
S2PF: Speculative Symbolic PathFinder

Yufeng Zhang, Zhenbang Chen, Ji Wang
National Laboratory for Parallel and Distributed Processing

Department of Computing Science, National University of Defense Technology
Changsha, China

{yufengzhang, zbchen}@nudt.edu.cn, jiwang@ios.ac.cn

ABSTRACT
Recently, symbolic execution gains a significant progress in
its techniques and applications. However, in practice, scal-
ability is still a key challenge for symbolic execution. In
this paper, we present S2PF, which improves the scalability
of Symbolic PathFinder by integrating speculative symbol-
ic execution with the general heuristic search framework.
In addition, two optimizations are proposed to improve the
speculative symbolic execution in S2PF. Experimental re-
sults on six programs show that, S2PF can reduce the solver
invocations by 36.4% to 49% (with an average of 40.3%), and
save the search time by 30.6% to 43.5% (with an average of
35%).

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
D.2.4 [Software Engineering]: Program Verification

General Terms
Performance, Verification

Keywords
symbolic execution, constraint solving, Symbolic PathFind-
er, speculative symbolic execution

1. INTRODUCTION
Symbolic Execution (SE) [22] is a fundamental program

analysis technique proposed more than three decades ago.
SE executes a program with symbolic variables and com-
putes the predicates of the input and output variables. Up
to now, SE has been used in many topics, including test
generation [7], bug detection [8], software verification [19],
data structure repair [20], etc.

Symbolic PathFinder (SPF) [25] is a symbolic execution
engine targeting Java programs. SPF extends the software
model checker Java PathFinder (JPF) [31] systematically

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JPF Workshop 2012, North Carolina USA
Copyright 2012 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

and provides a generalized SE platform for Java bytecode
programs. Since its birth, SPF has been improved in many
aspects, such as data structure abstraction [1], string han-
dling [21] and parallelization [29]. These improvements make
SPF more scalable and feasible.

Although leveraged by the increasing computation power,
SE is still enslaved to many aspects. One key challenge faced
by SE is scalability, which is mainly posed by path explosion
and the overhead of constraint solving. In fact, constraint
solving is the most dominative in the execution time of SE.
For example, KLEE spends 40%-90% of the execution time
in constraint solving [7]. In S2E, most execution time is
dominated by constraint solving [11]. For SPF, according to
the experiments we conducted, this rate is 79%-96% [34].

To reduce the overhead of the constraint solving in SE, in
[34] we proposed a new fashion of symbolic execution, named
speculative symbolic execution (SSE). In SSE, the branch s-
tatements are speculatively executed without regard to the
feasibility. The constraint solver is invoked when the num-
ber of the speculated statements on the current path reaches
a specific number, say k. If the speculation succeeds, k − 1
solver invocations are saved; otherwise, SSE needs to back-
track to the last feasible branch. We have implemented SSE
with the depth first search (DFS) engine on SPF, and the
experimental results indicate that SSE can have an aver-
age reduction of 30% in the execution time and the solver
invocations.

Though SSE is implemented on SPF in [34], SPF is not
systematically extended to incorporate speculation mecha-
nism. For example, how to combine speculation with more
general search styles, e.g., the heuristic search framework,
is not discussed. In addition, the backtracking mechanis-
m can be optimized further. In this paper, we introduce
Speculative SPF (S2PF), which systematically extends SPF
with SSE by incorporating speculation within the heuris-
tic state exploration framework. Besides, the backtracking
is improved by using the unsatisfiable core (UC) generation
technique [12]. We also present a Yices specific optimization
to speed up S2PF further.

The main contributions of this paper are three folds: (1)
we present S2PF, which systematically extends SPF to im-
plement speculative symbolic execution; (2) we propose two
optimizations to speed up SSE further: using UC genera-
tion technique and a Yices specific feature to reduce solver
invocations during backtracking; (3) we have conducted sev-
eral experiments to justify the correctness and effectiveness
of S2PF, and the results indicate that S2PF can have an
average reduction of 35% in the search time.

