
Type and Interval Aware Array Constraint Solving
for Symbolic Execution

Joint work with Yufeng Zhang, Jun Sun and Ji Wang

Ziqi Shuai and Zhenbang Chen
{szq, zbchen}@nudt.edu.cn

1

ACM SIGSOFT International Symposium on Software Testing and Analysis

http://nudt.edu.cn

Array Code Symbolic Execution

2

Arrays are ubiquitous in programs

a[0]

a[1]

…

a[n]

int a[n];

Array Code Symbolic Execution

3

Arrays are ubiquitous in programs

a[0]

a[1]

…

a[n]

int a[n];

for(int i = 0; i < N-1; i++){
 int min = i;
 for(int j = i+1; j < N ; j++) {

 if (a[j] < a[min]) min = j;
 }
 int tmp = a[i];
 a[i] = a[min];
 a[min] = tmp;
}

Array
 sorting

The symbolic
execution of
array code is
challenging

Array Code Symbolic Execution

Arrays are ubiquitous in programs

4

The symbolic
execution of
array code is
challenging

a[0] a[1] a[2] … a[n]

Array Code Symbolic Execution

Arrays are ubiquitous in programs

5

The symbolic
execution of
array code is
challenging

a[0] a[1] a[2] … a[n]

a[i]

Array Code Symbolic Execution

Arrays are ubiquitous in programs

6

The symbolic
execution of
array code is
challenging

a[0] a[1] a[2] … a[n]

a[i]

Array Code Symbolic Execution

Arrays are ubiquitous in programs

7

i is a symbolic variable

The symbolic
execution of
array code is
challenging

a[0] a[1] a[2] … a[n]

a[i]

Array Code Symbolic Execution

Arrays are ubiquitous in programs

8

i is a symbolic variable

The symbolic
execution of
array code is
challenging

a[0] a[1] a[2] … a[n]

a[i] = y

Array Code Symbolic Execution

Arrays are ubiquitous in programs

9

i is a symbolic variable

The symbolic
execution of
array code is
challenging

Array SMT Theory

a[0] a[1] a[2] … a[n]

a[i]

Array Code Symbolic Execution

Arrays are ubiquitous in programs

10

Array SMT Theory

11

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write

Array SMT Theory

12

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write

Read the ith element
of the array a

Array SMT Theory

13

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write

Read the ith element
of the array a

Write value v to the ith
element of the array a

Array SMT Theory

14

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write
optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

15

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write
optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

16

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Read

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Write

Satisfiable

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

17

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

Array SMT Theory

18

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

Use these two axioms to eliminate the array
terms in the array constraint

Array SMT Theory

19

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

20

u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ (⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

21

u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ (⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

22

u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ (⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Array SMT Theory

23

u > 10 ∧ i ≥ 0 ∧ i ≤ 3 ∧ (⋀
n∈{0,1,2}

i = n ⇒ u = 0) ∧ i = 3 ⇒ u = 11

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

a =

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Axiom 1

Axiom 2

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

optimizations can improve the number of explored paths
by 38.5% in average.

The remainder of this paper is organized as follows. Section
II briefly introduces the CEGAR-based method and illustrates
our optimizations by an example program. Section III de-
scribes the symbolic execution framework and type inference
in our method. Section IV presents our optimizations in detail.
Section V gives the implementation and the evaluation. Section
VI reviews and compares the related work. Finally, Section VII
concludes.

II. ILLUSTRATION

In this section, we first briefly introduce the current
CEGAR-based array constraint solving method. Then, we use
an example to illustrate our approach.

A. CEGAR-based Array Constraint Solving

An array SMT constraint [7] is a qualifier-free first order
logic formula with the following two special functions, where
a is an array variable, i and v are index and value variables,
respectively.

R(a, i) | W(a, i, v) (1)

R(a, i) means reading the ith element of a, and W(a, i, v)
means writing the value of v to a’s ith element. In the
following of this paper, for the sake of brevity, we use RI(a, i)
and Rb(a, i) to denote reading the ith integer and byte of array
a, respectively.

There are the following two axioms for array SMT con-
straints.

i = j) R(a, i) = R(a, j) (2)

R(W(a, j, v), i) =

⇢
v i = j
R(a, i) otherwise (3)

The first one states that two reads must be equal if the index
variables are equal. The second one, called read-over-write
axiom, states that the value of a’s jth element should be
modified to v by W(a, j, v) and the values of the elements
with a different index should remain the same as before. These
two axioms are frequently used to solve array constraints.
Usually, array SMT theory will be used together with other
SMT theories for encoding programs.

