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Abstract

Floating-point programs are challenging for symbolic execution due to the constraint solving
problem. This paper empirically studies five existing symbolic execution methods for floating-
point programs to evaluate their effectiveness and limitations. We have implemented the existing
methods based on the state-of-the-art symbolic execution tool KLEE and constructed a real-world
floating-point program benchmark for evaluation. We evaluate the existing methods with respect to
statement coverage and the ability to detect floating-point exceptions. The results demonstrate that
the existing methods complement each other. Based on the evaluation results, we propose a syner-
gistic approach to improving the efficiency of the symbolic execution for floating-point programs.
The experimental results indicate our synergistic method’s effectiveness in finding floating-point
exceptions.
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1. Introduction

As the mainstream representation of real numbers, floating-point numbers are ubiquitous in
computer systems. Almost every programming language has floating-point data types. Floating-
point operations can often be found in the numerical software of different applications, such
as scientific computation [1] and secure multi-party computation [2]. However, manipulating
floating-point numbers is not easy. There are some famous software disasters in history related to
floating-point operations, such as the destruction of the Ariane 5 rocket [3] and the failure of the
Patriot missile [4]. It is important and also challenging to ensure the correctness of floating-point
programs.

Symbolic execution [5] is a widely used program analysis technique. Compared with other
program analysis techniques, the most significant advantage of symbolic execution is its high
analysis accuracy. It is an effective method to explore the program’s path space systematically.
Symbolic execution has been widely used in many software engineering activities in recent years,
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including automatic software testing [6, 7], bug detection [8], bug repair [9, 10], etc. Although
symbolic execution has been successfully applied in many areas, it still faces two main technical
challenges: path explosion and constraint solving [11], which are the bottlenecks of symbolic
execution’s further application and development.

Symbolic execution of floating-point programs is challenging because of the solving of floating-
point constraints. Nowadays, to precisely analyze programs, many existing symbolic execution en-
gines use bit-vector (BV) related SMT theories [12] for program path encoding, such as QF ABV
in KLEE [6] and QF BV in SymCC [13]. For floating-point programs, quantifier-free bit-vector
floating-point (QF BVFP) can be used to represent the program’s floating-point operations pre-
cisely. In principle, the decision procedure of BV-related SMT theories is NP-complete [12].
However, the constraint solving of QF BVFP formulas is time-consuming, especially for non-
linear QF BVFP formulas. For example, Z3 [14] (i.e., a state-of-the-art SMT solver) takes 38
seconds to solve x3 = 27 when x is a 64-bit floating-point variable2.

The real-world QF BVFP constraints are more complex than the above one, and the constraint
solver usually times out. The reason is that QF BVFP SMT theory precisely encodes the floating-
point constraints into SAT problems [15] with respect to the IEEE floating-point standard [16],
which may produce complex SAT problems, especially for the non-linear QF BVFP constraints.
For example, a QF BVFP formula with a multiplication expression of 64-bit variables may pro-
duce a SAT problem with tens of thousands of boolean variables and clauses [12]. In practice,
representative floating-point programs usually contain intensive non-linear floating-point compu-
tation. For example, a call to a function in math.h (e.g., sin or cos) may produce complex
QF BVFP constraints because the function’s implementation uses intensive floating-point compu-
tations. Therefore, the constraint solving of the QF BVFP formulas is time-consuming and often
times out, which dooms the symbolic execution of floating-point programs. Current state-of-the-
art QF BVFP solvers (e.g., Z3 [14] and MathSAT5 [17]) are still limited in analyzing real-world
floating-point programs.

There are five categories of the existing methods for the symbolic execution of floating-point
programs.

• The first one employs a QF BVFP SMT solver for a precise representation. The existing ap-
proaches of this category enjoy the precise representation but may suffer from the scalability
problem when solving non-linear QF BVFP constraints.

• The second category uses a real arithmetic solver to optimize the QF BVFP SMT solving
[18], in which the variables are considered as real number variables, and the formula is
solved as a real arithmetic formula. This category enjoys the efficiency of real arithmetic
SMT solving but suffers from the problem of real arithmetic’s unsoundness with respect to
floating-point numbers.

• The third category utilizes fuzzing to solve QF BVFP formulas [19], in which the constraint
solving problem is converted to a fuzzing problem by generating a program according to the
formula. The input crashing the program satisfies the formula. This category leverages the

2The CPU is 2.5GHz
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power of the existing fuzzing techniques [20] but suffers from the incompleteness problem,
i.e., it cannot prove the unsatisfiability of the formula.

• The fourth category on-the-fly converts each floating-point operation into an integer and
bit operations implemented function [21] during symbolic execution. Therefore, a floating-
point program is converted into the one where only integers exist. The existing symbolic
execution tools that do not support floating-point operations can be used. However, this cat-
egory may suffer from the path explosion problem [11] because each function of a floating-
point operation introduces many extra paths.

• The last category solves QF BVFP formulas in a search-based manner [22, 23], which con-
verts the solving problem into an optimization problem by defining a fitness function [24]
for the formula.

Despite the advantages of the existing methods, the effectiveness and efficiency of these meth-
ods for the symbolic execution of real-world floating-point programs still need to be evaluated.
The reasons are: 1) Many methods are only evaluated on the SMT benchmarks, e.g., SMTLIB2
benchmark of QF BVFP category [25]; 2) Different methods are evaluated on different platforms
respectively, so they lack a unified evaluation platform; 3) The evaluation benchmarks are differ-
ent. Therefore, to further understand the effectiveness and limitations of the existing methods,
we design an empirical study in this paper to evaluate the existing methods’ effectiveness for
real-world floating-point programs. We choose GNU Scientific Library (GSL) [26], i.e., a widely
used scientific computing library with intensive floating-point operations, as the benchmark. We
selected 431 programs from the GSL as the benchmark programs and divided them into three cat-
egories. Besides, we have integrated or implemented the existing methods of the five categories
on KLEE [6], i.e., a state-of-the-art symbolic executor for C programs. Furthermore, we evalu-
ate the existing symbolic execution methods using three criteria, i.e., statement coverage, branch
coverage, and the number of detected floating-point exceptions.

Our empirical study finds: 1) QF BVFP-based and fuzzing-based methods exhibit superior
performance regarding statement coverage, branch coverage, and the number of detected excep-
tions. 2) The real arithmetic optimization-based method is more efficient in the early analysis
stage. However, QF BVFP-based and fuzzing-based methods are more efficient in the later anal-
ysis stage. 3) Methods based on integer simulation have poor stability. 4) Search-based methods
have no advantages in terms of effectiveness or efficiency.

We propose an algorithm synergizing the first three categories based on these findings. We can
use the QF BVFP SMT solver to prove the unsatisfiability. Then, we can use the real arithmetic
solver and fuzzing-based solver to improve scalability. Based on this observation, we propose
synergizing SMT solving and fuzzing to improve symbolic execution’s effectiveness on floating-
point programs. Specifically, when solving a QF BVFP formula φ, we first employ the QF BVFP
SMT solver to check the φ’s simple part (i.e., the part without non-linear expressions). If φ’s
simple part is unsatisfiable, the φ is unsatisfiable. Otherwise, we use the solution S 1 produced by
the QF BVFP SMT solver to check whether S 1 satisfies φ. If S 1 does not, we use a real arithmetic
solver to solve φ. When the solver returns a rational solution R, we convert R into a floating-point
solution S 2 and check whether S 2 satisfies φ. If S 2 does not, we use S 2 as a seed and employ
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the fuzzing-based solver solving the φ. Specifically, we have implemented our Synergy method
based on Z3 [14], dReal [27], and JFS [19] and integrated it into KLEE [6]. The results of the
experiments on the GSL benchmark programs demonstrate our method’s effectiveness.

The main contributions of this paper are as follows.

• We carry out the first extensive study of the state-of-the-art symbolic execution methods for
floating-point programs.

• Based on the study’s findings, we propose synergizing QF BVFP SMT solving, real arith-
metic SMT solving, and fuzzing for solving QF BVFP formulas, improving the efficiency
of constraint solving.

• We have implemented or integrated the existing methods and our Synergy method into
KLEE. Our prototype is available3, which can be used for future research on the symbolic
execution of floating-point programs.

• We have conducted extensive experiments on the GSL benchmark programs. The results
show that our Synergy method can cover more statements and detect more exceptions under
depth-first search (DFS) and breadth-first search (BFS) strategies than the state-of-the-art
methods.

This paper extends our previous work [28]. The extension includes the following aspects.

• We have integrated three more state-of-the-art floating-point constraint solvers, i.e., Bitwu-
zla [29], MathSAT5 [17] and CVC5 [30].

• We have added more exception checkers for floating-point operations, including invalid el-
ementary function calculations, inexact floating-point arithmetic operations, etc.

• We enlarge our benchmark set. We inspect mostly functionality interfaces in GSL and select
431 benchmark programs divided into three categories, totaling 95,112 lines of code. Fur-
thermore, we have conducted a more extensive evaluation of the existing methods on these
benchmarks.

• Based on the evaluation, we have collected the QF BVFP formulas and constructed a set of
benchmarks for QF BVFP SMT theory 4, with a total of 351,639 cases, which can be used
for the future research of SMT algorithms and tools.