The following of this paper is organized as follows: Sec-
tion 2 briefly introduces SSE by a motivating example and
describes the details of the algorithm used in S2PF; Section
3 presents the implementation of S2PF; Section 4 reports
the experiments to evaluate S2PF; Section 5 discusses the
related work and finally the conclusion is drawn in Section
6.

2. SPECULATIVE SYMBOLIC EXECUTION
In this section, we illustrate the basic idea of SSE by a mo-

tivating example, and then describe the speculative heuristic
search algorithm that combines speculation and the general
heuristic search framework.

2.1 Motivating Example
Take the program in Figure 1 for example. The program

computes the sum of the absolute values of two integers, x
and y, and outputs the sum if the sum is larger than y. The
path space of this program is shown in Figure 2(a), where
the left side of a branch represents the false side of the cor-
responding branch statement and the right side for the true
side. The path space includes 8 paths, including 2 infeasible
ones (#5 and #7) and 6 feasible ones. In pure SE, whenever
the search procedure encounters a branch, the path condi-
tion is updated and then submitted to a constraint solver to
check its satisfiability. Thus, the constraint solver is invoked
14 times in total.

In SSE, the search procedure strides over branch state-
ments without checking the feasibility until the unchecked
branches are accumulated to a particular number, say the
max speculation depth. Accordingly, a path segment consist-
ed by unchecked branches is called a speculation segment.
For the program in Figure 1, assuming that the max spec-
ulation depth is 3 and the path space is traversed in DFS,
the else branches of the statements if(x<0), if(y<0) and
if(x>y) are taken speculatively. At the end of the path #1,
the number of uncheck branches reaches 3 and therefore the
constraint solver is invoked. Here the result is sat and thus
2 solver invocations are saved. In Figure 2, the bracketed
numbers show where the constraint solver is invoked and
the number n tagged on a branch indicates the feasibility of
the branch is known in the n-th invocation of the constraint
solver.

When the search procedure reaches the end of the path
#5, the path condition 〈x < 0∧ y ≥ 0∧ y− x ≤ y〉 is unsat-
isfiable, so we need to backtrack to the last feasible branch.
In [34], we use binary search in backtracking, which needs
two solver invocations, as indicated by (6) and (7) in Figure
2(a). Totally, the constraint solver is invoked by 11 times,
saving 3 invocations compared with pure SE. Actually, the
solver invocations in SSE are also related to the exploration
order over the path space. Figure 2(b) shows how the con-
straint solving is performed when the path space is traversed
from the other side, which only needs 8 solver invocations.

 int x, y;

1: if(x < 0)

2: x = -x;

3: if(y < 0)

4: y = -y;

5: x = x + y;

6: if(x > y)

7: output(x);

Figure 1: A Motivating Example

1 (7) (10)

(1) (2) (3) (4) (5) (8) (9)(11)

3

1 (6)

X X

#1 #2 #4 #5 #6 #7 #8#3

7 3 1

(8) (7) (6) (5) (4) (3) (2) (1)

5

5 1

X X

#1 #2 #4 #5 #6 #7 #8#3

(a) from left to right (b) from right to left

Figure 2: Constraint Solving in SSE with DFS

2.2 Algorithm

2.2.1 Speculative Heuristic Search
We have proposed the speculative DFS algorithm that

combines speculation and DFS in [34]. In this section, we
present a speculative heuristic search algorithm that inte-
grates speculation with the general heuristic search frame-
work.

Generally, a heuristic search procedure uses an open list
to keep track of the fringe of the search and a closed list to
record the states that have already been accessed [24]. Each
state in the open list is associated with a heuristic value as its
priority. The search procedure iteratively fetches out from
the open list a state with the highest priority and explores
its successors. The successors not in the closed list are saved
to the open list in order of their heuristic values for future
expansion. The procedure continues until the open list is
empty.