Given an array constraint C, CEGAR-based solving method
[11] first eliminates all the write terms in C by the axiom
(3), i.e., using the ITE operator [7]. Then, every read term is
replaced by a new variable to get an abstract constraint Ca, in
which there is no array term. Therefore, at the beginning, Ca

does not have any read axioms. Ca will be solved by other
SMT theories. If Ca is UNSAT, C is UNSAT; otherwise, we
will get a solution S, which will be validated w.r.t. C. If C is
true under S, we find a solution; otherwise, we refine Ca by
adding the (2) axioms (e.g., A0, ..., An) that are violated by S,
i.e., Ca ^A0 ^ ... ^An. The refined constraint will be solved
again, and the iteration continues until finding a solution or
disproving C.

For example, suppose C is the following constraint,

RI(a, i) > 10 ^ i � 0 ^ i  3

where a is {0, 0, 0, 11}, and C has four read axioms w.r.t. (2)
� ^

n2{0,1,2}

i = n) RI(a, i) = 0
�
^ i = 3) RI(a, i) = 11

Then, Ca is u > 10 ^ i � 0 ^ i  3 at the beginning (u
represents RI(a, i)). Suppose the solving of Ca gets u = 12
and i = 0, which does not satisfy C, because the following
axiom is violated.

i = 0) RI(a, i) = 0

Then, we add the violated axiom to Ca and get the following
refined constraint.

u > 10 ^ i � 0 ^ i  3 ^ (i = 0) u = 0)

Now Ca is solved again. If we get u = 11 and i = 3, we find a
solution satisfying C; otherwise, the refinement will continue
until finding a solution, which may need 4 times of refinement
in the worst case by adding all the four axioms.

B. Motivation Example
To precisely model the program under analysis, many ex-

isting symbolic executors employ the SMT solver supporting
both array and bit-vector [2], [4] (ABV) SMT solving. Usually,
the solver supports byte-level reasoning for the symbolic
executor to represent each program’s data as a byte-sized array.
Therefore, in this paper, we consider the scenario where the
symbolic execution employs an ABV SMT solver supporting
byte-level reasoning.

The program in Figure (1a) (denoted by P) demonstrates
a typical scenario of array usage extracted from real-world
programs. Suppose we symbolize the inputs i and j when
performing symbolic execution of P, and the precondition
of function foo is as follows, i.e., both of the array index
variables are within the scope of the array a.

0  i  3 ^ 0  j  3

Then, when checking the feasibility of the true branch at
Line 4, the symbolic executor generates the following array
constraint.

RI(a, i) + RI(a, j) > 15

Actually, this constraint corresponds to the following con-
straint in the underlying ABV solver that employs a byte-level
reasoning, where � denotes the bit concatenation operator [7]
(suppose that we use big-endian).

X = Rb(a, i0) � Rb(a, i1) � Rb(a, i2) � Rb(a, i3)

^ i0 = 4⇥i ^ i1 = i0 + 1 ^ i2 = i0 + 2 ^ i3 = i0 + 3

^ Y = Rb(a, j0) � Rb(a, j1) � Rb(a, j2) � Rb(a, j3)

^ j0 = 4⇥j ^ j1 = j0 + 1 ^ j2 = j0 + 2 ^ j3 = j0 + 3

^ X + Y > 15

(4)

The first part of Figure (1b) shows the memory layout of
a and two array reads. X and Y are RI(a, i) and RI(a, j),

Memory modeling in SE

• Byte-level memory reasoning in symbolic execution

• QF_ABV SMT theory

• KLEE、S2E、…

• Every data is represented by a byte array

• Large amount of axioms (O(n^2))

24

Memory modeling in SE

• Byte-level memory reasoning in symbolic execution

• QF_ABV SMT theory

• KLEE、S2E、…

• Every data is represented by a byte array

• Many array variables in the path constraints

• Large amount of axioms (O(n^2))

25

Problem

• Scalability of array constraint solving in symbolic execution

• Byte-level array representation

• Large number of axioms

• …

26

Related Work

Symbolic
Executor

Array SMT Solver

PC Result

27

Related Work (1/2)

Symbolic
Executor

Array SMT Solver

PC Result

KLEE-Array
[ISSTA’17]

• Eliminate array constraints
• Optimize before solving

28

Related Work (2/2)

Symbolic
Executor

Array SMT Solver

PC Result

CEGAR-based
• STP
• Boolector

29

Related Work

Symbolic
Executor

Constraint
Solver

PC Result

30

Solver is used in a
black-box manner

Related Work (1/2)

Symbolic
Executor

Array SMT Solver

PC Result

KLEE-Array
[ISSTA’17]

• Eliminate array constraints
• Optimize before solving

31

Related Work (2/2)