The remainder of this paper is organized as follows. Section 2 introduces the background
of floating-point numbers, QF BV SMT solving, and concolic testing. Section 3 presents the
empirical study design, implementation, and experimental setup. Section 4 presents the evaluation
results. Section 5 presents our Synergy method and its evaluation results. Section 6 is Threats to
Validity. Section 7 discusses and compares the related work. The last section is the conclusion.

3https://github.com/zbchen/FuSE/tree/FPSE-Journal
4https://github.com/zbchen/FP-SMTLIB
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2. Background

2.1. IEEE Standard 754
Real numbers exist in computers as floating-point numbers. IEEE 754 is the most widely used

floating-point standard [31]. Next, we briefly introduce the floating-point format and floating-point
exceptions in IEEE 754.

2.1.1. Floating-point Format
IEEE 754 defines the specification for floating-point numbers and their associated operations.

In essence, this standard defines a floating-point number, denoted as f , through three components:
sign (S ), mantissa (M), and exponent (E). The calculation of the number is described by the
following formula:

(−1)S × M × 2E. (1)

S ∈ {0, 1} is f ’s first bit that denotes f ’s sign, where 0 and 1 represent that f is positive and neg-
ative, respectively. M def

= m0.m1m2...mn is the mantissa, where m0 is the hidden bit and m1m2...mn

is the fraction (F). Lastly, E def
= e − 2p−1 + 1, where p is the number of exponent bits, and e is

the biased exponent. In IEEE 754, a single-precision floating-point number’s exponent and frac-
tion parts have 8 and 23 bits, respectively. A double-precision floating-point number’s exponent
and fraction parts have 11 and 52 bits, respectively. For example, suppose that a single-precision
floating-point number’s binary number is 00111110001000000000000000000000, where S = 0
and p = 8. Through calculation, e = 26 + 25 + 24 + 23 + 22 = 124, M = 1 + 2−2 = 1.25, and
E = 124 − 127 = −3. So, this binary floating-point number represents the decimal floating-point
number 1.25 × 2−3.

2.1.2. Floating-point Exceptions
Floating-point operations may result in exceptions. Common floating-point exceptions can

be divided into five categories: Overflow, Underflow, Divide-By-Zero, Invalid, and Inexact. Ta-
ble 1 lists the floating-point exceptions and the corresponding checking conditions. In Table 1,
±xmax and ±xmin represent the largest and smallest positive (negative) normalized floating-point
numbers that can be represented on the machine, respectively (i.e., ±xmax = ±1.11...11 × 2Emax ,
±xmin = ±1.0 × 2Emin). For example, for 32-bit single-precision floating-point numbers, Emax =

254− 127 = 127, Emin = 1− 127 = −126. So ±xmax = ±1.11...11× 2127,±xmin = ±1.0× 2−126. The
Overflow exception will be reported when the absolute value of the floating-point operation’s ac-
tual result is greater than the largest representable positive normalized floating-point number; The
Underflow exception’s checking condition means that the absolute value of the floating-point op-
eration’s actual result is greater than 0 and less than the smallest representable positive normalized
floating-point number. A Divide-By-Zero exception occurs when a finite non-zero floating-point
number is divided by zero. In particular, log(0) also suffers from a Divide-By-Zero exception.
Invalid exceptions include cases like the division of zero by zero, a negative operand in a square
root function operation (sqrt), and a negative operand in a logarithmic function operation (log).
Since finite floating-point numbers need to represent infinite real numbers, rounding occurs when
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Table 1: The floating-point operations that need to be detected and the corresponding checking conditions for these
five exceptions. a, b, and x represent 32-bit or 64-bit normalized floating-point numbers. ⊙ and ⊡ represent floating-
point arithmetic operations (i.e., +, −, ×, or /) with the same finite and infinite precision.

Exceptions Operations Exception checking conditions

Overflow a ⊙ b |a ⊡ b| > xmax

Underflow a ⊙ b 0 < |a ⊡ b| < xmin

Divide-By-Zero
a/b a , 0 ∧ b = 0

log x x = 0

Invalid
a/b a = 0 ∧ b = 0
√

x x < 0
log x x < 0

Inexact

a + b (a + b) − b , a ∨ (a + b) − a , b
a − b (a − b) + b , a ∨ a − (a − b) , b
a × b (b , 0 ∧ (a × b)/b , a) ∨ (a , 0 ∧ (a × b)/a , b)
a/b (b , 0 ∧ (a/b) × b , a) ∨ (b , 0 ∧ (a/b) , 0 ∧ a/(a/b) , b)

performing arithmetic operations. The last row in Table 1 shows Inexact exceptions due to round-
ing errors and conditions. It is worth noting that the cases of Invalid and Inexact exceptions are
not complete. We only list the ones supported by our implementation.

2.2. Bit-vector SMT solving
Modern symbolic execution engines [6, 8, 7] usually employ combined theories based on

quantifier-free bit-vector (QF BV) SMT theory to encode programs since the theory is precise
to represent the variables and the operations of programs. Existing solving algorithms for bit-
vector SMT theory can be divided into two categories: eager, the approach reducing the input
QF BV formula to a SAT problem eagerly, and lazy, the approach solving a series of gradually
refined abstractions of the input QF BV formula. The former, using efficient SAT solvers, is often
considered predominant [32]. Nowadays, state-of-the-art bit-vector solvers usually implement the
eager solving algorithm, e.g., STP [33], Z3 [14], and MathSAT5 [17].

The eager approach usually leverages bulks of word-level rewriting rules such as term substi-
tution and arithmetic normalization to simplify the input QF BV formula, bit-blasts the simplified
formula into a SAT problem, and employs a decision procedure for SAT solving. The efficiency
of the eager approach relies heavily on the output of bit-blasting [15]. Unfortunately, bit-blasting
introduces many boolean variables and clauses to encode bit-vector operations, which may burden
the SAT solver heavily. For example, the multiplication of two 64-bit bit-vector variables results
in 20,417 Boolean variables and 68,929 clauses [12]. The situation is made even worse in the case
of QF BVFP SMT theory. The encoding is much more complicated because of the requirements
in IEEE 754, resulting in more complicated SAT problems. As a result, more efficient constraint
solving methods are needed.
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Algorithm 1 Concolic Testing
Input: P is program, I0 is the initial input, and F is the set of uninterpreted functions

1: W,V ← ∅ ▷ branches to be explored
2: I ← I0

3: repeat
4: PC ← ConcolicExecution(P, I,F ) ▷ F contains sin, log, etc.
5: B ← branch(PC,W) ▷ B is branch
6: W←W∪ {bi 7→ PCi | bi 7→ PCi ∈ B ∧ ¬(bi∈̂W)}
7: if ∀b∈̂W • b ∈ V then
8: break
9: end if

10: repeat
11: b← Select(W,V) ▷ select a branch b from the worklistW
12: V ← V ∪ {b}
13: (r, Ib)← Solve(W[b]) ▷ call constraint solver
14: if r = SAT then
15: I ← Ib

16: end if
17: until r = SAT ∨ ∀b∈̂W • b ∈ V
18: until ∀b∈̂W • b ∈ V

2.3. Concolic Testing
Algorithm 1 shows the main procedure of concolic testing [34, 35]. The inputs are a program

P and an initial input I0. Concolic testing is often implemented in a worklist manner and uses a
mapW to store the branches to be explored. We use b∈̂W to represent that branch b has a value
in W. Concolic testing executes P with input I0 first. Then, the later new input will lead the
program to different paths. When concolic testing executes P with input I, it also collects the path
condition PC of the current path. Based on PC, the branches to be explored along the current path
(denoted by branch(PC,W)) will be added toW. branch(PC,W) is defined as follows, where
PC =

∧
0≤i≤n Ci and b j is the branch corresponding to ¬C j.

{b j 7→
( ∧

0≤i< j

Ci
)
∧ ¬C j | 0 ≤ j ≤ n} (2)

Note that only the branches not inW (Line 6) are added.
Then, after each execution, concolic testing selects (Line 11) a branch b fromW for generating

the next input, which is expected to steer P to the execution along b. We use V to record the
branches that have been selected. Concolic testing then solves (Line 13) b’s path conditionW[b].
IfW[b] is satisfiable, concolic testing uses the solution Ib as the next input to execute P. IfW[b]
is unsatisfiable or the solving returns UNKNOWN, concolic testing selects the next branch fromW.
The branch selection (i.e., Select) determines the style of path exploration, e.g., DFS and BFS.
Concolic testing continues the iterations to explore P’s path space until all branches have been
visited or the time budget is exhausted (omitted for brevity).
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1 # i n c l u d e < s t d i o . h>
2 # i n c l u d e <math . h>
3

4 i n t foo ( f l o a t a , f l o a t b , f l o a t c ) {
5 i f ( cos ( a ) > l o g ( b ) ) {
6 i f ( s i n ( a ) < l o g ( b ) ) {
7 c = c − 1 . 0 ;
8

9 i f ( c == 1 . 1 )
10 p r i n t f ( ” Never r e a c h h e r e ! \ n ” ) ; / / u n r e a c h a b l e code
11 }

12 }

13

14 r e t u r n 0 ;
15 }

16

Figure 1: A simple program.