Our Speculative Heuristic Search (SHS) algorithm is a
variant of the general heuristic search algorithm. SHS al-
gorithm has the following three features: first, the heuristic
search (choosing which state to expand) and DFS (the gener-
ation of speculation segments) are interweaved; second, the
open list is used to store the open states (i.e., states with
unexplored successors), and a state may be fetched from and
saved into the open list for multiple times; third, each time
when a state is fetched out from the open list, only one of
its direct successors is accessed.

Figure 3 briefly shows the main procedure of the SHS
algorithm. The procedure SpeculativeHeuristicSearch()

performs heuristic search by maintaining an openlist to s-
tore the states that need to be propagated in the future. At
the beginning, the initial state is added to the openlist.
A while loop iteratively fetches a state from the openlist

to propagate until the openlist is empty. In line 5, the
most prioritized state in the openlist is selected by the
function getNextState(). Then the speculation starts from
this state (line 6) and continues to forward until a specula-
tion segment is fully propagated, i.e., the max speculation

 1:SpeculativeHeuristicSearch() {

 2: openlist = {initial state};

 3: while(openlist != empty set) {

 4: specuSegment = empty set;

 5: state s = getNextState(openlist);

 6: propagateSegment(s, specuSegment);

 7: if(failed speculation)

 8: backtrack(specuSegment);

 9: saveOpenStates(specuSegment);

10: }

11:}

Figure 3: Speculative Heuristic Search Algorithm

…...
…...

openlist

specuSegment

execution tree

…...

open
states

s0

s1

s2

s3

s4
X

X

Figure 4: A Snapshot of Executing SHS Algorithm

depth is reached or the path ending or an exception is en-
countered. Line 7 checks the feasibility of the speculation
segment, after which the unreachable states are trimmed by
function backtrack(). Sequentially, in line 9, open states in
the speculation segment are saved in the openlist.

Figure 4 illustrates a snapshot of executing the SHS al-
gorithm. State s0 is selected from the openlist to propa-
gate. The speculation segment includes 5 states, s0 ∼ s4.
At the end of the segment, the constraint solver is invoked
and returns unsat. So the backtrack procedure analyzes
the segment and marks out the last two infeasible branches
(indicated by a cross in Figure 4). After that, the states
s1, s2 and s3 are saved into the openlist for future propa-
gation because they have unexplored successors. State s4 is
abandoned because it is guarded by an infeasible branch.

Note that, in our algorithm we do not use the closed list
as the general heuristic search algorithm because there is no
cycle in the path space of a program.

2.2.2 Unsatisfiable Core Based Backtracking
In [34], we propose to perform binary search on a failed

speculation segment to find the backtracking point. This
method needs approximately logk2 solver invocations for a
speculation segment with k branches. Although binary search
is stable when k is large, backtracking can still be optimized,
especially when k is small or the first infeasible branch is
close to the start point of the speculation segment. There-
by, here we propose to use the unsatisfiable core based back-
tracking to reduce the solver invocations.

In mathematical logic, the unsatisfiable core (UC) is a
small unsatisfiable subset of unsatisfiable set of clauses [13].
Currently, there are a few modern SMT solvers supporting
UC generation [3, 4, 33, 15]. In SSE, UC can be used to
help backtracking when a speculation fails.

For a failed speculation segment with k branches, assum-
ing that p1, ..., pk are the corresponding path conditions and
Ci be the set of constraints contained by pi, where Ci ⊆
Ci+1 (1 ≤ i ≤ k− 1). Suppose that Cu

j is the generated UC
when solving pj , then we can conclude that pi is unsatisfiable
if Cu

j ⊆ Ci.
However, the tools mentioned above (except MathSat) are

not extracting minimal unsatisfiable cores (MUC), i.e., there
may exist an unsatisfiable proper subset of a generated UC.
Besides, a constraint set may contain multiple UCs. This
means that Cu

j * Ci does not imply the satisfiability of Ci.