Symbolic
Executor

Array SMT Solver

PC Result

CEGAR-based
• STP
• Boolector

32

Our Argument

Symbolic
Executor

Array SMT
SolverTight Coupling

33

Our Argument

Symbolic
Executor

Array SMT
SolverTight Coupling

White-box
Usage

34

Our Key Insights

• Many redundant axioms exist for byte array constraints

• Array access type information

• Array index constraint

• Unsatisfiability can be decided earlier

35

Our Key Insights

• Many redundant axioms exist for byte array constraints

• Array access type information

• Array index constraint

• Unsatisfiability can be decided earlier

36

Our Key Idea

• Utilize the information calculated during symbolic execution

• Type information of array accesses

• Interval information of array index variables

• Check the unsatisfiability earlier

• Remove redundant axioms during solving

37

Our Key Idea

• Utilize the information calculated during symbolic execution

• Type information of array accesses

• Interval information of array index variables

• Check the unsatisfiability earlier

• Remove redundant axioms during solving

38

High-Level Procedure

39

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

High-Level Procedure

40

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

High-Level Procedure

41

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

High-Level Procedure

42

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

High-Level Procedure

43

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

High-Level Procedure

44

Symbolic
Executor

Type
Information

Path
Condition UNSAT Pre

Checker

ABV SMT
Solver

Interval
Information

Solving Result

Motivation Example

45

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

46

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

RI(a, i) + RI(a, j) > 10
⋀

a[4] = {0, 0, 0, 5}

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

47

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

RI(a, i) + RI(a, j) > 10
⋀

a[4] = {0, 0, 0, 5}

UNSAT Pre-check

Index
Constraints

Array
Constraint

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

48

UNSAT Pre-check

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

Index
Constraints

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

49

UNSAT Pre-check

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

0 ≤ RI(a, i) ≤ 5 ∧ 0 ≤ RI(a, j) ≤ 5

Index
Constraints

a[4] = {0, 0, 0, 5}

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 5}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

50

UNSAT Pre-check

• An over-approximation

⋀
RI(a, i) + RI(a, j) > 10

0 ≤ RI(a, i) ≤ 5 ∧ 0 ≤ RI(a, j) ≤ 5

ILP

Unsatisfiable!!!

Motivation Example

int foo(int i, j) {
 int a[4] = {0, 0, 0, 9}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

51

UNSAT Pre-check

• An over-approximation

⋀
RI(a, i) + RI(a, j) > 10

0 ≤ RI(a, i) ≤ 9 ∧ 0 ≤ RI(a, j) ≤ 9

ILP

Satisfiable??? NO

Motivation Example
Axiom Elimination

• Interval info computed in pre-check

• Type info collected in SE (int)
52

0 ≤ i ≤ 3 ∧ 0 ≤ j ≤ 3 ∧ i + j > 4

ILP

2 ≤ i ≤ 3 ∧ 2 ≤ j ≤ 3

int foo(int i, j) {
 int a[4] = {0, 0, 0, 9}
 if (i + j > 4) {
 if (a[i] + a[j] > 10) {
 printf("Bug!!!\n")
 return 1
 }
 }
 return 0
}

i, j ∈ [0, 3]

Motivation Example

Array
Memory
Layout

156
 axioms

53

Motivation Example

Array
Memory
Layout

Use type & interval info to remove axioms (gray lines)
• Bytes that have different offsets in the type (int)
• Bytes within the interval and any byte outside of

the interval

156
↓
20

axioms

54

Type Inference

55

Reserve minimum type size of array accesses

Index Constraint Abstraction

56

Abstraction

Discard ci that cannot be linearized Linearize ci with complex operator

• Index constraint is a conjunction
n

⋀
i=1

ci

• Translate bit-vector index constraint to ILP problem

The abstraction rules ensure over-approximation

Other Internals

• Two simplifications to reduce cost of ILP solving

• Simple interval computation before linearization

• Caching ILP solutions

57

Evaluation

• Research Questions

• Effectiveness

• Relevance of either optimization

• Comparison with KLEE-Array

58

Evaluation

• Implementation

• KLEE with STP

• PPL solver for ILP solving

• Real-world programs as benchmark

• Coreutils programs (62)

• Lexer programs of various grammars (13)

59

Results of Effectiveness

60

Queries
without

KLEE opt

Improves the queries for 46 programs, 160.52% on average

Results of Effectiveness

61

Queries
with

KLEE opt

Improves the queries for 56 programs, 182.56% on average

Queries
with

KLEE opt

Improves the queries for 56 programs, 182.56% on average

KLEE's query optimizations
are especially efficient for

Coreutils programs

√Results of Effectiveness

62

Results of Effectiveness

63

Coverage
with

KLEE opt

The advancement in constraint solving can directly benefit SE

Results of Relevance

64

Queries
with

KLEE opt

Opt 1 - Pre-check
Opt 1+2 - Both

Opt 2 is more significant, while Opt 1 can generate useful information for Opt 2

Comparison with KLEE-Array

65

Our method increases the number of paths and instructions by 30.31%
and 40.39%, respectively

With
KLEE opt

Conclusion

66

Thank you!
Q&A

67

ACM SIGSOFT International Symposium on Software Testing and Analysis