2.4. Illustration Example
Figure 1 shows a simple program illustrating concolic testing. The program is a numerical pro-

gram that contains three symbolic floating-point variables and many invocations of complex math-
ematical functions, e.g., the natural logarithm function (log) and the trigonometric functions (sin
and cos). The implementations of these functions employ numerical methods (e.g., Taylor ex-
pansion [36]) to approximate these mathematical functions, which involve complex floating-point
operations. Therefore, concolic testing will generate complex floating-point constraints when an-
alyzing the implementation of these functions. When the QF BVFP SMT solver solves these
floating-point constraints, the solver may generate SAT problems that are too complex for the SAT
solver or result in a significant time cost, which makes the concolic testing get stuck and fail to an-
alyze some parts of the program. For example, concolic testing cannot even enter the true branch
of the branch statement at Line 5 for the example program in Figure 1.

Many methods have been proposed to address the above problem. Besides improving the
decision procedure directly, some methods employ real arithmetic constraint solving or fuzzing
[18, 19]. They use uninterpreted functions to abstract the behaviors of mathematical functions
when collecting path conditions. For example, suppose the initial concrete values of symbolic
variables are {a 7→ 2.0, b 7→ 2.0, c 7→ 0.0}, and the search strategy is DFS. Concolic testing will
generate the following path conditions:

1) cos(a) > log(b),
2) cos(a) > log(b) ∧ sin(a) < log(b),
3) cos(a) > log(b) ∧ sin(a) < log(b) ∧ c − 1.0 = 1.1.

(3)

where a, b and c are 32-bit floating-point variables.
Here, QF BVFP SMT solvers do not support the solving of these three constraints. The real

arithmetic or fuzzing-based solvers may solve the first two constraints, but they cannot prove
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the unsatisfiability of the third constraint due to the last sub-constraint c − 1.0 = 1.1.The sub-
constraint’s unsatisfiability can be proven by a QF BVFP SMT solver. Hence, it is desirable to
synergize the existing methods to improve the effectiveness of floating-point constraint solving
further.

3. Study Design

As introduced in Section 1, there are five categories of existing methods for the symbolic exe-
cution of floating-point programs. Here, we briefly overview each category and the enhancements
we have applied to our empirical study.

3.1. Methods
3.1.1. QF BVFP SMT Theory Based Method (denoted by QF BVFP)

This category precisely represents floating-point operations in the program using QF BVFP
SMT theory [12]. The advancement of QF BVFP solving [17, 29] contributes to the effectiveness
of symbolic execution. Nevertheless, existing QF BVFP solvers still need to be improved in han-
dling real-world programs. As shown in Figure 1, the elementary functions in math.h (e.g., sin
or cos) result in highly complex QF BVFP constraints. The underlying QF BVFP SMT theory
employs the bit-blasting method to convert SMT formulas into SAT formulas, which are solved
using a SAT solver. However, when dealing with highly complex QF BVFP constraints, this trans-
formation can result in intricate SAT formulas, which may present challenges for the SAT solver
to solve within a limited time budget. Nevertheless, it is essential to note that methods in this
category are both sound and complete.

For this category, we have selected Z3 [14], Bitwuzla [29], and MathSAT5 [17] as the un-
derlying solver for symbolic execution. It is worth noting that the solver selected for this classi-
fication supports the QF ABVFP theory and can be directly integrated into KLEE. However, to
unify floating-point SMT theory with other solving methods, we only use them as the QF BVFP
solver, and we refer to this type of method as QF BVFP for short. In addition, we use ackerman-
nization [37] in implementation to eliminate all array terms in path constraints, i.e., converting a
QF ABVFP formula into a QF BVFP one.

3.1.2. Real Arithmetic Solving Based Optimization Method (denoted by RSO)
This category employs real arithmetic SMT solving [18] to enhance QF BVFP constraint solv-

ing. It treats QF BVFP formulas as real arithmetic formulas and utilizes real arithmetic solvers
to find the solutions in rational numbers, which are then converted to floating-point values. These
methods leverage the efficiency of real arithmetic solvers for certain types of equations. For ex-
ample, a real arithmetic solver like Z3 can quickly solve the equation x3 = 27 in 0.15 seconds,
where x is a real number variable. However, it is important to note that real arithmetic solvers
are not sound for QF BVFP formulas. If the floating-point values derived from the rational solu-
tion do not satisfy the QF BVFP formula, the existing methods resort to searching for the nearby
floating-point values, which may be inefficient in practice. On the other hand, if the real arithmetic
solver determines that the formula is unsatisfiable, it does not imply that the QF BVFP formula
is also unsatisfiable. For example, properties like associativity may hold for real numbers but not
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for floating-point numbers. Moreover, scalability is a problem for real arithmetic solvers when
dealing with complex non-linear formulas. Additionally, this category is unsuitable for handling
non-arithmetic operations, such as bit operations, due to the limitations of real arithmetic solvers.
We use RSO as the abbreviation for the methods of this category.

In our study, we implemented the RSO method from [18] and enhanced it using dReal [27] and
CVC5 (which supports real number theory) as real arithmetic solvers. This enhanced approach
is highly efficient and supports most elementary functions in math.h library. We also utilize
uninterpreted functions supported by dReal and CVC5 to collect path conditions. Additionally,
our enhanced method can handle formulas with multiple variables and employ fuzzing [19] to aid
in the search for solutions when the solution derived from the real number solution does not satisfy
the formula.

As an example, we consider the second path condition in Formula 3. The real arithmetic
solver may provide a rational solution like {a 7→ −5.99231e + 307, b 7→ 1.93481}. However,
the corresponding floating-point solution does not satisfy the formula. In such cases, we search
k floating-point numbers closest to the rational solution of each variable. In our evaluation, we
set the value of k to 11, resulting in 121(11 × 11) possible assignments. Finally, if none of these
assignments satisfy the formula, it leads to a substantial overhead in satisfiability checking and
produces UNKNOWN.

3.1.3. Fuzzing Based Method (denoted by FUZZ)
This category employs fuzzing for solving QF BVFP formulas [19]. The methods of this

line convert a solving problem into a fuzzing problem of a program and ensure that the input
crashing the program satisfies the QF BVFP formulas. The input parameters of the program are
the variables in the formula, and the output is a fitness value (such as coverage, which is used
to guide fuzzing). When the input is an assignment that satisfies the SMT formula, the program
can go to a specific location, indicating SAT. Fuzzing is a process of searching through iterative
feedback, and there may be cases where no solution is found. The result of an unsatisfiable SMT
formula may be UNKNOWN, so the methods in this category are incomplete.

Fuzzing is suitable for solving non-linear floating-point constraints. For example, using the
fuzzing method to solve the formula x3 > 27 can be solved in less than one second. Nevertheless,
the performance of fuzzing will be greatly reduced when dealing with smaller solution spaces. For
example, when solving the formula x = 1∧ y = 1, fuzzing takes more than a minute. In our study,
we selected JFS [19] as the tool for this category.

3.1.4. Integer Simulation Based Conversion Method (denoted by ISC)
This category transforms a floating-point program into one that only contains integer opera-

tions. To achieve this, they substitute each floating-point operation with a method call where the
method simulates the operation using integer and bit operations. For instance, consider the sub-
traction operation a−b involving two 32-bit floating-point numbers. The replacement functionFsub

takes two integer inputs with binary values identical to those of a and b. Then, Fsub implements
the subtraction following the IEEE 754 requirements through bit operations, including mantissa
alignment and normalization. In our study, we adopt the method in [21], which is implemented
based on the KLEE framework. Consequently, the replacements of floating-point operations are
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performed one-the-fly during symbolic execution. More specifically, we employ SoftFloat [38] as
the simulation library, a choice supported by the experimental results in [21].

3.1.5. Search Based Method (denoted by Search)
This category encompasses various methods, all sharing a common concept: defining a fit-

ness function F [24] based on the satisfiability of the constraint. The inputs of function F are
the variables in the constraint, and the roots of the equation F = 0 correspond to the solutions
of the constraint. Consequently, the satisfiability problem is transformed into a root calculation
problem that can be addressed using the existing optimization techniques [39, 40]. In our study,
we employ the method in XSat [22] and its implementation goSAT [41]. Given a path condition
PC =

∧
0≤i≤n Ci, where Ci = ei ▷◁i e′i , the fitness function F (x⃗) for PC is defined as follows [41].

F (x⃗) def
=
∑

0≤i≤n

d
(
▷◁i, ei, e′i

)
, (4)

where,
d (≤, e1, e2) def

= e1 ≤ e2 ? 0 : |e1 − e2|,

d (<, e1, e2) def
= e1 < e2 ? 0 : |e1 − e2| + 1,

d (≥, e1, e2) def
= e1 ≥ e2 ? 0 : |e1 − e2|,

d (>, e1, e2) def
= e1 > e2 ? 0 : |e1 − e2| + 1,

d (==, e1, e2) def
= |e1 − e2|,

d (,, e1, e2) def
= e1 , e2 ? 0 : 1.

goSAT supports formulas with only floating-point variables. However, practical path conditions
may include both QF BVFP and QF BV constraints. As a result, we have extended the definition
of the fitness function to support QF BV constraints as well. However, the optimization prob-
lem itself is challenging. Therefore, there might be cases where finding the optimal value is not
feasible, which introduces a potential limitation to the completeness of this classification method.