Therefore, after getting Cu
k when speculation fails, we check

C1, ..., Ck sequentially to find the smallest Ci that includes
Cu

k , then we solve Ci−1 recursively (if i > 0) until the last
satisfiable set (i.e., the last feasible branch) is located. In
fact, computing all the MUCs can help to locate the last
feasible branch with less invocations, but the cost is high
[13].

2.2.3 Discussion
Essentially, the SHS algorithm is a hybrid of the heuristic

search and DFS. The global state selection is determined by
the heuristic value while the speculation segment is extended
in the DFS style. The proof of the correctness of the SHS
algorithm is similar to that of the speculative DFS algorithm
in [34].

It is worth noting that the bug point guarded by an un-
satisfiable path condition, e.g., if(a<a){b = b/0;}, may be
touched by SSE. The solution is to check the reachability of
a bug point before reporting it. In practice, other types of
false alarms can be eliminated in the same way.

The theoretical upper bound of the effectiveness of the
SHS algorithm is specified by the following proposition.

Proposition 1. The number of solver invocations in the
speculative heuristic search algorithm is larger than half of
that in the non-speculative heuristic search algorithm.

The proof is similar to that of the Proposition 2 in [34].
More details are eliminated for space sake.

In the worst case, the size of the open list of SHS algorithm
is approximately k times larger than that of non-speculative
heuristic search algorithm, where k is the max speculation
depth. The reason is that the speculation from an open state
can add at most k states to the open list.

2.3 Absurdity Based Optimization
Absurdity based optimization (AB optimization) aims to

reduce the solver invocations by utilizing the information be-
tween different paths. Given a reachable state s with path
condition P , suppose its next instruction to execute is a
branch instruction with n branches b1, ..., bn, and the corre-
sponding conditions are ϕ1, ..., ϕn, where ϕ1∨...∨ϕn ⇔ true.
Assuming that all the branches except bk (1 ≤ k ≤ n) are
infeasible, i.e., P ∧ ϕi (1 ≤ i ≤ n ∧ i 6= k) is unsatisfi-
able. Let A be the assignment that makes P true, from
ϕ1 ∨ ... ∨ ϕn ⇔ true, we can easily deduce that ϕk is true
under A. Thus, branch bk is feasible.

Take the two branches below state s3 in Figure 4 for ex-
ample, after we know the infeasibility of the right branch
below s3, the feasibility of the left branch can be deduced
without invoking the solver.

3. IMPLEMENTATION

3.1 Speculative Symbolic PathFinder
We have implemented the SHS algorithm with UC based

backtracking as well as the AB optimization in S2PF. The
prime features of our implementation are as follows.

The speculative heuristic search engine. The SHS
algorithm and the UC based backtracking is implemented
in a new class SpeculativeHeuristicSearch, which is in-
herited from the class HeuristicSearch provided by JPF.
The fields queue and specuStack are maintained to store
the open list and the speculation segment, respectively. The

search() method of HeuristicSearch is overridden to im-
plement the SHS algorithm. A static variable currentSpec-

ulationDepth is used to indicate the speculation depth of
the current JVM state. We use Yices [33] as the constraint
solver. A new class ProblemYicesWithUC is created as the
interface between S2PF and Yices to support UC backtrack-
ing. After a speculation segment is generated, the reachable
states in the speculation segment with more choices in the
choice generator are saved in the queue for further explo-
ration.

