expresses that each read request contains at least
one reading operation, and B → ⃝(2¬B) denotes the last
reading operation.

Property 3. Similarly, writing a file to HDFS involves
multiple data block writing operations, each of which starts

corruptBlk
corruptMeta

cutBlk
cutMeta
lossBlk

disconnectDN
killDN

suspendDN
deadDN

panicDN

D
at

a
.

P
ro

c
S

y
s

Error Trace Rate

Failed Trace Rate

0 0.20.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Net

Figure 3. Checking result

by invoking createBlockOutputStream (C). A normal write
request should successfully upload the last block, which
requires that the number of connected datanodes, indicated
by the number of writeBlock (W), equals to the number of
repetitions stored, by counting receiveBlock (R). Hence, this
property is a context-free property, and CaRet [8] can be
used to specify it as follows.

3C∧(2((C → ⃝(2¬C)) → ⃝(3W ∧2(W → ⃝aR))))

Where ⃝a is the abstract Next operator in CaRet, and
W → ⃝aR expresses the equality.

Besides for detecting failures, properties can also be used
for diagnosing various faults, like Property 4 shows.

Property 4. When reading a data block, HDFS first selects
the best datanode for downloading by calling bestNode (N).
If the selected datanode is invalid, the selecting process
repeats and a second best datanode is picked. Therefore,
if the bestNode are invoked more than once in reading a
data block, we consider some problems may happen in the
abandoned datanode(s), such as network disconnected, data
block missing and process stopped. This requirement can be
expressed as following LTL property.

BR¬N ∧2(B → ⃝(¬B U N))

∧2(N → (⃝(BR¬N) ∨ ¬⃝ true))

Where R and U respectively represent for Release and Until
in LTL.

C. Preliminary Experimental Results

We manually generate the monitors in terms of SQL
queries of the Property 1 and Property 2, and use the moni-
tors to check the traces in the data set. Figure 3 illustrates the
results of checking the traces of read requests. The vertical
axis shows the checked trace sets, named by the injected
faults of different types, i.e., System (Sys), Process (Proc),
Network (Net), and Data [9]. In Figure 3, the error trace
rates are the percentages of the traces containing errors due
to the injected faults. And the failed trace rates, achieved by
checking traces with Property 2, indicate the percentages
of unsuccessfully handled requests caused by errors. The
number of the failed traces checked by Property 2 is exactly
the same as the actual number in the trace set, showing
the accuracy of the property and the correctness of our
framework. Surprisingly, we also find several failed traces in



0.05
0.06
0.07
0.08
0.09
0.10
0.11
0.12
0.13
0.14

50 60 70 80 90 100 110 120 130

Checking Time

Trace Length

T
im

e 
(m

s)

Figure 4. Checking time

the normal trace sets. The reason is that the tracing system
drops some events when reaching its handling bottleneck.
Therefore, the failed traces are induced by the tracing system
errors rather than the cloud system failures. However, it still
validates our approach.

We have also evaluated the efficiency of our framework.
By checking traces with Property 2, Figure 4 shows the
relationship between checking time and trace length. For a
trace containing 100 events, the checking time is about 0.1
ms, i.e., about 10, 000 traces can be checked in 1 second
in this condition. This is a pretty promising result, which
can be further improved with various optimizations. Besides
the trace length, the efficiency is also related to many other
factors, such as the complexity of trace and property, the
number of monitors, which should be further investigated.

IV. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach of introducing
runtime verification into the trace-oriented monitoring in
cloud systems. Based on TraceBench, we have validated
our approach by monitoring some critical properties of
HDFS. The experimental results indicate the promise of our
approach.

This is an ongoing work. In the future, there are following
aspects to work on: first, we will integrate existing RV
frameworks into our tracing system, and implement some
existing RV methods, such as CaRet RV [14]; second, highly
efficient and scalable monitoring algorithms under trace-
oriented monitoring scenarios will be investigated; third,
since performance problems are important for cloud systems,
we will consider to use RV to monitor the performance as-
pects of cloud systems, where the time information of traces
can be used; last, more experiments and more applications
on other real world cloud systems are planned.

V. ACKNOWLEDGMENT

This work is supported by the National 973 Program
of China under the Grant No.2011CB302603, the National
Natural Science Foundation of China (NSFC) under the
Grant No. 61161160565 and No. 61103013, and the SRFDP
under the Grant No. 20114307120015.

REFERENCES

[1] J. Garside. Nasdaq crash triggers fear of data
meltdown. http://www.theguardian.com/technology/2013/aug/
23/nasdaq-crash-data

[2] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem determination in large, dynamic internet
services,” in Proceedings of the 2002 International Confe-
rence on Dependable Systems and Networks (DSN 2002).
IEEE Computer Society, 2002, pp. 595–604.

[3] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a
large-scale distributed systems tracing infrastructure,” Google,
Tech. Rep., 2010.

[4] Twitter. Zipkin, from twitter. http://twitter.github.io/zipkin/

[5] P. Reynolds, C. E. Killian, J. L. Wiener, J. C. Mogul, M. A.
Shah, and A. Vahdat, “Pip: Detecting the unexpected in
distributed systems,” in Proceedings of the 3rd Conference on
Networked Systems Design and Implementation (NSDI’06).
USENIX Association, 2006, pp. 9–9.

[6] E. Thereska and G. R. Ganger, “IRONModel: Robust perfor-
mance models in the wild,” in Proceedings of the 2008 ACM
SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS 2008). ACM
Association, 2008, pp. 253–264.

[7] Z. Manna, Temporal Verification of Reactive Systems: Safety,
vol. 2. Springer, 1995.

[8] R. Alur, K. Etessami, and P. Madhusudan, “A temporal logic
of nested calls and returns,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS 2004).
Springer, 2004, pp. 467–481.

[9] J. Zhou, Z. Chen, J. Wang, Z. Zheng, and M. R. Lyu,
“Towards an open data set for trace-oriented monitoring,”
in Proceedings of the 7th IEEE International Conference on
Cloud Computing (CLOUD 2014). IEEE Computer Society,
2014, pp. 922–923.

[10] Apache. Hadoop. http://hadoop.apache.org/

[11] J. Zhou, Z. Chen, H. Mi, and J. Wang, “MTracer: A trace-
oriented monitoring framework for medium-scale distribut-
ed systems,” in Proceedings of the IEEE 8th International
Symposium on Service Oriented System Engineering (SOSE
2014). IEEE Computer Society, 2014, pp. 266–271.

[12] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Rosu, “An
overview of the MOP runtime verification framework,” Inter-
national Journal on Software Tools for Technology Transfer,
vol. 14, no. 3, pp. 249–289, 2012.

[13] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-
ica, “X-Trace: A pervasive network tracing framework,” in
Proceedings of the 4th USENIX Conference on Networked
Systems Design and Implementation (NSDI’07). USENIX
Association, 2007, pp. 271–284.

[14] N. Decker, M. Leucker, and D. Thoma., “Impartiality and
anticipation for monitoring of visibly context-free properties,”
in Proceedings of 4th International Conference on Runtime
Verification (RV 2013). Springer, 2013, pp. 183–200.