3.2. Benchmark Construction
The GNU Scientific Library (GSL) [26] serves as our benchmark5 for evaluation. GSL is a

widely recognized numerical library implemented in C, offering a broad range of functionalities
encompassing basic mathematical operations, differentiation and integration operations, numer-
ical computation, and so on. It is extensively integrated into various real-world scientific com-
puting applications like QtiPlot [42] and LabPlot [43]. GSL’s core functionality heavily relies
on floating-point operations, particularly non-linear operations. For instance, the trigonometric
functions in GSL are computed using Taylor approximation series [36], involving numerous non-
linear floating-point computations. Consequently, performing symbolic execution on GSL code
poses significant challenges. Furthermore, GSL has frequently been employed as a benchmark in

5GSL’s version is 2.7
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Table 2: Benchmarks from GSL and the classification.

Benchmarks Number of Programs Total Lines of Code

Elementary Functions (EF) 82 3792
Mathematical Algorithm (MA) 131 57715

Special Functions (SF) 218 33605

Total 431 95112

many prior studies concerning the symbolic execution of floating-point programs [44, 45]. Hence,
GSL is a representative benchmark that can effectively evaluate various methods’ capabilities.

We inspected the source code of all the APIs in GSL and selected those that met our exper-
imentation criteria. The criteria for identifying eligible APIs are as follows: the function must
have floating-point operations, and the source code must contain branch statements controlled by
floating-point variables. Most APIs have at least one parameter of a primitive data type that can
be directly symbolized. A few APIs have at least one data structure that contains the members
with primitive data types, and these member variables can also be symbolized. Consequently, we
manually constructed a driver for each API to enable symbolic execution. These drivers assign
the initial concrete values to the API parameters, symbolize the parameters, and invoke the API.
In total, we collected 431 programs and divided them into three groups based on the functional-
ities, totaling 95112 lines of code. Table 2 shows details of each benchmark, including its name
and abbreviation, the number of programs, and the total lines of code. The test programs in each
benchmark in the table implement similar mathematical functions.

– Elementary Functions (EF): the programs that implement basic mathematical functions, such as
Trigonometric, Exponential, and Power functions.

– Mathematical Algorithm (MA): the implementations for basic mathematical algorithms, such
as differentiation, integration, equation solving, and numerical calculations.

– Special Functions (SF): the functions that implement special mathematical functions, such as
Airy, Clausen, and Jacobi elliptic.

3.3. Research Questions
We designed the following research questions to evaluate the five methods:

• RQ1: How effective are the above methods in improving symbolic execution’s ability to
explore paths?

• RQ2: How efficient are the above methods for path exploration?

• RQ3: How many floating-point exceptions are found by each method?
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3.4. Implementation
We have implemented a concolic testing engine based on KLEE [6] version 2.3, and the im-

plementation’s idea is inspired by KLEE-Zesti6. We encapsulate the solution of a path constraint
as a seed and use the seed as the initial concrete value for concolic execution. When the engine
executes branch instructions, it uses the concrete values to determine the direction of the branch
under the current path and then collects the opposite path condition. When the current execution
is completed, the collected opposite branch conditions and their previous constraints are concate-
nated into a set of constraints and added to the queue to be explored. Then, based on the search
strategy, the next branch to be explored is selected, and the solver is called to generate a new seed
for the corresponding constraint set. The new seed will be used for the subsequent concolic execu-
tions. Besides, we have implemented support for floating-point numbers and eliminated the array
constraints through ackermannization. As described in Section 3.1, we have integrated different
backend constraint solvers for the above five methods.

The engine uses the GNU Multiple Precision Arithmetic Library (GMP) to extend 32-bit or
64-bit floating-point numbers to 128-bit floating-point numbers to detect Overflow and Underflow
exceptions by on-the-fly checking the judgment criterias with respect to the concrete values. Both
of these judgment criteria are approximate implementations of the actual criterion. For the excep-
tions of the remaining three types, the engine detects the exceptions on-the-fly by constructing the
constraints corresponding to the conditions of exceptions (c.f., Table 1), which generates new paths
to check the possible exceptions of each floating-point operation. For example, for the program
i f (b! =0) ret = a/b; , the engine will construct two exception constraints: b , 0 ∧ a , 0 ∧ b = 0
(Divide-By-Zero) and b , 0 ∧ a = 0 ∧ b = 0 (Invalid). If these two constraints are satisfi-
able, Divide-By-Zero and Invalid exceptions are found. These exceptions will not occur, but if
i f (b! = 0) is removed, they may occur.

3.5. Experimental Setup
We conducted comparative experiments on five existing methods for symbolic execution of

floating-point programs, as well as our proposed Synergy method. The QF BVFP method encom-
passes three solvers: Z3 4.13.0, Bitwuzla 0.1.0, and MathSAT5 5.6.11. The RSO method includes
two solvers: dReal 4.21.06.2 and CVC5 1.0.5. The ISC method employs Z3 4.13.0 as the back-
end solver. The FUZZ method utilizes JFS [19], while the Search method uses goSAT [41]. To
answer RQ1 and RQ2, we conducted the experiments using two deterministic search strategies,
i.e., DFS and BFS. For each program in the benchmark, the analysis time is 1 hour. The timeout
for constraint solving is 30 seconds. We believe such a relatively large timeout is reasonable for
the evaluation.

All the experiments are conducted on a server with Intel(R) Xeon(R) Platinum 8269CY 80-
Core CPU@2.50GHz and 192GB of memory. The operating system is Ubuntu 18.04 LTS. Some
methods use solvers with internal randomness. For example, the generation of seeds in the FUZZ
method and the use of random optimization algorithms in the Search method. This randomness
cannot be eliminated. To reduce the impact of randomness on the experimental results, we ran
each method 20 times on each benchmark.

6https://srg.doc.ic.ac.uk/projects/zesti
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Table 3: The mean and confidence interval with a 99% confidence level for the number of covered statements and
the number of covered branches for each method. Black bold indicates that the corresponding method is significantly
better than other methods except Synergy. Gray shading indicates that the corresponding method is significantly better
than other methods.

QF BVFP QF BVFP QF BVFP RSO RSO ISC FUZZ Search Synergy
(Z3) (Bitwuzla) (MathSAT5) (dReal) (CVC5) (Z3) (JFS) (goSAT)

NoCS

EF
BFS 2649.40 (19.93) 2518.33 (0.54) 1470.67 (4.34) 2352.67 (0.27) 2227.33 (4.22) 2466.20 (11.83) 2712.67 (3.53) 2185.00 (11.42) 2749.67 (0.54)
DFS 2529.50 (4.64) 2507.33 (3.92) 1467.00 (8.20) 2285.00 (0.81) 2268.00 (2.44) 1762.00 (0.48) 2571.67 (1.09) 2193.00 (5.09) 2616.00 (5.70)

MA
BFS 7183.15 (11.19) 7193.67 (21.05) 4602.33 (1.18) 5683.00 (0.81) 5359.33 (1.78) 6597.85 (9.37) 6794.33 (5.16) 4526.67 (25.30) 7109.67 (0.54)
DFS 6921.55 (10.67) 7064.67 (8.90) 4663.33 (33.02) 5669.00 (8.14) 5275.67 (2.59) 5148.65 (72.27) 6499.67 (6.26) 4541.67 (18.09) 6972.67 (0.54)

SF
BFS 14304.65 (25.97) 15019.33 (41.68) 8766.00 (17.11) 13273.33 (2.12) 12992.00 (4.91) 13054.25 (70.38) 15027.67 (40.44) 8325.67 (90.39) 15733.00 (76.73)
DFS 12707.25 (18.53) 13612.33 (10.44) 9006.67 (6.39) 12494.00 (3.26) 12711.33 (12.85) 8147.10 (29.54) 13481.67 (19.87) 8333.00 (32.71) 14929.33 (9.28)

NoCB

EF
BFS 842.80 (4.64) 803.67 (0.27) 328.67 (1.09) 669.67 (0.54) 665.33 (0.27) 785.15 (1.89) 843.67 (1.09) 630.67 (4.05) 802.67 (1.12)
DFS 787.55 (1.52) 795.00 (0.94) 330.00 (1.88) 656.67 (0.54) 664.67 (0.27) 486.30 (0.55) 808.67 (0.27) 629.67 (4.90) 775.67 (0.54)

MA
BFS 2708.65 (9.28) 2724.33 (0.72) 1430.00 (1.24) 1942.67 (0.27) 1798.00 (2.15) 2324.40 (5.81) 2490.00 (0.94) 1651.00 (8.63) 2646.67 (0.27)
DFS 2602.35 (6.63) 2629.00 (4.49) 1499.00 (12.80) 1939.00 (4.89) 1750.33 (1.90) 1688.30 (25.08) 2341.00 (2.62) 1659.67 (9.17) 2600.33 (0.27)

SF
BFS 4918.50 (8.47) 5076.00 (12.36) 2965.00 (4.91) 4613.67 (2.59) 4457.67 (4.45) 4601.50 (23.39) 5176.00 (8.93) 2676.67 (29.27) 5365.33 (21.00)
DFS 4444.25 (4.63) 4629.00 (7.39) 3111.33 (9.12) 4213.33 (1.36) 4347.67 (2.71) 2831.45 (8.28) 4600.33 (6.12) 2667.67 (6.93) 5000.67 (6.31)

4. Experimental Results

This section presents the experimental results of the empirical study and analyzes the results
in detail. Please first ignore the results of Synergy in this section, which will be explained later
in Section 5. For all the results mentioned, we select the best outcome from the same family of
methods for comparison with other methods. The number of covered statements (NoCS) and the
number of covered branches (NoCB) serve as two key metrics for the evaluation of the overall
experiment.