The new semantics for branch instructions. The
semantics of branch instructions are modified to support
speculative execution. For each branch instruction, we gen-
erate a SpecuPCChoiceGenerator, which is a subclass of
PCChoiceGenerator. The speculation depth of the current
JVM state is associated to this new choice generator. The
feasibility of its each choice is also recorded, in order to
perform AB optimization. The path condition is updat-
ed according to the current choice of the choice generator.
The solver is invoked if the speculation depth reaches the
max speculation depth. If the result is unsat, the UC based
backtracking procedure is invoked to cut off the infeasible
branches from the current speculation segment.
Eliminating false alarms. As discussed before, we han-

dle all the false alarms introduced by SSE in S2PF, including
the runtime errors in the analyzed program, property viola-
tions, user defined exceptions, the crashes caused by the ana-
lyzed program, etc. In fact, most false alarms are eliminated
by overriding the JVM.forward() function, in which the s-
tatement executeNextTransition() is encapsulated with a
try/catch block. In the catch block, the path condition
is solved and the exception is re-thrown out only when the
solving result is sat.

To use S2PF, users need to configure new properties for
SPF. The most important ones are search.class and sym-

bolic.speculative.depth, which specify the search class
and the max speculation depth, respectively.

3.2 Yices specific Optimization
We also have implemented a Yices specific optimization to

improve SSE further. When Yices is invoked at the end of
a speculation segment, the constraints in the path condition
are translated into the input commands of Yices. Originally
in SPF, the satisfiability of a constraint set is checked (by
Yices command (check)) after all the constraints are fed to
Yices. In S2PF, we use Yices in an interactive way. The
constraints from the root of a path to the leaf are fed to
Yices sequentially. The consistency of the added constraints
is checked whenever a new constraint is fed to Yices. Once
Yices finds an inconsistency in the fed constraint set, the
branches corresponding to the unprocessed conditions are
trimmed from the speculation segment because of the infea-
sibility. However, in the interactive mode, Yices is not al-
ways able to find inconsistency (without command (check))
when the added constraint set is unsatisfiable. As a conse-
quence, after using this feature of Yices to help to trim a
speculation segment, we use the UC based backtracking to
find the last feasible branch.

4. EVALUATION

4.1 Experimental Setup
To evaluate S2PF, we choose the same programs used in

the experiments in [34], including 5 data structure programs:
red-black tree (TreeMap), binary search tree (BinTree), bino-
mial heap (BinHeap), Fibonacci heap (FibHeap) and ordered
linked list (List), as well as a program from the automotive
domain, the Wheel Brake System (WBS). These programs are
often used in the experiments related to JPF.

For each program, we perform the following four kinds of
analysis.

Mode A. Raw SPF with the heuristic search engine con-
figured equivalent to DFS, i.e., the state with a greater depth
has a higher priority in the open list. We run SPF and collect
the results as the base line of the experimental results.

Mode B. SPF with the speculative DFS engine and AB
optimization. This is the best mode in [34], providing the
results of our prior work.

Mode C. S2PF with speculative heuristic search engine
(also configured equivalent to DFS) and AB optimization.
We perform this analysis to show the correctness of the
heuristic search engine.

Mode D. S2PF with all efforts, including AB optimiza-
tion, UC based backtracking and Yices specific optimization.

When analyzing each program under Mode B, C and D,
the max speculation depth is increased from 2 to the execu-
tion depth of the program. Besides, we also run S2PF with
configuring heuristic search framework as the breadth first
search (BFS), i.e., the state with less depth is more priori-
tized in the open list. All of the experiments are carried out
on an Intel Core i7 2.80GHz computer with 8 GB of RAM.

4.2 Experimental results
Table 1 shows part of the experimental results. The first

column shows the name of each program with its correspond-
ing call sequence length if any. For each program, we list the
number of solver invocations (column 3) and the search time
(column 4) in each mode, where the corresponding optimal
max speculation depth is associated in column 2. We do not
show the results with larger max speculation depths since
the results do not change once the max speculation reaches
the maximum execution depth of a program.

The search time under Mode A is slightly different from
the results of raw SPF in [34] because here we use a different
search engine. The results of Mode B are literally from paper
[34], in which the savings of the search time are computed
under the base line in [34] (marked with asterisks in Table 1).
The numbers of the solver invocations in Mode B are the
same as that in Model C, which indicate the correctness of
the implementation of the SHS algorithm.

