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for(int i = 0; i < N-1; i++){
      int min = i;
      for(int j = i+1; j < N ; j++) {

   if (a[j] < a[min]) min = j;
      }
      int tmp = a[i];
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write



Array SMT Theory

12

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write

Read the ith element 
of the array a



Array SMT Theory

13

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving
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logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
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a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
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R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
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where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
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Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
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(suppose that we use big-endian).
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
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Usually, array SMT theory will be used together with other
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(3), i.e., using the ITE operator [7]. Then, every read term is
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which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.
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Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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R(W(a, j, v), i) =
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v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
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Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
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(suppose that we use big-endian).
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3
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The first part of Figure (1b) shows the memory layout of
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Write
optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
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does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
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true under S, we find a solution; otherwise, we refine Ca by
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Now Ca is solved again. If we get u = 11 and i = 3, we find a
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until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.
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To precisely model the program under analysis, many ex-
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the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
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symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
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programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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executor to represent each program’s data as a byte-sized array.
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reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
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represents RI(a, i)). Suppose the solving of Ca gets u = 12
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isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
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(suppose that we use big-endian).
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^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15
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The first part of Figure (1b) shows the memory layout of
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the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

Use these two axioms to eliminate the array 
terms in the array constraint
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optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.
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R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.
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R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
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Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
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Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
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Actually, this constraint corresponds to the following con-
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ ( ⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11
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CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),
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u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ ( ⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11
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R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ ( ⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11
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There are the following two axioms for array SMT con-
straints.

i = j ) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).
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^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ ( ⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11
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modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n ) RI(a, i) = 0
�
^ i = 3 ) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0 ) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0 ) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
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The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.
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in the worst case by adding all the four axioms.
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Line 4, the symbolic executor generates the following array
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int foo(int i, j) {
   int a[4] = {0, 0, 0, 5}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]
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• An over-approximation

⋀
RI(a, i) + RI(a, j) > 10

0 ≤ RI(a, i) ≤ 9 ∧ 0 ≤ RI(a, j) ≤ 9

ILP

Satisfiable???   NO



Motivation Example
Axiom Elimination

• Interval info computed in pre-check

• Type info collected in SE (int)
52

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

int foo(int i, j) {
   int a[4] = {0, 0, 0, 9}
   if (i + j > 4) {
      if (a[i] + a[j] > 10) {
         printf("Bug!!!\n")
         return 1
      }
   }
   return 0
}

i, j ∈ [0, 3]



Motivation Example

Array 
Memory 
Layout

156 
 axioms
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Motivation Example

Array 
Memory 
Layout

Use type & interval info to remove axioms (gray lines)
• Bytes that have different offsets in the type (int)
• Bytes within the interval and any byte outside of 

the interval

156 
↓ 
20 

axioms
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Type Inference
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Reserve minimum type size of array accesses



Index Constraint Abstraction
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Abstraction

Discard ci that cannot be linearized Linearize ci with complex operator

• Index constraint is a conjunction
n

⋀
i=1

ci

• Translate bit-vector index constraint to ILP problem

The abstraction rules ensure over-approximation



Other Internals

• Two simplifications to reduce cost of ILP solving

• Simple interval computation before linearization

• Caching ILP solutions
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Evaluation

• Research Questions

• Effectiveness

• Relevance of either optimization

• Comparison with KLEE-Array
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Evaluation

• Implementation

• KLEE with STP

• PPL solver for ILP solving

• Real-world programs as benchmark

• Coreutils programs (62)

• Lexer programs of various grammars (13)
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Results of Effectiveness
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Queries 
without 

KLEE opt

Improves the queries for 46 programs, 160.52% on average



Results of Effectiveness
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Queries 
with 

KLEE opt

Improves the queries for 56 programs, 182.56% on average



Queries 
with 

KLEE opt

Improves the queries for 56 programs, 182.56% on average

KLEE's query optimizations 
are especially efficient for 

Coreutils programs

√Results of Effectiveness
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Results of Effectiveness

63

Coverage 
with 

KLEE opt

The advancement in constraint solving can directly benefit SE



Results of Relevance 
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Queries 
with 

KLEE opt

Opt 1 - Pre-check
Opt 1+2 - Both

Opt 2 is more significant, while Opt 1 can generate useful information for Opt 2



Comparison with KLEE-Array
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Our method increases the number of paths and instructions by 30.31% 
and 40.39%, respectively

With 
KLEE opt



Conclusion
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Thank you! 
Q&A
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