4.1. Results of RQ1
Table 3’s first column shows the evaluation metrics. The second column shows the three bench-

marks. Columns 4-6, 7-8, 9, 10, 11, and 12 are the results of QF BVFP, RSO, ISC, FUZZ, Search,
and Synergy, respectively. The NoCS rows in Table 3 show the mean and confidence interval7 of
99% confidence level8 for the total number of covered statements by each method under BFS and
DFS. NoCB rows show the results of branch coverage. It is worth noting that the analysis and
discussion of Synergy are temporarily omitted in this section.

As shown by the table, FUZZ achieves the best results on the EF benchmark in covering
statements and branches under both BFS and DFS. This is attributed to the numerous invocations
of basic mathematical functions in the EF benchmark test programs. The fuzzing-based method
solves directly on the original constraint formula without the need to approximate the function
into a formula with complex non-linear computations, achieving a better result. One exception is
under BFS, the confidence intervals of the mean number of the covered branches by QF BVFP
(Z3) and FUZZ overlap, i.e., (838.60, 848.06) ∩ (842.58, 844.76) , ∅. The reason for this is that
the path constraints are relatively simpler under BFS.

On MA benchmark programs, QF BVFP (Bitwuzla) and QF BVFP (Z3) cover a larger number
of statements and branches under both BFS and DFS. This is because the MA benchmark programs

7The normal confidence interval of 1 − α confidence level can be expressed as x̄ (±zα/2 σ√n ).
8The significance level α is 0.01.
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implement basic mathematical algorithms and involve numerous equality constraints. Many of
these constraints have a small solution space, and the QF BVFP SMT solvers are better for solving
these constraints than the fuzzing-based one.

For the SF benchmark programs, FUZZ covers more statements and branches under BFS,
while QF BVFP (Bitwuzla) exhibits superior performance under DFS. The reason for this is that
the path constraints in DFS are more complex and longer, which results in a smaller solution space.
Therefore, fuzzing-based methods do not have an advantage.

Overall, RSO’s mediocre performance is due to the fact that many real solutions obtained
by RSO do not result in floating-point solutions satisfying the constraints, and the subsequent
searches also fail. The Search method covers the fewest statements and branches across all bench-
mark tests. The reason is that the search space of search-based methods only includes normalized
floating-point numbers but ignores the denormalized floating-point numbers. Furthermore, the
performance of QF BVFP (MathSAT5) can be ascribed to MathSAT5’s limit in solving floating-
point constraints, especially when dealing with constraints including elementary functions.

Finding 1: Overall, FUZZ demonstrates the highest performance on EF, whereas QF BVFP
excels on MA. Regarding SF, FUZZ marginally outperforms QF BVFP under BFS, while
QF BVFP exhibits a slight advantage over FUZZ under DFS.

Finding 2: RSO’s performance is moderate, while Search’s performance is the least satis-
factory. ISC’s performance is notably superior under BFS compared to DFS.

4.2. Results of RQ2
We also evaluate the efficiency of the methods. We conducted a comparative analysis of the

trends in the mean number of the covered statements and the mean number of the covered branches
over time. Same as before, please note that Synergy is not considered in this analysis. Figure 2
shows the trend results with respect to the number of covered statements. Figure 3 displays the
trend results of braches. The solid line in the figure represents the mean of the results of multiple
runs. The shaded area represents the confidence interval with the 99% confidence level.

As shown by the figures, on the EF benchmark, QF BVFP (Bitwuzla) has a clear efficiency
advantage in the early stages under BFS, while FUZZ becomes competitive in the later stages.
This is because the path constraints in the later stages of BFS become more complex and involve
the invocations of basic mathematical functions. However, under DFS, QF BVFP (Bitwuzla) with
propagation-based local search [46] has a significant efficiency advantage. On the MA benchmark,
QF BVFP (Bitwuzla) is more effective under both BFS and DFS. The reason is that Bitwuzla can
perform early pruning to reduce the search space. For the SF benchmark, RSO has better effi-
ciency performance. The corresponding floating-point solutions of the real solutions produced by
the RSO solver can often satisfy the formula. In particular, RSO (dReal) shows better efficiency
than RSO (CVC5), which is due to dReal’s interval solving technology. However, due to its un-
soundness, the final covered statements and branches are not as many as the FUZZ and QF BVFP
methods.
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Figure 2: A trend of the number of covered statements by each method under DFS and BFS for the three category
benchmarks.

Overall, RSO demonstrates a global efficiency advantage in the early stage. QF BVFP also
shows competitiveness across all benchmarks, but its performance is contingent on the employed
solver. By observing the slope of the FUZZ line segment, we can see that the efficiency of FUZZ
shows a gradual increase. Besides, ISC exhibits the poorest stability, primarily because the simula-
tion of floating-point operations introduces additional paths that exceed KLEE’s default maximum
memory capacity. Consequently, KLEE resorts to randomly terminating states with a higher prob-
ability. The poor efficiency of the Search method can be attributed to its tendency to fall into local
search during the search process. Lastly, QF BVFP (MathSAT5) exhibits the lowest efficiency
due to the limitations of MathSAT5’s solving capabilities. Additionally, there is a sharp rise in
the growth trend of NoCS and NoCB after 60 minutes. The reason is that KLEE generates the
corresponding test cases for the remaining unexplored states after timeout (i.e., after 60 minutes).
Therefore, according to the time generated by each test case, Figures 2 and 3 show a clear climb
after KLEE timeouts. Finally, we draw the following conclusions.

Finding 3: In general, RSO is more efficient in the early stage. QF BVFP and FUZZ are
more efficient in the later stage. The efficiency of ISC is medium and unstable. Search’s
efficiency is the worst.
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(c) SF(BFS)
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Figure 3: A trend of the number of covered branches by each method under DFS and BFS for the three category
benchmarks.

4.3. Results of RQ3
Table 4 shows the results of the five methods for detecting the floating-point exceptions spec-

ified in Table 1. Table 4 shows the mean and confidence interval with 99% confidence of the
number of exceptions detected by each method after 20 runs. The table presents the mean value,
along with the margin of error indicated in parentheses, which constitutes the confidence interval.
The first three columns represent three types of benchmarks, five types of methods, and the em-
ployed solvers, respectively. Columns 4-8 are the five types of floating-point exceptions listed in
Table 1. The last column is the total number of exceptions detected by each method. Again, the
Synergy method is ignored here.

As shown by Table 4, the number of Inexact exceptions is the highest, followed by Underflow
and Overflow exceptions. The numbers of Invalid and Divide-By-Zero exceptions are the least.
The reason is that Inexact exceptions have not received attention during the development, and
the developers care more about Invalid and Divide-By-Zero exceptions, so there are only a small
number of Invalid and Divide-By-Zero exceptions detected. The Divide-By-Zero and Invalid ex-
ceptions happen at relatively shallow places in the program, so they can be found almost in each
run. Therefore, the margin error of the results for these two exceptions is small or 0.

On both the EF and MA benchmarks, FUZZ has a clear advantage in the total number of excep-
tions detected, especially in detecting Overflow, Underflow, and Inexact exceptions. The reason is
that fuzzing usually gives priority to special number seeds (e.g., maximum/minimum normalized
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Table 4: The means and confidence intervals at 99% confidence level for the total number of exceptions detected by
different methods under BFS and DFS. Black bold indicates that the corresponding method is significantly better than
other methods except Synergy. Gray shading indicates that the corresponding method is significantly better than other
methods.