The results of Mode D show that, S2PF with all the efforts
brings an obvious improvement to SPF. S2PF reduces the
solver invocations by from 36.4% (BinHeap) to 49% (WBS),
with an average of 40.3%. The search time is reduced by
from 30.6% (TreeMap) to 43.5% (WBS), with an average of
35%.

An important observation is that, for all the six program-
s, S2PF performs strictly better when increasing the max
speculation depth. In Table 1, the best results of Mode D
are uniformly collected when running with the largest max
speculation depth. This feature implies that S2PF is quite
efficient in backtracking. More importantly, it also implies
that there is no need to find the optimal max speculation
depths for different programs as that in [34].

Another result is that the analysis using the heuristic
search framework configured as BFS yields the same re-

Table 1: Experimental Results (call seq.=call se-
quence length, dep.=max speculation depth)

Program
(call
seq.)

Mode
(dep.)

#sat/unsat/all
(Savings)

Time(s)
(Savings)

WBS

A
B(10)
C(10)
D(10)

27646/0/27646
14174/0/14174(49%)
14174/0/14174(49%)
14174/0/14174(49%)

62
37.3(43.6%)*
35(43.5%)
35(43.5%)

TreeMap
(5)

A
B(2)
C(2)
D(7)

27005/17261/44266
11527/23561/35088(21%)
11527/23561/35088(21%)
10380/17262/27642(37.5%)

75
61(23.6%)*
57(24%)
52(30.6%)

BinTree
(5)

A
B(2)
C(2)
D(9)

22381/15589/37970
9191/20086/29277(23%)
9191/20086/29277(23%)
7809/15629/23438(38.3%)

73
57.7(25.5%)*
54(26%)
50(31.5%)

BinHeap
(6)

A
B(10)
C(10)
D(10)

164116/23576/187692
96600/38202/134802(28.2%)
96600/38202/134802(28.2%)
95756/23576/119332(36.4%)

380
300(26.8%)*
272(28.4%)
262(31%)

FibHeap
(6)

A
B(2)
C(2)
D(10)

58014/9142/67156
37694/11906/49600(26%)
37694/11906/49600(26%)
33456/9142/42598(36.6%)

137
113(23.9%)*
105(23.4%)
92(32.8%)

List
(6)

A
B(2)
C(2)
D(7)

128076/94380/222456
33488/116635/150123(32.5%)
33488/116635/150123(32.5%)
30112/94380/124492(44%)

502
325(37.6%)*
310(38.2%)
298(41%)

sults as above. This is because for SHS algorithm, using
a different heuristic does not impact the number of solver
invocations.

5. RELATED WORK
Speculation is used to improve the performance in many

systems, such as pipelined processors [28] and operating sys-
tems [32]. S2E v1.2 [26] uses speculative forking in the con-
colic execution to generate backtracking points at branches.
In [5], Lei Bu et al. use a target location-guided search for
the reachability problem of linear hybrid automata, where
the irreducible infeasible set technique [9] is employed to
help backtracking.

Our work is related to the large body of the existing work
on the scalability challenge of symbolic execution, including
path pruning [2, 10, 6], compositional method [16], abstrac-
tion [1], state merging [23], parallelism [14, 29] and all other
efforts on alleviating the overhead of constraint solving [7,
8, 27, 18, 17, 30]. SSE is orthogonal and complementary to
these approaches.

6. CONCLUSION
In this paper, we present S2PF, an extension tool of SPF,

which implements SSE under the general heuristic search
framework. Two optimizations to speed up SSE are also
proposed. The experimental results of analyzing six pro-
grams show that S2PF can save 35% of the search time in
average. The next step is to conduct extensive experiments
on real-world programs and optimize S2PF further.

7. REFERENCES
[1] S. Anand, C. Păsăreanu, and W. Visser. Symbolic execution

with abstraction. STTT, 11(1):53–67, 2009.

[2] S. Bardin and P. Herrmann. Pruning the search space in
path-based test generation. In ICST, pages 240–249, 2009.

[3] C. Barrett and C. Tinelli. Cvc3. In CAV, pages 298–302, 2007.

[4] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and
R. Sebastiani. The mathsat 4 smt solver. In CAV, pages
299–303, 2008.

[5] L. Bu, Y. Yang, and X. Li. IIS-guided dfs for efficient bounded
reachability analysis of linear hybrid automata. In HVC, 2011.

[6] J. Burnim and K. Sen. Heuristics for scalable dynamic test
generation. In ASE, pages 443–446, 2008.

[7] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI, pages 209–224, 2008.

[8] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler.
EXE: automatically generating inputs of death. TISSEC,
12(2):10, 2008.

[9] J. Chinneck and E. Dravnieks. Locating minimal infeasible
constraint sets in linear programs. ORSA Journal on
Computing, 3(2):157–168, 1991.

[10] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea.
Selective symbolic execution. In HotDep, 2009.

[11] V. Chipounov, V. Kuznetsov, and G. Candea. S2E: A platform
for in-vivo multi-path analysis of software systems. ACM
SIGARCH Computer Architecture News, 39(1):265–278, 2011.

[12] A. Cimatti, A. Griggio, and R. Sebastiani. A simple and
flexible way of computing small unsatisfiable cores in sat
modulo theories. In SAT, pages 334–339, 2007.

[13] A. Cimatti, A. Griggio, and R. Sebastiani. Computing small
unsatisfiable cores in satisfiability modulo theories. JAIR,
40(1):701–728, 2011.

[14] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: A software testing service. ACM SIGOPS
OSR, 43(4):5–10, 2010.

[15] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
TACAS, pages 337–340, 2008.

[16] P. Godefroid. Compositional dynamic test generation. In ACM
SIGPLAN Notices, volume 42, pages 47–54, 2007.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In ACM Sigplan Notices,
volume 40, pages 213–223, 2005.

[18] P. Godefroid, M. Levin, D. Molnar, et al. Automated whitebox
fuzz testing. In NDSS, 2008.

[19] J. Jaffar, J. Navas, and A. Santosa. Unbounded symbolic
execution for program verification. In RV, pages 396–411, 2011.

[20] S. Khurshid, I. Garćıa, and Y. Suen. Repairing structurally
complex data. Model Checking Software, pages 903–903, 2005.

[21] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. Hampi: a solver for string constraints. In ISSTA, pages
105–116, 2009.

[22] J. King. Symbolic execution and program testing.
Communications of the ACM, 19(7):385–394, 1976.

[23] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea. Efficient
state merging in symbolic execution. In PLDI, pages 193–204,
2012.

[24] G. Luger. Artificial intelligence: Structures and strategies for
complex problem solving. Addison-Wesley Longman, 2005.

[25] C. Păsăreanu and N. Rungta. Symbolic pathfinder: symbolic
execution of java bytecode. In ASE, pages 179–180, 2010.

[26] S2E. https://s2e.epfl.ch/.

[27] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit
testing engine for C. In ESEC/FSE, pages 263–272, 2005.

[28] J. E. Smith. A study of branch prediction strategies. In ISCA,
pages 135–148, 1981.

[29] M. Staats and C. Păsăreanu. Parallel symbolic execution for
structural test generation. In ISSTA, pages 183–194, 2010.

[30] N. Tillmann and J. De Halleux. Pex–white box test generation
for. net. In TAP, pages 134–153, 2008.

[31] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda.
Model checking programs. Automated Software Engineering,
10(2):203–232, 2003.

[32] B. Wester, P. Chen, and J. Flinn. Operating system support
for application-specific speculation. In EuroSys, pages 229–242,
2011.

[33] Yices. http://yices.csl.sri.com/.

[34] Y. Zhang, Z. Chen, and J. Wang. Speculative symbolic
execution. In ISSRE, 2012, to appear.
(http://arxiv.org/abs/1205.4951).