Benchmark Methods Solvers
Overflow Underflow Divide-By-Zero Invalid Inexact All

BFS DFS BFS DFS BFS DFS BFS DFS BFS DFS BFS DFS

EF

QF BVFP
Z3 23.75 (0.25) 16.25 (0.25) 96.00 (7.02) 73.00 (4.99) 5.00 (0.00) 3.00 (0.00) 9.00 (0.00) 4.00 (0.00) 188.25 (2.35) 157.25 (2.65) 322.00 (4.94) 253.50 (2.87)

Bitwuzla 26.75 (0.25) 24.75 (0.25) 106.00 (7.98) 103.50 (6.48) 8.00 (0.00) 7.00 (0.00) 9.00 (0.00) 7.00 (0.00) 187.50 (2.49) 194.75 (3.44) 337.25 (5.74) 337.00 (3.36)
MathSAT5 5.00 (0.00) 5.00 (0.00) 14.25 (0.25) 14.50 (0.50) 5.00 (0.00) 5.00 (0.00) 5.00 (0.00) 3.00 (0.00) 51.75 (1.43) 51.75 (1.88) 81.00 (1.68) 79.25 (2.35)

RSO dReal 26.75 (0.75) 24.50 (0.50) 39.00 (3.99) 37.75 (4.24) 5.00 (0.00) 3.00 (0.00) 7.00 (0.00) 7.00 (0.00) 99.25 (0.25) 93.75 (0.25) 177.00 (2.99) 166.00 (3.99)
CVC5 11.50 (0.29) 9.50 (0.29) 0.00 (0.00) 0.00 (0.00) 6.00 (0.00) 4.00 (0.00) 4.00 (0.00) 4.00 (0.00) 57.25 (0.25) 56.75 (0.25) 78.75 (0.48) 74.25 (0.25)

ISC Z3 2.00 (0.00) 2.00 (0.00) 15.50 (0.50) 8.50 (0.29) 5.00 (0.00) 3.00 (0.00) 6.00 (0.00) 3.00 (0.00) 106.50 (0.86) 28.25 (0.63) 135.00 (1.35) 44.75 (0.63)

FUZZ JFS 56.75 (0.25) 55.75 (0.25) 134.50 (0.29) 127.25 (0.25) 8.00 (0.00) 8.00 (0.00) 8.00 (0.00) 8.00 (0.00) 252.75 (0.25) 235.25 (0.25) 460.00 (0.41) 434.25 (0.25)

Search goSAT 9.75 (1.49) 7.50 (0.86) 9.75 (0.25) 9.00 (1.22) 5.00 (0.00) 4.00 (0.00) 6.00 (0.00) 6.00 (0.00) 128.25 (1.43) 137.50 (4.78) 158.75 (3.08) 164.00 (6.62)

Synergy −− 65.75 (1.25) 55.25 (0.48) 163.75 (2.24) 146.50 (5.16) 7.00 (0.00) 5.00 (0.00) 10.00 (0.00) 9.00 (0.00) 256.50 (0.86) 240.00 (1.68) 503.00 (4.33) 455.75 (6.96)

MA

QF BVFP
Z3 169.25 (2.59) 145.50 (2.17) 274.50 (16.21) 247.50 (16.80) 33.25 (0.25) 21.75 (0.25) 49.50 (0.50) 41.25 (0.25) 384.25 (10.60) 347.00 (11.00) 910.75 (3.61) 803.00 (3.78)

Bitwuzla 202.25 (2.24) 194.00 (2.34) 294.25 (28.68) 281.25 (27.35) 31.50 (0.50) 24.25 (0.25) 43.75 (0.25) 37.75 (0.25) 444.25 (4.30) 430.50 (6.88) 1016.00 (21.96) 967.75 (18.26)
MathSAT5 3.00 (0.00) 2.00 (0.00) 26.25 (0.63) 26.25 (0.63) 2.00 (0.00) 2.00 (0.00) 27.75 (0.25) 27.75 (0.25) 113.50 (2.84) 112.00 (2.34) 172.50 (3.19) 170.00 (2.70)

RSO dReal 112.75 (0.25) 113.00 (0.00) 53.00 (7.98) 54.00 (7.98) 19.75 (0.25) 19.75 (0.25) 39.75 (0.25) 39.75 (0.25) 160.25 (0.25) 162.25 (0.25) 385.50 (8.48) 388.75 (8.23)
CVC5 54.75 (0.25) 52.75 (0.25) 0.00 (0.00) 0.00 (0.00) 29.75 (0.25) 26.75 (0.25) 43.75 (0.25) 43.75 (0.25) 83.25 (0.63) 88.00 (0.00) 211.50 (0.50) 211.25 (0.48)

ISC Z3 4.75 (0.75) 3.00 (0.58) 50.50 (1.89) 12.50 (2.06) 14.25 (0.48) 9.00 (1.15) 39.75 (0.25) 26.25 (0.25) 208.50 (3.56) 48.75 (4.18) 317.75 (4.86) 99.50 (7.78)

FUZZ JFS 206.50 (3.49) 190.75 (1.75) 341.25 (0.94) 319.75 (0.48) 34.75 (0.25) 27.75 (0.25) 59.00 (1.00) 51.00 (1.00) 497.50 (0.50) 485.50 (1.50) 1139.00 (3.67) 1074.75 (2.42)

Search goSAT 49.50 (0.96) 49.75 (0.63) 15.25 (0.75) 14.00 (0.58) 26.50 (0.86) 16.75 (0.63) 39.75 (0.94) 40.00 (1.00) 273.25 (5.21) 277.25 (9.21) 404.25 (8.56) 397.75 (11.67)

Synergy −− 247.25 (1.97) 222.50 (1.84) 404.00 (1.00) 394.00 (1.00) 35.75 (0.25) 29.75 (0.25) 56.25 (0.25) 56.25 (0.75) 561.00 (1.00) 573.25 (1.11) 1304.25 (3.94) 1275.75 (0.75)

SF

QF BVFP
Z3 149.00 (0.41) 128.00 (0.58) 335.25 (31.01) 260.00 (20.62) 6.25 (0.25) 6.75 (0.25) 19.75 (1.25) 14.50 (0.50) 761.25 (4.58) 648.00 (2.99) 1271.50 (27.12) 1057.25 (18.40)

Bitwuzla 188.75 (1.75) 180.00 (0.81) 400.75 (41.49) 364.75 (37.19) 12.50 (1.19) 10.50 (0.29) 25.75 (0.25) 21.75 (0.25) 900.75 (16.58) 862.75 (2.17) 1528.50 (22.62) 1439.75 (37.04)
MathSAT5 8.75 (0.75) 13.75 (0.75) 72.00 (3.07) 70.75 (1.43) 5.50 (0.50) 6.25 (0.25) 8.50 (0.29) 7.75 (0.25) 319.25 (6.90) 315.50 (6.48) 414.00 (11.37) 414.00 (8.65)

RSO dReal 155.75 (0.25) 157.75 (0.25) 200.50 (11.47) 184.75 (12.22) 7.00 (0.00) 7.00 (0.00) 13.00 (0.00) 11.00 (0.00) 513.75 (0.25) 485.50 (0.29) 890.00 (11.97) 846.00 (12.64)
CVC5 110.50 (0.50) 110.25 (0.48) 1.00 (0.00) 1.00 (0.00) 9.00 (0.00) 9.00 (0.00) 10.00 (0.00) 9.00 (0.00) 299.00 (2.70) 307.25 (2.59) 429.50 (3.19) 436.50 (2.21)

ISC Z3 5.00 (0.58) 3.00 (0.58) 54.00 (1.00) 23.25 (1.03) 8.00 (0.00) 4.00 (0.00) 15.50 (0.29) 3.00 (0.00) 502.25 (3.32) 142.25 (1.84) 584.75 (3.44) 175.50 (2.49)

FUZZ JFS 257.25 (4.24) 192.75 (5.74) 488.00 (2.37) 340.00 (0.71) 10.50 (0.29) 7.25 (0.25) 20.75 (2.24) 16.75 (1.25) 949.75 (4.41) 829.75 (3.44) 1726.25 (8.94) 1386.50 (8.82)

Search goSAT 61.75 (2.35) 63.25 (1.88) 20.25 (1.18) 15.00 (0.58) 4.25 (0.25) 4.25 (0.25) 3.75 (0.25) 4.50 (0.29) 366.00 (8.47) 361.00 (6.74) 456.00 (11.65) 448.00 (8.73)

Synergy −− 256.75 (2.62) 233.75 (2.24) 502.00 (1.22) 468.25 (4.74) 10.25 (0.25) 9.25 (0.25) 14.75 (0.25) 13.75 (0.25) 1149.25 (12.66) 1195.50 (20.12) 1933.00 (9.41) 1920.50 (13.14)

floating-point numbers.). On the SF benchmark, QF BVFP detects more total exceptions than
FUZZ under DFS, which indicates that Bitwuzla’s propagation-based local search is better than
fuzzing’s pure search method when the exception constraints are longer. In terms of detecting
Divide-By-Zero and Invalid exceptions, FUZZ and QF BVFP have their own advantages on dif-
ferent benchmarks. For the EF benchmark, the results are almost the same, while the ones with
better results on MA and SF are FUZZ and QF BVFP, respectively. The reason is that there are
more composite expressions in the MA benchmark, e.g., log(A) or 1/A, where A is a non-linear
expression with multiple symbolic variables, on which FUZZ has more advantages. In contrast,
there are fewer such scenarios in the SF benchmark. In addition, by comparing QF BVFP (Z3)
and QF BVFP (Bitwuzla), we know that the same method uses different solvers, and the ability to
find exceptions is very different. RSO, ISC, and Search have poor ability to detect exceptions. The
main reason is that their ability to explore paths is not as good as QF BVFP and FUZZ, resulting
in them only detecting the exceptions in shallow code.

It is worth noting that we employ an under-constrained way [47] to perform symbolic execu-
tion. We built a driver for each analyzed function and symbolized all arguments in the drive. The
pre-conditions of the analyzed functions are ignored. So, the exceptions we discovered may not be
real bugs. However, this is sufficient to evaluate the ability of the five existing methods to detect
exceptions. In summary, we have the following conclusions.

Finding 4: Under BFS and DFS, QF BVFP and FUZZ can detect more exceptions. RSO,
ISC and Search show a poor perfomance on exception detection. Besides, QF BVFP and
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FUZZ are complementary for exception detection.

5. Synergy Method

Our empirical study has yielded several key findings. Notably, QF BVFP and FUZZ exhibit
the highest statement coverage, and RSO performs well in the early stage. Additionally, QF BVFP
and FUZZ demonstrate superior efficiency in the later stages, and these two methods are particu-
larly effective at exception detection. In light of these findings, we propose a synergistic approach
involving the integration of the three methods, i.e., QF BVFP (Z3), RSO(dReal), and FUZZ(JFS).
Algorithm 2 shows the details of our synergistic algorithm. This algorithm takes a path constraint
PC as the input and produces an output (r, S ), where r is SAT, UNSAT, or UNKNOWN. If r is SAT, the
output is a solution mapping S that provides a value for each variable in PC. Notably, PC rep-
resents a bit-vector formula containing floating-point and integer expressions. Symbolic method
invocations may also exist when using the function in math.h, e.g., sin(x). The central idea
of this algorithm is the Synergy of QF BVFP SMT solving, real arithmetic SMT solving, and
fuzzing-based solving techniques to enhance the efficiency of constraint solving.

The algorithm initially extracts simple atomic constraints from the input path constraint PC.
An atomic constraint Ci is considered simple (denoted by simple(Ci)) if it adheres to the following
two conditions.

• Ci does not contain non-linear floating-point operations.

• Ci does not include any symbolic method invocations.

Besides, non-linear integer operations are considered simple operations. Following this, the al-
gorithm employs a QF BVFP solver to solve the simplified path constraint PCs (Lines 1-2). If
the solver proves that PCs is unsatisfiable, it implies the unsatisfiability of the original PC. The
algorithm returns UNSAT (Line 4). If PCs is satisfiable, the algorithm checks whether the solution
S s satisfies the original PC (denoted by S s |= PC). When S s satisfies PC, a solution is identified
and returned (Line 7); Otherwise, the solving procedure continues.

Afterwards, the algorithm proceeds to partition the PC into two components (Line 9): PCi and
PC f . PCi exclusively consists of atomic constraints containing only integer expressions, and the
variables found within PCi are absent from PC f . Consequently, PCi is an integral part of PCs, and
S s effectively satisfies the constraints within PCi. Consequently, the algorithm’s focus narrows
down to solving PC f exclusively. The fundamental idea involves treating PC f as a real number
formula and solving it using a real arithmetic solver. However, due to the real solver’s limitations,
particularly its limitation in certain elementary arithmetic functions, we need to abstract PC f (Line
10). This abstraction process (i.e., Abstract(PC f )) encompasses the following scenarios.

• ceil(x) is abstracted by introducing a new real number variable y and applying the con-
straints x ≤ y ≤ x + 1.

• Similar to the abstraction of ceil(x), floor(x) is abstracted as x − 1 ≤ y ≤ x.
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Algorithm 2 Constraint Solving
Solve(PC)
Input: PC =

∧
0≤i≤n Ci is a path constraint.

Output: (r, S ), r is the solving result, and S is the solution if r is SAT.
1: PCs ←

∧
{Ci | 0 ≤ i ≤ n ∧ simple(Ci)}

2: (rs, S s)← QF BVFP Solve(PCs) ▷ call Z3 solver
3: if rs = UNSAT then
4: return (UNSAT, ∅)
5: end if
6: if S s |= PC then
7: return (SAT, S s)
8: end if
9: (PCi, PC f )← Separate(PC) ▷ PC is separated into PCi and PC f

10: PCa ← Abstract(PC f ) ▷ For ceil, floor functions and integer variables
11: (rr, S r)← REAL Solve(PCa) ▷ call dReal solver
12: if rr = SAT ∧ FP(S r) |= PC f then
13: return (SAT, S s ↓ PCi ∪ FP(S r))
14: end if
15: seed ← 0
16: if rr = SAT ∧ FP(S r) ̸|= PC f then
17: seed ← FP(S r)
18: end if
19: (r f , S f )← Fuzzing Solve(PC f , seed) ▷ call JFS solver
20: return (r f , S s ↓ PCi ∪ S f )

• Every variable within PC f is treated as a real number variable. Add the constraints spec-
ifying the variable’s maximum and minimum values of the data type. For instance, for an
integer variable x, we add the following constraints: INT MIN ≤ x ≤ INT MAX.

For the abstract formula PCa, we utilize the real arithmetic solver (REAL Solve(PCa) at Line
11) to solve it. If PCa is satisfiable, we convert its real number solution S r into the corresponding
floating-point solution, denoted as FP(S r). Subsequently, if FP(S r) complies with the constraints
of PC f , we have found a solution and merged it with the solution for PCi (Line 13). Here, S s ↓ PCi

denotes the part of S s that gives values to the variables in PCi. However, if FP(S r) does not
satisfy the conditions of PC f , we employ a fuzzing-based solver and use FP(S r) as the initial seed
(Line 17). The rationale behind this approach is that the fuzzier will likely be more efficient in
discovering the solution. Moreover, in situations where the real arithmetic solver returns UNSAT,
we also resort to the fuzzing-based solver (Line 19) due to the real arithmetic solver’s unsoundness.

For example, for the path condition cos(a) > log(b) ∧ sin(a) < log(b) of Figure 1’s illustration
example, our algorithm utilizes dReal to get a real number solution. However, its floating-point
solution does not satisfy the formula. Then, our algorithm can successfully obtain the solution by
adopting JFS and using dReal’s solution as a seed. In addition, for the unsatisfiable formula 3) of
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the illustration example, our algorithm avoids the fruitless search of fuzzing with the help of the
SMT solving technique. We get the following partition in the first step,

cos(a) > log(b) ∧ sin(a) < log(b)︸                                      ︷︷                                      ︸
complex

∧ c − 1.0 = 1.1︸          ︷︷          ︸
simple

. (5)

Synergy invokes an SMT solver to decide the satisfiability of the simple part. In this case, the
simple part is unsatisfiable, which can be proved by the SMT solver efficiently. Note that all
formula variables have the type of Float32. The loss of precision during the 32-bit floating-
point computation leads to unsatisfiability. Therefore, we can prove that the whole formula is
unsatisfiable.

5.1. Results Analysis
The basic information of Table 3 is introduced in detail in Section 4.1. The gray shading in the

table indicates that the corresponding method is significantly better than other methods. For the EF
benchmark, Synergy performs better in the number of covered statements but is inferior to FUZZ
in the number of covered branches. On the MA benchmark, QF BVFP (Bitwuzla) outperforms our
method on both metrics. The reason is that the Synergy method is unable to effectively separate
the constraints of this benchmark. In most cases, the entire constraint falls into either simple or
complex category. For the SF benchmark, Synergy demonstrates the advantage in both statement
and branch coverage.

As evidenced by Figures 2 and 3, Synergy demonstrates clear advantages in execution effi-
ciency across the EF and SF benchmarks, attributed to dReal’s rapid solving speed and its boosting
to fuzzing by initial seeds. In the MA benchmark, Synergy is inferior to QF BVFP (Bitwuzla) and
QF BVFP (Z3) under BFS and inferior to QF BVFP (Bitwuzla) under DFS.

As shown in Table 4, Synergy detects the highest total number of exceptions. However, in
terms of detecting Divide-By-Zero and Invalid exceptions, Synergy is not always superior to other
methods. The reason is that the complexity of exception constraints determines whether the ex-
ceptions can be discovered. For instance, when detecting the Invalid exception of sqrt(A), if A is
a complex expression involving multiple symbolic variables, the Synergy method holds an advan-
tage. Conversely, when A is a single symbolic variable, the QF BVFP method is comparatively
more advantageous. Under the DFS of the EF benchmark, the confidence interval of the detected
Overflow count by FUZZ overlaps with that of Synergy. We utilize the failed solutions from dReal
as the initialization seeds for JFS. Although this idea can enhance the overall performance of Syn-
ergy, in some specific scenarios, it does not differ significantly from the original seeds of JFS. A
similar situation is observed with the detected Overflow counts by both FUZZ and Synergy under
the SF benchmark.

In summary, Synergy demonstrates an advantage in symbolic execution for floating-point pro-
grams.

Compared to other methods, our Synergy exhibits notable advantages regarding statement
coverage, branch coverage, and exception detection.
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5.2. Discussion
Our solving algorithm is sound. To tackle the problem of the real arithmetic solver’s unsound-

ness, we employ the fuzzing-based solver in any case of the real arithmetic solver’s result, and the
fuzzing-based solver is sound. Besides, although we abstract the floating-point formula (Line 10
in Algorithm 2), we check the validity of the solution with respect to the original path condition
PC f . On the other hand, our solving algorithm is incomplete and may produce UNKNOWN due to the
limits of the real arithmetic solver and the fuzzing-based solving, especially when the constraints
are too complex.

The real arithmetic solver is critical for our method. First, the solver’s scalability impacts
the efficiency of our method. Second, the solver’s support of elementary arithmetic functions
determines the selection of complex functions (i.e., F of Algorithm 2). In principle, we set the
elementary arithmetic functions supported by the solver as complex functions. Because of the
same reason, the abstraction before invoking the real arithmetic solver (i.e., Abstract(PC f )) also
depends on the ability of the real arithmetic solver. Consequently, for operations and complex
functions unsupported by the solver, the abstraction of these elements becomes imperative.

6. Threats to Validity

There are internal and external threats to validity. One of the internal threats is the possible
path divergence in our concolic testing engine. For example, when analyzing real-world programs,
paths may diverge due to concretizations and changing environments. Although we have chosen
deterministic search strategies during the symbolic execution, path divergence indeed brings some
randomness, which might threaten the validity of our work. Another internal threat is our imple-
mentation. We asked two senior developers to review the source code to reduce the threat. Besides,
we have tested our implementation extensively on hundreds of programs.

There are four aspects to external threats. One is a single symbolic execution tool. Although
KLEE is a representative symbolic execution tool, there is no guarantee that these floating-point
solvers will have the same experimental results when integrated into other symbolic execution
tools. The second is limited representative benchmarks. Although we have constructed many
benchmarks from real-world floating-point computing libraries (i.e., GSL), they may still not be
representative. Likewise, real-world floating-point programs may not fit into any type of the three
benchmarks. The third is limited representative baselines. Although we compared the most ad-
vanced floating-point constraint solvers, we did not include all the available solvers. Besides, we
do not compare with baseline using array-based SMT theory for encoding the program (i.e., using
QF ABVFP SMT theory). In addition, the differences between different solvers will affect the final
performance of the method. For example, QF BVFP (Z3), QF BVFP (Bitwuzla), and QF BVFP
(MathSAT5) give very different results. Finally, in terms of exception detection, while we detect
the vast majority of common floating-point exceptions, we do not fully cover all floating-point
exceptions in IEEE 754 (e.g., there are other operations that can cause Invalid and Inexact excep-
tions). The Overflow and Underflow exception checking conditions may have false positives, for
example, the result of xmax + 1 will be rounded to xmax. Obviously, an Overflow exception does
not occur in the example given, yet our method might flag it as such. In general, our exception
checking conditions are sound but incomplete.
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7. Related Work

Our work is closely related to the symbolic execution of floating-point programs. Lakhotia et
al. [48] propose a search-based method for solving floating-point constraints in the symbolic exe-
cution engine Pex [7]. The key idea is to create a fitness function for each constraint. The constraint
solving is converted to the root search problem of the fitness function. This method’s critical aspect
is the fitness function’s design, which may be limited to non-arithmetic operations. Besides, this
method still faces scalability problems when the constraint becomes complex. Romano [21] pro-
poses to replace floating-point operations with the corresponding integer-implemented versions for
analyzing floating-point programs. Then, the program with floating-point operations is converted
to one with only integer operations. The path explosion problem poses a significant challenge
to this method, as it requires that each floating-point operation be replaced by a corresponding
function call. This method becomes infeasible for real-world numeric programs with intensive
floating-point operations (e.g., GSL benchmark programs). Barr et al. [18] propose Ariadne,
which utilizes real arithmetic solving to improve symbolic execution’s floating-point constraint
solving. When finding a rational solution, Ariadne converts it to a floating-point solution and
tests its validity. If the floating-point solution does not satisfy the constraint, Ariadne searches the
solution’s nearby values for the targets that satisfy the constraint. Ariadne inspires our method.
Compared with Ariadne, we have the following advantages. First, Ariadne only supports solving
the constraints with a single floating-point variable. If there are multiple variables, Ariadne sim-
plifies the constraint by concretization, which may cause the failure to find solutions. Our method
supports solving the constraints with multiple variables. Second, Ariadne abstracts the elementary
arithmetic functions (e.g., sin and cos) with fresh symbolic variables, which makes the analysis
imprecise. Leveraged by dReal, our method does not abstract these functions and has better pre-
cision. Third, Ariadne only searches the nearby floating-point values if the floating-point solution
does not satisfy the constraint. Our method employs fuzzing by seeding the fuzzing procedure
with the solution found by the real arithmetic solver, which is expected to be more effective and
efficient, as indicated by the experimental results in Section 4. Last, we also utilize QF BVFP
SMT solving to prove the unsatisfiability, a problem for methods like Ariadne.

Our work is related to the constraint solving of floating-point formulas. Significant advance-
ments have already been made to the existing QF BVFP SMT solvers, including Z3 [14], Math-
SAT [17], Bitwuzla [49], etc. However, these solvers are still limited for the symbolic execution
of real-world floating-point programs because the QF BVFP constraints are too complex for these
solvers to solve. On the other hand, JFS [19] proposes to employ fuzzing to solve the floating-
point constraints and achieve a better result than state-of-the-art solvers on floating-point related
SMTLIB benchmarks [50, 25]. JFS generates a program from a constraint and ensures that the
inputs crashing the program satisfy the constraint. Then, JFS employs the existing fuzzing tool
to fuzz the program to find the solution. JFS is effective for the constraints with a large space of
solutions but limited for the constraints with small solution spaces. Besides, when the constraints
are pretty complex, the fuzzing procedure also faces challenges. Our method utilizes the solu-
tion generated by the real arithmetic solver to improve the fuzzing procedure. It shows a better
result than the pure fuzzing method (as demonstrated by the results in the evaluation). Further-
more, our work is related to real arithmetic SMT solving. Our implementation is based on dReal
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[27], which supports solving the real number constraints with non-linear arithmetic expressions
and many elementary arithmetic functions. XSat [22] also provides a method for solving floating-
point constraints in a search-based manner, i.e., converting the solving problem to a mathematical
optimization problem, which can then be solved by the existing sampling methods, such as MCMC
[39, 40]. A similar idea has also been adopted in MLBSE [51][23]. Our method provides a frame-
work for synergizing these different constraint solving methods for better symbolic execution of
floating-point programs.

Our work also involves optimizing constraint solving during symbolic execution. KLEE [6]
uses simplification and cache to reduce the constraint’s complexity and solving times, respectively.
Green [52] also suggests using cache for optimization and proposes to share the solving results
across different programs and analysis tasks. Liu et al. [53] propose utilizing the mechanism
of incremental constraint solving during symbolic execution and carry out an empirical study
that suggests employing stack-based incremental constraint solving during symbolic execution.
KLEE-Array [54] eliminates array constraints produced by symbolic execution by representing
the array operations of the program with non-array expressions. Hence, the constraints issued
by symbolic execution do not have array expressions, which improves the constraint solving’s
efficiency. Another optimization line is to couple the symbolic executor and the constraint solver
more tightly. Zhang et al. [44] propose using partial solutions during constraint solving to generate
multiple test inputs by solving once. Chen et al. [55] propose synthesizing a solving strategy for
the program under symbolic execution to improve the efficiency of solving. Shuai et al. [56]
collect the information of array operations during symbolic execution and pass the information to
the array constraint solver to remove the redundant array axioms during constraint solving, which
improves the efficiency of array constraint solving.

Our work is orthogonal to the methods tackling the path explosion problem of symbolic ex-
ecution. There are two lines of the existing methods. The first line’s methods propose different
search strategies for symbolic execution under different backgrounds, including improving code
coverage [57], reaching a program location [58], exploring specific paths [59], etc. All these meth-
ods utilize the information calculated by dynamic or static analysis to guide symbolic execution
towards finishing the specific tasks in different backgrounds as soon as possible. The other line is
to prune the redundant paths of symbolic execution, which complements the first line’s methods.
The methods in this line line abstract the states of symbolic execution with respect to different
properties, such as reachability [58] and regular properties [60]. Then, the redundant paths clas-
sified by the abstraction, e.g., non-reachable or non-violating paths, can be pruned safely, directly
improving symbolic execution’s scalability.

8. Conclusion

We conduct the first empirical study of the symbolic execution of floating-point programs.
Our research subjects are five state-of-the-art methods: QF BVFP, RSO, ISC, FUZZ, and Search.
To make the research results credible, we collected up to 431 benchmarks and divided them into
three groups. Comparative experiments are conducted on three sets of benchmarks, and the code
coverage and exception detection results are discussed and analyzed in detail. Finally, it is found
that QF BVFP and FUZZ have better code coverage abilities, RSO, QF BVFP, and FUZZ have
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better efficiency for code coverage, and QF BVFP and FUZZ complement each other in exception
detection. Based on this finding, we propose the Synergy method to improve the symbolic execu-
tion of floating-point further. Experimental results show that our Synergy method has better code
coverage and can detect more exceptions.

There are three aspects for future work: 1) enlarge the scope of benchmark programs by in-
corporating more representative floating-point programs; 2) investigate more advanced constraint
separation to enhance the Synergy method further; 3) integrate bit-blasting and fuzzing-based
techniques in a more synergistic way to further improve the performance of solving floating-point
constraints.
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